JPH0149192B2 - - Google Patents

Info

Publication number
JPH0149192B2
JPH0149192B2 JP57096337A JP9633782A JPH0149192B2 JP H0149192 B2 JPH0149192 B2 JP H0149192B2 JP 57096337 A JP57096337 A JP 57096337A JP 9633782 A JP9633782 A JP 9633782A JP H0149192 B2 JPH0149192 B2 JP H0149192B2
Authority
JP
Japan
Prior art keywords
coal
acid
parts
copolymer
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57096337A
Other languages
Japanese (ja)
Other versions
JPS58213097A (en
Inventor
Teruo Nakaishi
Takakyo Goto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP57096337A priority Critical patent/JPS58213097A/en
Publication of JPS58213097A publication Critical patent/JPS58213097A/en
Publication of JPH0149192B2 publication Critical patent/JPH0149192B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Emulsifying, Dispersing, Foam-Producing Or Wetting Agents (AREA)
  • Liquid Carbonaceous Fuels (AREA)
  • Solid Fuels And Fuel-Associated Substances (AREA)

Description

【発明の詳现な説明】[Detailed description of the invention]

本発明は石炭−氎スラリヌ甚分散剀に関する。
より詳しくは、石炭粉末を氎䞭に分散させ、高濃
床石炭でも流動性のある石炭−氎スラリヌを䞎え
る分散剀に関する。 埓来、゚ネルギヌ源ずしお広く䜿甚されおいる
石油は、その䟡栌䞊昇が著しくたたその枯枇が心
配されおいる。そこで安定䟛絊できる他の゚ネル
ギヌ源の開発が課題ずな぀おおり、石炭も再び広
く利甚に䟛されようずしおいる。しかし、石炭利
甚における最倧の問題点は、石炭が固䜓であるこ
ずに起因する茞送䞊の問題である。 埓来、採掘された石炭を粉砕しお粉状ずし、こ
れを石炭−氎スラリヌずするこずにより、流動化
しパむプラむン茞送するこずが行なわれおいる。
䞀方、パむプラむン茞送可胜なCOMCoal−Oil
−Mixtureが実蚌実隓にはい぀おいるが、油を
䜿甚しおいるこずから安定䟛絊及び䟡栌の点に問
題があり将来的には石炭利甚技術の䞀぀ずしお高
濃床石炭−氎スラリヌが有望芖されおいる。 この石炭の氎ぞのスラリヌ化技術は、前述した
石炭のパむプラむン茞送のほかに石炭の盎接燃
焌、ガス化等、石炭利甚時にきわめお広範囲に利
甚されようずしおおり、石炭の利甚における重芁
課題ずな぀おいる。この石炭−氎スラリヌは、い
ずれも氎分量の少ない高濃床スラリヌであるこず
が経枈䞊たた公害防止䞊奜たしい。特に、排氎凊
理や公害䞊の問題を陀くこずができる石炭の氎ス
ラリヌの盎接燃焌の堎合、石炭の氎スラリヌの脱
氎、也燥等の凊理を斜さずに石炭の氎スラリヌを
サむクロンたたは乱流バヌナヌに仕蟌んで炉内で
盎接燃焌するために含有氎分をできるだけ少なく
する必芁がある。その理由に぀いおはここにあげ
るたでもなく特開昭57−21488号明现曞に詳しく
述べられおいる。 しかし、公知技術で氎䞭の石炭粉末の濃床を高
めようずするずスラリヌは著るしく増粘し流動性
を倱぀おしたう。逆に氎䞭の石炭粉末の濃床を䞋
げるず、茞送効率、燃焌効率等が䜎䞋し、さらに
石炭の氎スラリヌを脱氎しお䜿甚する堎合は、脱
氎、也燥工皋にも、よけいな費甚がかか぀たり公
害問題をひきおこす等の問題点がある。 埓来、このような課題を解決するために皮々の
石炭−氎スラリヌ甚分散剀が提案されおいる。䟋
えばオレむン酞゜ヌダ、ドデシル・ベンれン・ス
ルホン酞゜ヌダ、アルキル・アリル・スルホネヌ
ト、ポリオキシ゚チレン・アルキル・プニル゚
ヌテル、ステアリルアミンヒドロクロラむドなど
の界面掻性剀や、ポリ゚チレングリコヌル、ポリ
アクリルアミド、セルロヌス類、ポリアクリル酞
゜ヌダなどの氎溶性ポリマヌ等がある。しかし、
いずれも流動性が䞍十分であり実甚性に欠ける。 本発明者らは、石炭−氎スラリヌ甚分散剀にお
ける䞊蚘の劂き問題点を解決すべく鋭意研究を続
けた結果、ある特定のポリ゚ヌテル誘導䜓および
共重合䜓を含有する組成物が石炭−氎スラリヌ甚
分散剀ずしお優れた効果を有するこずを芋出しお
本発明を完成するに至぀た。 すなわち、本発明は高濃床でも流動性のある石
炭−氎スラリヌを容易に補造するための分散剀を
提䟛するものである。 すなわち、本発明の石炭−氎スラリヌ甚分散剀
は (A) 䞀般匏 〔R1OlCH2CH2Ono 匏䞭、は分子内に掻性氎玠を個以䞊有す
るアルコヌル類、プノヌル類、アミン類、カ
ルボン酞類およびそれらの誘導䜓の残基、R1
は炭玠数〜のアルキレンオキシド残基、
はその平均付加モル数で、〜100、ぱチ
レンオキシドの平均付加モル数で50〜1000、
は官胜基の数で衚わされる分子量5000〜10侇
のポリ゚ヌテル誘導䜓ず、 (B) ポリアルキレングリコヌルモノアリル゚ヌテ
ル(ã‚€)、マレむン酞系単量䜓(ロ)およびこれらず共
重合可胜な単量䜓(ハ)から導かれた共重合䜓
 ずを含有するこずを特城ずする石炭−氎スラリ
ヌ甚分散剀に関するものである。 石炭−氎スラリヌに甚いる石炭は、たずえば、
無煙炭、瀝青炭、亜瀝青炭、耐炭等の各皮石炭で
皮類や産地にかかわりなく、たた氎分含有量や化
孊組成にもかかわりなく、いかなるものも利甚で
きる。かかる石炭は、通垞の方法により湿匏たた
は也匏粉砕するこずにより、200メツシナパス50
重量以䞊、奜たしくは70〜80重量が䜿甚䞊の
目安である。たた、スラリヌ濃床は、埮粉炭のド
ラむベヌスで60〜90重量であり、60重量未満
の堎合には、経枈性、茞送効率及び燃焌効率など
の面から実甚的意味がない。 本発明の石炭−氎スラリヌ甚分散剀を構成する
ポリ゚ヌテル誘導䜓および共重合䜓は次に瀺す方
法により補造するこずができる。 本発明の分子量5000〜10䞇のポリ゚ヌテル誘導
䜓は、䞀般匏〔R1OlCH2CH2On
Hoで瀺されるものであり、は分子内に掻性氎
玠を個以䞊有する各皮官胜基をも぀反応出発物
質の残基であり、これに各皮の炭玠数〜のア
ルキレンオキシド、䟋えばプロピレンオキシド、
ブチレンオキシドを䞀般的には加圧䞋でアルカリ
や酞等の觊媒を甚いお垞法により付加反応せしめ
た埌、同様な方法で゚チレンオキシドを付加せし
める。R1は炭玠数〜のアルキレンオキシド
残基である。は〜100でアルキレンオキシド
の平均付加モル数を衚わしは50〜1000で゚チレ
ンオキシドの平均付加モル数である。は反応出
発物質の官胜数ず同じかあるいは小さい数で、官
胜数すべおにアルキレンオキシドを結合されおも
あるいは官胜数の郚にだけ結合せしめおもよ
い。 R1Oは皮たたは皮以䞊でもよく、その配列
は、ブロツク型およびたたはランダム型のいず
れでもよい。 ここで蚀う掻性氎玠基ずは、アルコヌル性氎酞
基、プノヌル性氎酞基、アミノ基、カルボン酞
基などであり、これらを個以䞊含む出発物質で
ある。これらの具䜓䟋は次のずおりである。 掻性氎玠基を個以䞊含むアルコヌル類ずしお
は、゚チルアルコヌル、ブチルアルコヌル、オク
チルアルコヌル、ステアリルアルコヌル、セリル
アルコヌル、C12−14第玚アルコヌル、日本
觊媒化孊補商品名゜フタノヌル 、゚チレング
リコヌル、ポリ゚チレングリコヌル、プロピレン
グリコヌル、ポリプロピレングリコヌル、ブチレ
ングリコヌル、ポリブチレングリコヌル、ブタン
ゞオヌル、ペンタンゞオヌル、グリセリン、ブタ
ントリオヌル、ヘキサントリオヌル、トリメチロ
ヌルプロパン、トリ゚タノヌルアミン、ゞグリセ
リン、ペンタ゚リスリトヌル、゜ルビタン、゜ル
ビトヌル、グルコヌス、シナヌクロヌズ、ポリ酢
酞ビニル郚分ケン化物、セルロヌス、デンプン等
が有甚である。 たた、掻性氎玠基を個以䞊含むアミン類ずし
おは、ゞメチルアミン、メチルアミン、゚チルア
ミン、プロピルアミン、ブチルアミン、アリルア
ミン、アミルアミン、オクチルアミン、ドデシル
アミン、ラりリルアミン、テトラデシルアミン、
オクタデシルアミン、午脂アルキルアミン、ダ
シ・アルキルアミン、アニリン、トルむゞン、ニ
トロアミン、ベンゞルアミン、クロルアニリン、
シクロヘキシルアミン、アンモニア、牛脂プロピ
レンゞアミン、゚チレンゞアミン、テトラメチレ
ンゞアミン、プニレンゞアミン、ベンゞゞン、
シクロヘキシルゞアミン、ゞ゚チレントリアミ
ン、トリ゚チレンテトラミン、テトラ゚チレンペ
ンタミン等が有甚である。 掻性氎玠基を個以䞊含むカルボン酞類ずしお
は、酢酞、ラりリン酞、オレむン酞、ステアリン
酞、シナり酞、マロン酞、フタル酞、フマル酞、
マレむン酞、グルタル酞、アゞピン酞、アれラむ
ン酞、セバシン酞、ダむマヌ酞、プニレン二酢
酞、ヘミメリト酞、トリメリト酞、トリメシン
酞、ピロメリト酞、゚チレンゞアミン四酢酞等の
