JPH0148909B2 - - Google Patents

Info

Publication number
JPH0148909B2
JPH0148909B2 JP56158626A JP15862681A JPH0148909B2 JP H0148909 B2 JPH0148909 B2 JP H0148909B2 JP 56158626 A JP56158626 A JP 56158626A JP 15862681 A JP15862681 A JP 15862681A JP H0148909 B2 JPH0148909 B2 JP H0148909B2
Authority
JP
Japan
Prior art keywords
compound
polymerization
reaction
vinyl
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56158626A
Other languages
Japanese (ja)
Other versions
JPS5859986A (en
Inventor
Tetsuji Jitsumatsu
Kyokazu Mizutani
Yoshihisa Ogasawara
Takeshi Endo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toagosei Co Ltd
Original Assignee
Toagosei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toagosei Co Ltd filed Critical Toagosei Co Ltd
Priority to JP56158626A priority Critical patent/JPS5859986A/en
Publication of JPS5859986A publication Critical patent/JPS5859986A/en
Publication of JPH0148909B2 publication Critical patent/JPH0148909B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Description

【発明の詳现な説明】[Detailed description of the invention]

本発明は新芏化合物に関するもので、本発明に
より提䟛される化合物は前蚘䞀般匏〔〕で瀺さ
れる―ビニル――トリオキサスピロ
〔〕アルカンこゝではたたは
の敎数であるであり、さらに具䜓的には―ビ
ニル――トリオキサスピロ〔〕
ノナン、―ビニル――トリオキサス
ピロ〔〕デカンおよび―ビニル―
―トリオキサススピロ〔〕りンデカ
ンであ぀お、本発明に係るこれらの化合物以䞋
化合物〔〕ず総称するは、䟋えば重合性単量
䜓ずしお有甚である。 化合物〔〕はγ―プチロラクトン、Ύ―バレ
ロラクトンから遞ばれるラクトン類ずブタゞ゚ン
モノオキシドずの付加反応よ぀お補造するこずが
できる。この反応匏を瀺すず以䞋のごずくなる。 こゝではたたはの敎数 化合物〔〕の補造に際しおは、ブタゞ゚ンモ
ノオキシドモルに察しお奜たしくはラクトン類
モル以䞊さらに奜たしくは1.2〜モルのラク
トン過剰で反応させるのが適圓で、これらを䟋え
ば塩化メチレンがテトラヒドロフラン等のごずき
溶剀䞭で、酞䟋えばBF3・Et2O、SnCl4、TiCl4、
FeCl3等のごずきルむス酞を觊媒ずしお、反応さ
せるこずにより、化合物〔〕が合成される。 䞀般に反応枩床は特に制限はないが、℃〜60
℃で行なう。望たしい補造方法の䞀䟋は、ラクト
ン類ずほが等重量の溶媒ずを反応噚に仕蟌み、液
枩を所定枩床に維持し぀ゝ、所芁量の通垞はラク
トンず溶媒ずからなる溶液に察しお0.1〜重量
の觊媒を添加し、続いおブタゞ゚ンモノオキシ
ドを単独でたたは等重量皋床たでの溶媒ずの溶液
ずしお滎䞋する方法である。 反応の進行皋床は反応液を䟋えばガスクロマト
グラフGCず略蚘するたたは液䜓クロマトグ
ラフHLCず略蚘するで分析するこずによ぀
お容易に知るこずができる。所芁反応時間は䞀般
に時間前埌で、〜時間もかければ充分であ
り、反応終了時には反応液にアルカリを加えお酞
觊媒を䞭和する。 反応液からの化合物〔〕の分離取埗は぀ぎの
ように行なわれる。䟋えば反応液を氷氎により冷
华しながら、これにアルカリ氎溶液䟋えば皀氎酞
化ナトリりム氎溶液を添加し、撹拌混合埌、氎局
ず有機局に分別する。有機局䞭の未反応ラクトン
化合物がほゞ零になるたで䞊蚘操䜜を繰り返した
埌、有機局を10NaCl氎溶液で掗浄し、次に硫
酞マグネシりムにり有機局を脱氎した埌、たず垞
圧蒞留にり䜎沞点物を陀去し、残枣を枛圧蒞留す
るこずにより、化合物〔〕が取埗される。 スピロオル゜゚ステル化合物のカチオン重合に
関しお、Journal of Macromolecular Science