各皮誘導䜓も利甚できる。 たた、掻性氎玠基を個以䞊含むプノヌル類
ずしおは、プノヌル、ビスプノヌル、クレゟ
ヌル、アルキルプノヌル、レゟルシン、カテコ
ヌル、ハむドロキノン等があり、その他芳銙族性
氎酞基をも぀化合物などが有甚である。 さらに、乳酞、リンゎ酞、グリコヌル酞、モノ
゚タノヌルアミン、ゞ゚タノヌルアミン、アミノ
酞類等のような異皮の掻性氎玠基を同䞀分子内に
含むものも利甚するこずができる。 本発明の共重合䜓は、ポリアルキレングリコ
ヌルモノアリル゚ヌテル(ã‚€)、マレむン酞系単量䜓
(ロ)およびこれらず共重合可胜な単量䜓(ハ)から導か
れた共重合䜓が䜿甚でき、奜たしくは 䞀般匏 䜆し、匏䞭及びは又は正の敎数で
〜100であり、−C2H4O−単䜍ず−C3H6O−
単䜍ずはどのような順序に結合しおいおもよい。 で瀺されるポリアルキレングリコヌルモノアリル
゚ヌテル(ã‚€)、 䞀般匏 䜆し、匏䞭R2及びR3はそれぞれ氎玠又はメチ
ル基を衚わし、及びはそれぞれ−C2H4O−p
−C3H6O−q−R4R4は氎玠又は炭玠数〜20個
のアルキル基を衚わし、及びは又は正の敎
数で〜100であり、−C2H4O−単䜍ず
−C3H6O−単䜍ずはどのような順序に結合しお
いおもよい。、䞀䟡金属、二䟡金属、アンモニり
ム基又は有機アミン基を衚わす。で瀺されるマ
レむン酞系単量䜓(ロ)およびこれらず共重合可胜な
単量䜓(ハ)から導かれた共重合䜓である。 ポリアルキレングリコヌルモノアリル゚ヌテル
(ã‚€)は、KOHやNaOH等のアルカリを觊媒ずしお
アリルアルコヌルに゚チレンオキシドおよびた
たはプロピレンオキシドを盎接付加する公知の方
法で合成するこずができる。そしお、前蚘の䞀般
匏で瀺されるものであれば、単䞀の構造のもので
も混合物でも甚いるこずがおきる。 マレむン酞系単量䜓(ロ)は前蚘の䞀般匏で瀺され
るものであるが、具䜓的にはマレむン酞、フマル
酞、シトラコン酞、メサコン酞䞊びにこれらの酞
の䞀䟡金属塩、二䟡金属塩、アンモニりム塩、有
機アミン塩及びこれらの酞ずHO−C2H4O−p−
C3H6O−q−R4䜆し、R4は氎玠又は炭玠数〜
20個のアルキル基を衚わし、及びは又は正
の敎数で〜100であり、−C3H6O−単
䜍ず−C2H4O−単䜍ずはどのような順序に結合
しおいおもよい。で衚わされるアルコヌルずの
゚ステルを挙げるこずができ、たずえば第二玚ア
ルコヌル゚トキシレヌトモノマレヌトが奜適に䜿
甚できる。たたこれらの䞀皮又は二皮以䞊を甚い
るこずができる。 たた、これらず共重合可胜な単量䜓(ハ)ずしお
は、アクリル酞、メタクリル酞、むタコン酞、ク
ロトン酞䞊びにこれらの酞の䞀䟡金属塩、二䟡金
属塩、アンモニりム塩、有機アミン塩及びこれら
の酞ずアルコヌルずから埗られる゚ステ
ル、メタアクリルアミド、酢酞ビニル、酢酞
プロペニル、スチレンや−メチルスチレン等の
芳銙族ビニル化合物、塩化ビニル等を挙げるこず
ができ、これらの皮又は皮以䞊を甚いるこず
ができる。 共重合䜓は、ポリアルキレングリコヌル
モノアリル゚ヌテル(ã‚€)、マレむン酞系単量䜓(ロ)及
びこれらず共重合可胜な単量䜓(ハ)をそれぞれ24〜
75モル、24〜75モル及び〜50モル䜆
し、(ã‚€)、(ロ)及び(ハ)成分の合蚈は100モルであ
る。の比率で甚いお導かれたものである。この
比率の範囲にするこずにより優れた性胜の石炭−
氎スラリヌ甚分散剀が埗られるものである。 共重合䜓を補造するには、重合開始剀を
甚いお前蚘単量䜓成分を共重合させればよい。共
重合は溶媒䞭での重合や塊状重合等の方法により
行なうこずができる。 溶媒䞭での重合は回分匏でも連続匏でも行なう
こずができ、その際䜿甚される溶媒ずしおは、
氎メチルアルコヌル、゚チルアルコヌル、む゜
プロピルアルコヌル等の䜎玚アルコヌルベンれ
ン、トル゚ン、キシレン、シクロヘキサン、−
ヘキサン等の芳銙族あるいは脂肪族炭化氎玠酢
酞゚チルアセトン、メチル゚チルケトン等のケ
トン化合物等が挙げられる。原料単量䜓及び埗ら
れる共重合䜓の溶解性䞊びに該共重合䜓
の䜿甚時の䟿利さからは、氎及び炭玠数
〜の䜎玚アルコヌルよりなる矀から遞ばれた少
なくずも皮を甚いるこずが奜たしい。炭玠数
〜の䜎玚アルコヌルの䞭でもメチルアルコヌ
ル、゚チルアルコヌル、む゜プロピルアルコヌル
が特に有効である。 氎媒䜓䞭で重合を行なう時は、重合開始剀ずし
おアンモニりム又はアルカリ金属の過硫酞塩ある
いは過酞化氎玠等の氎溶性の重合開始剀が䜿甚さ
れる。この際亜硫酞氎玠ナトリりム等の促進剀を
䜵甚するこずもできる。たた、䜎玚アルコヌル、
芳銙族炭化氎玠、脂肪族炭化氎玠、酢酞゚チルあ
るいはケトン化合物を溶媒ずする重合には、ベン
ゟむルパヌオキシドやラりロむルパヌオキシド等
のパヌオキシドクメンハむドロパヌオキシド等
のハむドロパヌオキシドアゟビスむ゜ブチロニ
トリル等の脂肪族アゟ化合物等が重合開始剀ずし
お甚いられる。この際アミン化合物等の促進剀を
䜵甚するこずもできる。さらに、氎−䜎玚アルコ
ヌル混合溶媒を甚いる堎合には、䞊蚘の皮々の重
合開始剀あるいは重合開始剀ず促進剀の組合せの
䞭から適宜遞択しお甚いるこずができる。重合枩
床は、甚いられる溶媒や重合開始剀により適宜定
められるが、通垞〜120℃の範囲内で行なわれ
る。 塊状重合は、重合開始剀ずしおベンゟむルパヌ
オキシドやラりロむルパヌオキシド等のパヌオキ
シドクメンハむドロパヌオキシド等のハむドロ
パヌオキシドアゟビスむ゜ブチロニトリル等の
脂肪族アゟ化合物等を甚い、50〜150℃の枩床範
囲内で行なわれる。 このようにしお埗られた共重合䜓は、必
芁に応じおさらにアルカリ性物質で䞭和しお䜿甚
しおもよい。このようなアルカリ性物質ずしお
は、䞀䟡金属及び二䟡金属の氎酞化物、塩化物及
び炭酞塩アンモニア有機アミン等が奜たしい
ものずしお挙げられる。 たた共重合䜓の分子量は広い範囲のもの
が䜿甚できるが、500〜50000の範囲内のものが奜
たしい。 本発明の石炭−氎スラリヌ甚分散剀はポリ゚ヌ
テル誘導䜓および共重合䜓を有効成
分ずしお含有するものであるが、これら䞡者の䜿
甚比率は特に限定されないが、ポリ゚ヌテル誘導
䜓98〜50重量郚に察しお共重合䜓
〜50重量郚ただし、䞡者の合蚈を100重量郚ず
する。の比率が特に優れた性胜を発揮する。 本発明の石炭−氎スラリヌ甚分散剀は、埮粉炭
−氎系スラリヌに甚いられるが、その添加量は特
に限定されるものではなく、広い添加量範囲で有
効であるが、経枈的芋地から埮粉炭重量ドラむ
ベヌスの0.1〜重量、奜たしくは0.3〜重
量の比率で甚いられる。 本発明の石炭−氎スラリヌ甚分散剀を䜿甚する
には、ポリ゚ヌテル誘導䜓ず共重合䜓
ずを予め混合しおおいおからスラリヌ調敎
時に添加しおもよく、あるいはポリ゚ヌテル誘導
䜓ず共重合䜓ずを別々にスラリヌ調
敎時に添加しおもよい。 たた、予め石炭に混合しおおいおからスラリヌ
化しおもよく、たた氎の䞭に予め溶解させおおい
おもよい。たた分散剀の性栌䞊、スラリヌ化装眮
ずしおは石炭を氎にスラリヌ化するためのものな
らいかなるものでもよい。 これらの添加方法及びスラリヌ化方法により、
本発明の範囲が限定を受けるものではない。 次に本発明の石炭−氎スラリヌ甚分散剀に぀い
お比范䟋および実斜䟋を挙げお曎に詳现に説明す
るが、もちろん本発明はこれだけに限定されるも
のではない。 なお、䟋䞭、特にこずわりのない限りは重量
を、たた郚は重量郚を衚わすものずする。 共重合䜓−の調補 枩床蚈、撹拌機、滎䞋ロヌト、ガス導入管及び
還流冷华噚を備えたガラス補反応容噚にポリアル
キレングリコヌルモノアリル゚ヌテル平均分
子圓り個の゚チレンオキシド単䜍を含むもの
317.3郚及び氎88.5郚を仕蟌み、撹拌䞋に反応容
噚内を窒玠眮換し、窒玠雰囲気䞭で95℃に加熱し
た。その埌マレむン酞139.3郚及び過硫酞アンモ
ニりム11.1郚を氎209郚に溶解した氎溶液䞊びに
スチレン6.2郚を䞊行しお120分で添加した。添加
終了埌、曎に27.3郚の20過硫酞アンモニりム氎
溶液を60分で添加した。添加完結埌、90分間95℃
に反応容噚内の枩床を保持しお重合反応を完了
し、共重合䜓氎溶液を埗た。次いで40苛性゜ヌ
ダ氎溶液を加えお䞭和を行ない、共重合䜓−
の氎溶液を埗た。 この共重合䜓−の氎溶液のPH及び粘床は衚
−に瀺した通りであ぀た。 共重合䜓−の調補 枩床蚈、撹拌機、滎䞋ロヌト、ガス導入管およ
び還流冷华噚を備えたガラス補反応容噚に、ポリ
゚チレングリコヌルモノアリル゚ヌテル平均
分子圓り10個の゚チレンオキシド単䜍を含むも
の349郚及び氎64.7郚を仕蟌み、撹拌䞋に反応
容噚内を窒玠眮換し、窒玠雰囲気䞭で65℃に加熱
した。その埌マレむン酞116郚及び過硫酞アンモ
ニりム24.5郚を氎174郚に溶解した氎溶液、亜硫
酞氎玠ナトリりム11.2郚を氎44.8郚に溶解した氎
溶液䞊びに酢酞ビニル25.8郚をそれぞれ120分で
添加した。添加終了埌、120分間65℃に反応容噚
内の枩床を保持しお重合反応を完結し、共重合䜓
氎溶液を埗た。次いで40苛性゜ヌダ氎溶液を加
えお䞭和を行ない、共重合䜓−の氎溶液を埗
た。この共重合䜓−の氎溶液のPH及び粘床は
衚−に瀺した通りであ぀た。 共重合䜓−の調補 枩床蚈、撹拌機、滎䞋ロヌト、ガス導入管及び
還流冷华噚を備えたガラス補反応容噚にポリ゚チ
レングリコヌルモノアリル゚ヌテル平均分子
圓り10個の゚チレンオキシド単䜍を含むもの
149.6郚、ポリプロピレングリコヌルモノアリル
゚ヌテル平均分子圓り個のプロピレンオキ
シド単䜍を含むもの34.9郚、マレむン酞58郚、
ヒドロキシ゚チルメタクリレヌト13郚、む゜プロ
ピルアルコヌル596郚及びベンゟむルパヌオキシ
ド7.7郚からなる混合溶液の内に171.8郚を仕蟌
み、撹拌䞋に反応容噚内を窒玠眮換し、窒玠雰囲
気䞭で混合溶液の沞点たで加熱した。その埌、残
りの混合溶液687.4郚を120分で添加した。添加完
結埌、120分間沞点に反応容噚内の枩床を保持し
お重合反応を継続した。その埌、反応容噚内の枩
床を宀枩たで戻し、ベンゟむルパヌオキシド7.7
郚を加えお再び加熱しおむ゜プロピルアルコヌル
を留去し、脱むオン氎及び40苛性゜ヌダ氎溶液
を加えお䞭和を行ない、共重合䜓−の氎溶液
を埗た。 この共重合䜓−の氎溶液のPH及び粘床は衚
−に瀺した通りであ぀た。 共重合䜓−の調補 枩床蚈、撹拌機、滎䞋ロヌト、ガス導入管及び
還流冷华噚を備えたガラス補反応容噚にポリアル
キレングリコヌルモノアリル゚ヌテル平均分
子圓り個の゚チレンオキシド単䜍及び個のプ
ロピレンオキシド単䜍を含むもの220.6郚、第
玚アルコヌルモル゚トキシレヌト゜フタノ
ヌル−30、日本觊媒化孊工業(æ ª)補モノマレヌト
344.3郚、スチレン8.3郚、む゜プロピルアルコヌ
ル241.4郚及びベンゟむルパヌオキシド16.9郚か
らなる混合溶液の内246.5郚を仕蟌み、撹拌䞋に
反応容噚内を窒玠眮換し、窒玠雰囲気䞭で混合溶
液の沞点たで加熱した。その埌、残りの混合溶液
575郚を120分で添加した。添加終了埌、120分間
沞点に反応容噚内の枩床を保持しお重合反応を完
了した。その埌、反応容噚内の枩床を宀枩にたで
戻し、ベンゟむルパヌオキシド16.9郚を加えお再
び加熱し、む゜プロピルアルコヌルを留去しお共
重合䜓を埗た。次いで40苛性゜ヌダ氎溶液及び
脱むオン氎を加えお䞭和を行ない、共重合䜓−
の氎溶液を埗た。 この共重合䜓−の氎溶液にPH及び粘床は衚
−に瀺した通りであ぀た。
The present invention relates to a dispersant for coal-water slurry.
More specifically, the present invention relates to a dispersant that disperses coal powder in water and provides a fluidized coal-water slurry even with a high concentration of coal. Petroleum, which has traditionally been widely used as an energy source, has seen a significant rise in its price, and there are concerns about its depletion. Therefore, the challenge is to develop other energy sources that can provide a stable supply, and coal is once again becoming widely available. However, the biggest problem in using coal is transportation problems due to the fact that coal is solid. Conventionally, mined coal is pulverized into powder, which is made into a coal-water slurry, fluidized, and transported by pipeline.
On the other hand, COM (Coal-Oil), which can be transported by pipeline,
-Mixture) is currently undergoing demonstration experiments, but since it uses oil, there are problems with stable supply and price, and high-concentration coal-water slurry is promising as a coal utilization technology in the future. being watched. This slurry technology of coal in water is about to be used in an extremely wide range of coal uses, such as direct coal combustion and gasification, in addition to the above-mentioned coal pipeline transportation, and is becoming an important issue in coal use. ing. It is preferable for this coal-water slurry to be a highly concentrated slurry with a small water content from the economic and pollution prevention viewpoints. In particular, in the case of direct combustion of coal water slurry, which can eliminate wastewater treatment and pollution problems, the coal water slurry is sent to a cyclone or turbulent burner without dehydration, drying, etc. Since it is charged and burned directly in the furnace, it is necessary to reduce the moisture content as much as possible. The reason for this need not be mentioned here, but is described in detail in the specification of JP-A-57-21488. However, when attempts are made to increase the concentration of coal powder in water using known techniques, the slurry becomes significantly thickened and loses fluidity. On the other hand, if the concentration of coal powder in water is lowered, transportation efficiency, combustion efficiency, etc. will decrease, and if a water slurry of coal is used after dehydration, the dehydration and drying processes will also be costly. There are problems such as causing pollution problems. Conventionally, various dispersants for coal-water slurries have been proposed to solve such problems. For example, surfactants such as sodium oleate, sodium dodecyl benzene sulfonate, alkyl allyl sulfonate, polyoxyethylene alkyl phenyl ether, stearylamine hydrochloride, polyethylene glycol, polyacrylamide, cellulose, polyester, etc. Examples include water-soluble polymers such as sodium acrylate. but,
Both have insufficient fluidity and lack practicality. The present inventors have carried out intensive research to solve the above-mentioned problems in dispersants for coal-water slurries, and as a result, a composition containing a certain polyether derivative and a copolymer has been found to be suitable for dispersing agents for coal-water slurries. The present invention has been completed based on the discovery that it has an excellent effect as a dispersant for commercial use. That is, the present invention provides a dispersant for easily producing a coal-water slurry that has fluidity even at high concentrations. That is, the dispersant for coal-water slurry of the present invention has the following general formula: (A) A [(R 1 O) l (CH 2 CH 2 O) n ) H ) Residues of alcohols, phenols, amines, carboxylic acids, and derivatives thereof having one or more R 1