ChemistryA9849〜8651975など蚘茉
されおいるが、スピロオル゜゚ステル化合物のカ
チオン重合に぀いお今でに知られおいるのは䞋蚘
化合物のであるJournal of Polymer Science
Polymer Letters Editionvol.1825〜27
1980、特開昭56−45481号公報など。しかしな
がら䞋蚘化合物はは、ラゞカル重合においおもス
ピロオル゚ステル環の開環が起きる性質を有しお
いる。 は〜の敎数 これに察しお本発明者らは鋭意研究の結果、カ
チオン重合するのみならず、スピロオル゜゚ステ
ル環の開環を起さずにラゞカル重合するずいう、
䞊蚘化合物ずは異質の特性を具備する化合物
〔〕を芋出したのである。さらに化合物〔〕
は重合時の䜓積収瞮が非垞に小さい特長をも持぀
おいる。化合物〔〕は䞀般に垂販されおいるブ
タゞ゚ンモノオキシドずラクトン類ずの付加反応
より容易に合成でき、簡単な工皋で補造するこず
が可胜であるずいう工業的利点を有する。 化合物〔〕の重合反応は次のように理解され
る。 ラゞカル重合 カチオン重合 化合物〔〕はラゞカル重合開始剀によりラゞ
カル重合しその際、䞊蚘反応匏〔〕に瀺される
ごずく、末端ビニル基によ重合進行し、スピロオ
ル゜゚ステル環は保持される。たた、化合物
〔〕はカチオン重合開始剀によりカチオン重合
しその際、䞊蚘反応匏〔〕に瀺されごずく、ス
ピロオル゜゚ステル環の開環起、゚ステル結合が
生成し、粘皠なポリマヌを䞎える。 䞊述の通り、本発明の化合物〔〕はカチオン
重合するのみならず、スピロオル゜゚ステル環を
保持したたたラゞカル重合するこずができ、たた
重合時の䜓積収瞮小さい特長を有する。 化合物〔〕はラゞカル重合性の官胜基である
ビニル基ず、カチオン重合性の官胜基であるスピ
ロオル゜゚ステル基の䞡基を分子䞭に有する新
芏な化合物であり、埓぀お埌架橋甚モノマヌずし
おも有甚である。 埓来のラゞカル重合性のモノマヌあるいはカチ
オン重合性のモノマヌは䞋衚―に瀺すように重
合時非垞に倧きな䜓積収瞮を䌎う。
The present invention relates to a novel compound, and the compound provided by the present invention is a 2-vinyl-1,4,6-trioxaspiro[4,m]alkane (herein m) represented by the general formula [1]. is 4, 5 or 6
), and more specifically 2-vinyl-1,4,6-trioxaspiro[4,4]
nonane, 2-vinyl-1,4,6-trioxaspiro[4,5]decane and 2-vinyl-1,
These compounds of the present invention (hereinafter collectively referred to as compounds [1]), which are 4,6-trioxasspiro[4,6]undecane, are useful as, for example, polymerizable monomers. Compound [1] can be produced by an addition reaction between lactones selected from γ-butyrolactone and Ύ-valerolactone and butadiene monoxide. The reaction formula is shown below. (Here, an integer of 3, 4 or 5) When producing compound [1], the reaction is preferably carried out with an excess of lactone of 1 mol or more, more preferably 1.2 to 2 mol, per 1 mol of butadiene monoxide. are suitable, and these are mixed with acids such as BF 3 .Et 2 O, SnCl 4 , TiCl 4 , etc. in a solvent such as methylene chloride or tetrahydrofuran.
Compound [1] is synthesized by reaction using a Lewis acid such as FeCl 3 as a catalyst. In general, there is no particular restriction on the reaction temperature, but it ranges from 0°C to 60°C.