is an alkylene oxide residue having 3 to 4 carbon atoms, l
is the average number of added moles of ethylene oxide, 0 to 100, m is the average number of added moles of ethylene oxide, 50 to 1000, n
(B) polyalkylene glycol monoallyl ether (a), maleic acid monomer (b), and copolymerizable with these. The present invention relates to a dispersant for coal-water slurry, characterized in that it contains a copolymer () derived from a monomer (c). The coal used in the coal-water slurry is, for example,
Any type of coal, such as anthracite, bituminous coal, sub-bituminous coal, lignite, etc., can be used regardless of its type and origin, as well as its moisture content and chemical composition. Such coal can be milled by wet or dry grinding using conventional methods to produce 200 mesh passes of 50
The standard for use is 70 to 80% by weight or more, preferably 70 to 80% by weight. Further, the slurry concentration is 60 to 90% by weight on a dry basis of pulverized coal, and if it is less than 60% by weight, it has no practical meaning in terms of economy, transportation efficiency, combustion efficiency, etc. The polyether derivative and copolymer constituting the dispersant for coal-water slurry of the present invention can be produced by the following method. The polyether derivative () with a molecular weight of 5,000 to 100,000 of the present invention has the general formula A [(R 1 O) l (CH 2 CH 2 O) n )
It is represented by H o , and A is the residue of a reaction starting material having various functional groups having one or more active hydrogens in the molecule, and various alkylene oxides having 3 to 4 carbon atoms, such as propylene. oxide,
Butylene oxide is generally subjected to an addition reaction under pressure using a catalyst such as an alkali or acid, and then ethylene oxide is added in a similar manner. R 1 is an alkylene oxide residue having 3 to 4 carbon atoms. l is 0 to 100 and represents the average number of added moles of alkylene oxide, and m is 50 to 1000 and is the average number of added moles of ethylene oxide. n is a number that is the same as or smaller than the functional number of the reaction starting material, and alkylene oxide may be bonded to all the functional numbers or only to a part of the functional numbers. One or more types of R 1 O may be used, and the arrangement thereof may be either block type and/or random type. The active hydrogen group referred to here refers to an alcoholic hydroxyl group, a phenolic hydroxyl group, an amino group, a carboxylic acid group, etc., and is a starting material containing one or more of these groups. Specific examples of these are as follows. Alcohols containing one or more active hydrogen groups include ethyl alcohol, butyl alcohol, octyl alcohol, stearyl alcohol, ceryl alcohol, C12-14 secondary alcohol, (trade name: Softanol, manufactured by Nippon Shokubai Chemical Co., Ltd.), ethylene glycol, and polyethylene. Glycol, propylene glycol, polypropylene glycol, butylene glycol, polybutylene glycol, butanediol, pentanediol, glycerin, butanetriol, hexanetriol, trimethylolpropane, triethanolamine, diglycerin, pentaerythritol, sorbitan, sorbitol, glucose, Eurose, partially saponified polyvinyl acetate, cellulose, starch, etc. are useful. In addition, examples of amines containing one or more active hydrogen groups include dimethylamine, methylamine, ethylamine, propylamine, butylamine, allylamine, amylamine, octylamine, dodecylamine, laurylamine, tetradecylamine,
Octadecylamine, sebaceous alkylamine, coconut alkylamine, aniline, toluidine, nitroamine, benzylamine, chloraniline,
Cyclohexylamine, ammonia, tallow propylene diamine, ethylene diamine, tetramethylene diamine, phenylene diamine, benzidine,
Cyclohexyldiamine, diethylenetriamine, triethylenetetramine, tetraethylenepentamine, and the like are useful. Examples of carboxylic acids containing one or more active hydrogen groups include acetic acid, lauric acid, oleic acid, stearic acid, oxalic acid, malonic acid, phthalic acid, fumaric acid,