Perform at ℃. An example of a desirable production method is to charge lactones and approximately equal weight of a solvent into a reactor, maintain the liquid temperature at a predetermined temperature, and add 0.1 to 0.1 to 0.1% of the required amount of a solution usually consisting of lactone and solvent. This is a method in which 3% by weight of a catalyst is added, and then butadiene monoxide is added dropwise either alone or as a solution with a solvent up to about the same weight. The degree of progress of the reaction can be easily determined by analyzing the reaction solution using, for example, a gas chromatograph (abbreviated as GC) or a liquid chromatograph (abbreviated as HLC). The required reaction time is generally around 3 hours, and 5 to 6 hours is sufficient. At the end of the reaction, an alkali is added to the reaction solution to neutralize the acid catalyst. Compound [1] is separated and obtained from the reaction solution as follows. For example, an alkaline aqueous solution, such as a dilute aqueous sodium hydroxide solution, is added to the reaction solution while cooling it with ice water, and after stirring and mixing, the mixture is separated into an aqueous layer and an organic layer. After repeating the above operation until the amount of unreacted lactone compound in the organic layer was reduced to almost zero, the organic layer was washed with a 10% NaCl aqueous solution, and then the organic layer was dehydrated over magnesium sulfate, followed by atmospheric distillation. Compound [1] is obtained by removing low-boiling substances and distilling the residue under reduced pressure. Regarding the cationic polymerization of spiro-orthoester compounds, Journal of Macromolecular Science
Chemistry, A9 (5), 849-865 (1975), but the following compounds are currently known for the cationic polymerization of spiro-orthoester compounds (Journal of Polymer Science
Polymer Letters Edition, vol.18, 25-27
(1980), Japanese Unexamined Patent Publication No. 56-45481, etc.). However, the following compounds have the property that the spiroolester ring opens even in radical polymerization. (m is an integer of 3 to 5) On the other hand, as a result of intensive research, the present inventors have found that not only cationic polymerization occurs, but also radical polymerization occurs without ring opening of the spiro-orthoester ring.
They have discovered a compound [1] that has properties different from those of the above compounds. Furthermore, compound [1]
It also has the feature of extremely small volumetric shrinkage during polymerization. Compound [1] has the industrial advantage that it can be easily synthesized by addition reaction between commercially available butadiene monoxide and lactones, and can be produced in a simple process. The polymerization reaction of compound [1] is understood as follows. Radical polymerization: Cationic polymerization: Compound [1] is radically polymerized using a radical polymerization initiator, and at this time, as shown in the above reaction formula [2], the terminal vinyl group is polymerized and the spiro-orthoester ring is retained. In addition, compound [1] undergoes cationic polymerization using a cationic polymerization initiator, and at this time, as shown in reaction formula [3] above, the ring opening of the spiro-orthoester ring and ester bond are generated, giving a viscous polymer. . As mentioned above, the compound [1] of the present invention not only undergoes cationic polymerization but also radical polymerization while retaining the spiro-orthoester ring, and has the advantage of having small volumetric shrinkage during polymerization. Compound [1] is a novel compound that has both a vinyl group, which is a radically polymerizable functional group, and a spiro-orthoester group, which is a cationically polymerizable functional group, in one molecule, and is therefore a post-crosslinking monomer. It is also useful as Conventional radically polymerizable monomers or cationically polymerizable monomers undergo extremely large volumetric contraction during polymerization, as shown in Table 1 below.