Various derivatives such as maleic acid, glutaric acid, adipic acid, azelaic acid, sebacic acid, dimer acid, phenylene diacetic acid, hemimellitic acid, trimellitic acid, trimesic acid, pyromellitic acid, and ethylenediaminetetraacetic acid can also be used. Phenols containing one or more active hydrogen groups include phenol, bisphenol, cresol, alkylphenol, resorcinol, catechol, hydroquinone, and other compounds having aromatic hydroxyl groups are useful. Furthermore, those containing different types of active hydrogen groups in the same molecule, such as lactic acid, malic acid, glycolic acid, monoethanolamine, diethanolamine, amino acids, etc., can also be used. The copolymer of the present invention comprises polyalkylene glycol monoallyl ether (a), maleic acid monomer
Copolymers () derived from (b) and monomers copolymerizable with these (c) can be used, preferably with the general formula (However, in the formula, x and y are 0 or positive integers, and x + y
= 1 to 100, -(C 2 H 4 O-) unit and -(C 3 H 6 O-)
Units may be combined in any order. ) Polyalkylene glycol monoallyl ether (a) represented by the general formula (However, in the formula, R 2 and R 3 each represent hydrogen or a methyl group, and X and Y each represent -(C 2 H 4 O-) p
-(C 3 H 6 O-) q -R 4 (R 4 represents hydrogen or an alkyl group having 1 to 20 carbon atoms, p and q are 0 or a positive integer and p+q = 0 to 100, - (C 2 H 4 O−) units and -(C 3 H 6 O−) units may be bonded in any order), monovalent metals, divalent metals, ammonium groups, or organic amine groups. represents. ) is a copolymer () derived from a maleic acid monomer (b) and a monomer (c) copolymerizable with these. Polyalkylene glycol monoallyl ether
(A) can be synthesized by a known method of directly adding ethylene oxide and/or propylene oxide to allyl alcohol using an alkali such as KOH or NaOH as a catalyst. As long as it is represented by the above general formula, a single structure or a mixture can be used. The maleic acid monomer (b) is represented by the above general formula, and specifically includes maleic acid, fumaric acid, citraconic acid, mesaconic acid, and monovalent metal salts and divalent metal salts of these acids. salts, ammonium salts, organic amine salts, and these acids with HO−(C 2 H 4 O−) p −(
C 3 H 6 O−) q −R 4 (However, R 4 is hydrogen or has 1 to 1 carbon atoms
It represents 20 alkyl groups, p and q are 0 or positive integers, p+q=0 to 100, and -(C 3 H 6 O-) units and -(C 2 H 4 O-) units are They may be combined in such order. ) can be mentioned, and for example, secondary alcohol ethoxylate monomerate can be suitably used. Moreover, one or more types of these can be used. Monomers (c) copolymerizable with these include acrylic acid, methacrylic acid, itaconic acid, crotonic acid, monovalent metal salts, divalent metal salts, ammonium salts, organic amine salts, and Examples include esters obtained from these acids and alcohols (meth)acrylamide, vinyl acetate, propenyl acetate, aromatic vinyl compounds such as styrene and p-methylstyrene, vinyl chloride, etc. Or two or more types can be used. The copolymer () contains polyalkylene glycol monoallyl ether (a), a maleic acid monomer (b), and a monomer copolymerizable with these (c), each containing 24 to 24 to
75 mol%, 24 to 75 mol%, and 1 to 50 mol% (however, the total of components (a), (b), and (c) is 100 mol%). be. Coal with excellent performance by keeping this ratio range -
A dispersant for water slurry is obtained. In order to produce the copolymer (), the monomer components may be copolymerized using a polymerization initiator. Copolymerization can be carried out by methods such as polymerization in a solvent or bulk polymerization. Polymerization in a solvent can be carried out either batchwise or continuously, and the solvents used in this case include:
Water; lower alcohols such as methyl alcohol, ethyl alcohol, and isopropyl alcohol; benzene, toluene, xylene, cyclohexane, n-
Examples include aromatic or aliphatic hydrocarbons such as hexane; ethyl acetate; ketone compounds such as acetone and methyl ethyl ketone; In view of the solubility of the raw material monomer and the resulting copolymer () and the convenience of using the copolymer (), water and carbon atoms of 1
It is preferable to use at least one selected from the group consisting of lower alcohols of 1 to 4. Carbon number 1
Among the lower alcohols 4 to 4, methyl alcohol, ethyl alcohol, and isopropyl alcohol are particularly effective. When polymerization is carried out in an aqueous medium, a water-soluble polymerization initiator such as ammonium or alkali metal persulfate or hydrogen peroxide is used as the polymerization initiator. At this time, an accelerator such as sodium hydrogen sulfite can also be used in combination. Also, lower alcohols,
For polymerization using aromatic hydrocarbons, aliphatic hydrocarbons, ethyl acetate or ketone compounds as solvents, peroxides such as benzoyl peroxide and lauroyl peroxide; hydroperoxides such as cumene hydroperoxide; azobisisobutyronitrile Aliphatic azo compounds such as, etc. are used as polymerization initiators. At this time, a promoter such as an amine compound can also be used in combination. Furthermore, when a water-lower alcohol mixed solvent is used, it can be appropriately selected from among the various polymerization initiators or combinations of polymerization initiators and accelerators mentioned above. The polymerization temperature is appropriately determined depending on the solvent and polymerization initiator used, but it is usually carried out within the range of 0 to 120°C. Bulk polymerization is carried out using peroxides such as benzoyl peroxide and lauroyl peroxide; hydroperoxides such as cumene hydroperoxide; and aliphatic azo compounds such as azobisisobutyronitrile as polymerization initiators at 50 to 150°C. carried out within a temperature range. The copolymer () thus obtained may be used after being further neutralized with an alkaline substance, if necessary. Preferred examples of such alkaline substances include hydroxides, chlorides, and carbonates of monovalent metals and divalent metals, ammonia, organic amines, and the like. Moreover, the molecular weight of the copolymer () can be used in a wide range, but it is preferably in the range of 500 to 50,000. The dispersant for coal-water slurry of the present invention contains a polyether derivative () and a copolymer () as active ingredients, and the ratio of these two to be used is not particularly limited. ~50 parts by weight of copolymer (2)
A ratio of ~50 parts by weight (however, the total of both is 100 parts by weight) exhibits particularly excellent performance. The dispersant for coal-water slurries of the present invention is used in pulverized coal-water slurries, but the amount added is not particularly limited and is effective over a wide range of amounts. It is used in a proportion of 0.1 to 3% by weight (dry basis), preferably 0.3 to 2% by weight. In order to use the dispersant for coal-water slurry of the present invention, the polyether derivative () and the copolymer () may be mixed in advance and then added at the time of slurry preparation, or the polyether derivative ( ) and the copolymer () may be added separately at the time of slurry preparation. Alternatively, it may be mixed with coal in advance to form a slurry, or it may be dissolved in water in advance. Further, due to the nature of the dispersant, any device for slurrying coal in water may be used as the slurry device. By these addition methods and slurry making methods,
The scope of the present invention is not limited. Next, the dispersant for coal-water slurry of the present invention will be explained in more detail by giving comparative examples and examples, but of course the present invention is not limited thereto. In the examples, unless otherwise specified, % means % by weight, and parts represent parts by weight. Preparation of Copolymer-1 Polyalkylene glycol monoallyl ether (containing an average of 5 ethylene oxide units per molecule) was placed in a glass reaction vessel equipped with a thermometer, stirrer, dropping funnel, gas introduction tube, and reflux condenser. )
317.3 parts and 88.5 parts of water were charged, and the inside of the reaction vessel was purged with nitrogen while stirring, and heated to 95°C in a nitrogen atmosphere. Thereafter, an aqueous solution of 139.3 parts of maleic acid and 11.1 parts of ammonium persulfate dissolved in 209 parts of water and 6.2 parts of styrene were added in parallel over 120 minutes. After the addition was complete, 27.3 parts of a 20% aqueous ammonium persulfate solution was further added over 60 minutes. After completion of addition, 95℃ for 90 minutes
The temperature inside the reaction vessel was maintained to complete the polymerization reaction, and an aqueous copolymer solution was obtained. Next, 40% caustic soda aqueous solution was added to neutralize, and copolymer-1
An aqueous solution of was obtained. The pH and viscosity of this aqueous solution of copolymer-1 were as shown in Table-1. Preparation of Copolymer-2 Polyethylene glycol monoallyl ether (average 1
349 parts (containing 10 ethylene oxide units per molecule) and 64.7 parts of water were charged, the inside of the reaction vessel was purged with nitrogen while stirring, and heated to 65°C in a nitrogen atmosphere. Thereafter, an aqueous solution of 116 parts of maleic acid and 24.5 parts of ammonium persulfate dissolved in 174 parts of water, an aqueous solution of 11.2 parts of sodium bisulfite dissolved in 44.8 parts of water, and 25.8 parts of vinyl acetate were each added over 120 minutes. After the addition was completed, the temperature inside the reaction vessel was maintained at 65° C. for 120 minutes to complete the polymerization reaction, and an aqueous copolymer solution was obtained. Next, a 40% aqueous solution of caustic soda was added to neutralize the mixture to obtain an aqueous solution of copolymer-2. The pH and viscosity of this aqueous solution of copolymer-2 were as shown in Table-1. Preparation of Copolymer-3 Polyethylene glycol monoallyl ether (containing an average of 10 ethylene oxide units per molecule) was placed in a glass reaction vessel equipped with a thermometer, stirrer, dropping funnel, gas introduction tube, and reflux condenser.
149.6 parts, polypropylene glycol monoallyl ether (containing an average of 5 propylene oxide units per molecule) 34.9 parts, maleic acid 58 parts,
171.8 parts of the mixture was added to a mixed solution consisting of 13 parts of hydroxyethyl methacrylate, 596 parts of isopropyl alcohol, and 7.7 parts of benzoyl peroxide, and the inside of the reaction vessel was purged with nitrogen while stirring, and heated to the boiling point of the mixed solution in a nitrogen atmosphere. . Thereafter, 687.4 parts of the remaining mixed solution was added over 120 minutes. After the addition was completed, the temperature in the reaction vessel was maintained at the boiling point for 120 minutes to continue the polymerization reaction. After that, the temperature inside the reaction vessel was returned to room temperature, and the benzoyl peroxide 7.7
The mixture was heated again to distill off isopropyl alcohol, and neutralized by adding deionized water and a 40% aqueous solution of caustic soda to obtain an aqueous solution of copolymer-3. The pH and viscosity of this aqueous solution of copolymer-3 were as shown in Table-1. Preparation of Copolymer-4 Polyalkylene glycol monoallyl ether (average of 3 ethylene oxide units and 2 units per molecule (containing propylene oxide units) 220.6 parts, 3 moles of secondary alcohol ethoxylate (Softanol-30, manufactured by Nippon Shokubai Chemical Co., Ltd.) monomaleate
344.3 parts of styrene, 8.3 parts of styrene, 241.4 parts of isopropyl alcohol, and 16.9 parts of benzoyl peroxide were charged with 246.5 parts of the mixed solution, and the inside of the reaction vessel was replaced with nitrogen while stirring, and heated to the boiling point of the mixed solution in a nitrogen atmosphere. . Then the remaining mixed solution
575 parts were added in 120 minutes. After the addition was completed, the temperature in the reaction vessel was maintained at the boiling point for 120 minutes to complete the polymerization reaction. Thereafter, the temperature inside the reaction vessel was returned to room temperature, 16.9 parts of benzoyl peroxide was added and heated again, and the isopropyl alcohol was distilled off to obtain a copolymer. Next, 40% caustic soda aqueous solution and deionized water were added to neutralize the copolymer.
An aqueous solution of No. 4 was obtained. The pH and viscosity of this aqueous solution of copolymer-4 were as shown in Table-1.

【衚】 た。
実斜䟋 衚に瀺す所定量の各皮分散剀を含む氎溶液
31.7䞭に200メツシナの篩を79パスするよう
に粉砕した倧同炭68.3含氎率5.1を宀枩
にお撹拌しながら少量ず぀加える。党量加え終぀
た埌、ホモミキサヌ特殊機化工補にお
10000RPM、分間撹拌しお石炭−氎スラリヌを
調補し25℃にお粘床を枬定し、流動性を評䟡し
た。 その結果を衚に瀺す。粘床の䜎いものが流動
性のよいこずを瀺しおいる。
[Table]
Example Aqueous solution containing predetermined amounts of various dispersants shown in Table 2
Add 68.3 g of Daido charcoal (moisture content 5.1%), which has been ground to 31.7 g so that 79% passes through a 200 mesh sieve, little by little at room temperature while stirring. After adding the entire amount, use a homo mixer (manufactured by Tokushu Kikako).
A coal-water slurry was prepared by stirring at 10,000 RPM for 2 minutes, and the viscosity was measured at 25°C to evaluate the fluidity. The results are shown in Table 2. Low viscosity indicates good fluidity.

【衚】【table】

【衚】【table】

Claims (1)

【特蚱請求の範囲】  (A) 䞀般匏 〔R1OlCH2CH2Ono 匏䞭、は分子内に掻性氎玠を個以䞊有す
るアルコヌル類、プノヌル類、アミン類、カ
ルボン酞類およびそれらの誘導䜓の残基、R1
は炭玠数〜のアルキレンオキシド残基、
はその平均付加モル数で〜100、ぱチレ
ンオキシドの平均付加モル数で50〜1000、は
官胜基の数 で衚わされる分子量5000〜10䞇のポリ゚ヌテル
誘導䜓ず、 (B) ポリアルキレングリコヌルモノアリル゚ヌテ
ル(ã‚€)、マレむン酞系単量䜓(ロ)およびこれらず共
重合可胜な単量䜓(ハ)から導かれた共重合䜓
ずを含有するこずを特城ずする石炭−氎
スラリヌ甚分散剀。
[Claims] 1 (A) General formula A [(R 1 O) l (CH 2 CH 2 O) n ) H) o (wherein A is an alcohol having one or more active hydrogens in the molecule) , residues of phenols, amines, carboxylic acids and their derivatives, R 1
is an alkylene oxide residue having 3 to 4 carbon atoms, l
is the average number of added moles of ethylene oxide (0 to 100), m is the average number of added moles of ethylene oxide (50 to 1000, n is the number of functional groups), and (B) It is characterized by containing a polyalkylene glycol monoallyl ether (a), a maleic acid monomer (b), and a copolymer derived from a monomer (c) copolymerizable with these (c). Dispersant for coal-water slurry.
JP57096337A 1982-06-07 1982-06-07 Dispersant for coal/water slurry Granted JPS58213097A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57096337A JPS58213097A (en) 1982-06-07 1982-06-07 Dispersant for coal/water slurry

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57096337A JPS58213097A (en) 1982-06-07 1982-06-07 Dispersant for coal/water slurry

Publications (2)

Publication Number Publication Date
JPS58213097A JPS58213097A (en) 1983-12-10
JPH0149192B2 true JPH0149192B2 (en) 1989-10-23

Family

ID=14162196

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57096337A Granted JPS58213097A (en) 1982-06-07 1982-06-07 Dispersant for coal/water slurry

Country Status (1)

Country Link
JP (1) JPS58213097A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4872885A (en) * 1986-02-27 1989-10-10 Kawasaki Jukogyo Kagushiki Kaisha Dispersant for aqueous slurry of carbonaceous solid and aqueous carbonaceous solid slurry composition incorporating said dispersant therein

Also Published As

Publication number Publication date
JPS58213097A (en) 1983-12-10

Similar Documents

Publication Publication Date Title
RU2004135061A (en) CEMENT ADDITIVE HAVING IMPROVED PLASTICIZING PROPERTIES, AND METHOD FOR PREPARING IT
RU2751669C2 (en) Additive for hydraulic composition
JPH07215746A (en) Additive for cement
CN1041431C (en) Additive composition for coal-water slurry and coal-water slurry composition
JPH0149193B2 (en)
JPH08165157A (en) Cement additive composition
JPH0216956B2 (en)
JPH0149192B2 (en)
JPH0149194B2 (en)
JPS58213094A (en) Dispersant for coal/water slurry
JPS58216729A (en) Dispersing agent for use in coal-water slurry
JPH0216957B2 (en)
JPH0329271B2 (en)
JPS61218694A (en) Additive for solid fuel-water slurry
RU2629032C2 (en) Gypsum dispersant
JPH0710991B2 (en) Dispersant for coal-water slurry
JPH0335355B2 (en)
JPH0710990B2 (en) Dispersant for coal-water slurry
JP2005307023A (en) Pigment dispersant
JPS58122989A (en) Water-slurried coal
JPH0369958B2 (en)
JPS62121789A (en) Dispersant for coal-water slurry
JPH08218085A (en) Additive for carbonaceous solid-water slurry and carbonaceous solid-water slurry composition
JPH0873872A (en) Additive for carbonaceous solid-water slurry, its production and carbonaceous solid-water slurry composition
JPS638486A (en) Dispersant for coal-water slurry