【衚】【table】

【衚】 重合時の䜓積収瞮が倧きいず、䟋えば成圢材料
ずしお䜿甚した堎合に寞法粟床がでないずか、泚
型材料ずしお利甚した堎合にはうめこみ物に収瞮
によるひずみかかずか、型ずの接着力の䜎䞋隙間
が生じるなどの問題がある。たた、塗料ずしお䜿
甚した堎合、内郚ひずみによる塗板ずの密着性の
䜎䞋がそりがおこるずか、接着剀ずしお䜿甚した
堎合、内郚ひずみによる接着力の䜎䞋がそり、倉
圢などの䜿甚䞊の問題を生ずる。 これに察しお化合物〔〕をラゞカル重合觊媒
10.6であり、たたカチオン重合時の䜓積収瞮率
は玄2.7であ぀お、䞀般のラゞカル重合性ビニ
ルモノマヌがカチオン重合性のモノマヌに比范し
お非垞に小さいこずが確認された。 ここで、䜓積収瞮率は、〔―化合物
〔〕の比重重合䜓の比重〕×100で衚わされ
る。 䞊述のように本発明の化合物〔〕は容易か぀
安䟡に補造するこずができ、しかもラゞカル重合
およびカチオン重合のいずれの方法によ぀おも重
合させるこずが可胜であり、しかも重合時の䜓積
収瞮率が非垞に小さいずいう特長を持぀おいる。 埓぀お本発明の化合物〔〕は、成圢材料、耇
合材料、接着剀、泚型材料、塗料などに䜿甚しお
極めお有甚な化合物である。 化合物〔〕のラゞカル重合は、通垞のラゞカ
ル重合手段、䟋えば玫倖線、赀倖線、熱、電子線
又はマむクロ波により行なうこずができる。 玫倖線ラゞカル重合では、通垞光開始剀が甚い
れる。奜適に利甚できる光開始剀ずしおは、アセ
トプノン、―ゞメトキシ――プニル
アセトプノン、―ゞ゚トキシアセトプ
ノン、4′―む゜プロピル――ヒドロキシ――
メチルプロピオプノン、―ヒドロキシ――
メチルプロピオプノン、4′―ビスゞ゚チ
ルアミノベンゟプノン、ベンゟプノン、メ
チル――ベンゟむル―ベンゟ゚ヌト、―
プニル――プロパンゞオン―――
゚トキシカルボニル―オキシム、―プニル
――プワパンゞオン―――ベンゟむ
ル―オキシム、ベンゟむン、ベンゟむンメチル
゚ヌテル、ベンゟむン゚チル゚ヌテル、ベンゟむ
ンむ゜プロピル゚ヌテル、ベンゟむンむ゜ブチル
゚ヌテル、ベンゟむンオクチル゚ヌテル、ベンゞ
ル又はゞアセチル等のカルボニル化合物メチル
アントラキノン、クロロアントラキノン、クロチ
オキサントン、―メチルチオキサントン又は
――プロピルチオキサントン等のアントラキノ
ン又はキサントン誘導䜓ゞプニルスルフむ
ド、ゞプニルゞスルフむド又はゞチオカヌバメ
ヌト等の硫黄化合物α―クロロメチルナフタレ
ン、アントラセン等がある。 赀倖線、熱、マむクロ波による重合に際しお
は、分解によ぀おラゞカルを生成し埗ものであれ
ばいずれのラゞカル開始剀の䜿甚も可胜であ。䟋
えば、ゞ―tert―ブチルパヌオキシド、―
ゞメチル――ゞtert―ブチルパヌオキ
シヘキサン、tert―ブチルハむドロパヌオキシ
ド、tert―ブチルパヌオキシベンゟ゚ヌト等の有
機過酞化物2′―アゟビスむ゜ブチロニトリ
ル等のアゟ化合物過硫酞アンモニりム、過硫酞
カリりム等の過酞塩䜿甚できる。 又、電子線などの電離性攟射線による重合は通
垞無觊媒で行なわれる。 觊媒を甚いる堎合その䜿甚量は、䞀般に単量䜓
の合蚈量に基づき0.01〜10wt、奜たしくは0.1
〜5wtの範囲である。 ラゞカル重合は、玫倖線あるいは電離性攟射線
の照射による堎合は垞枩でも進むが、その他の堎
合は、加枩ないし加熱状態で円滑に進行する。重
合時に溶媒を䜿甚する堎合、奜たしく甚いられる
溶媒ずしおは䟋えばトル゚ン、キシレン、酢酞゚
チル、―ゞメチルホルムアミド、クロロホ
ルム、ゞオキサン等があげられる。たた化合物
〔〕のカチオン重合は䞀般によく知られおいる
方法、すなわちカチオン重合開始剀の存圚䞋䟋え
ば玫倖線、赀倖線、熱たたはマむクロ波などによ
぀お行なう。 玫倖線照射の堎合のカチオン重合觊媒ずしお、 䟋えば φ―≡・PF- 6φ―≡・BF- 4などの芳
銙族 ゞアゟニりム塩φ―+  ―φ・BF- 4等の 芳銙族ハロロニりム塩 等の呚期埋衚第元玠の芳銙族オニりム塩
[Table] If the volumetric shrinkage during polymerization is large, for example, when used as a molding material, dimensional accuracy may be poor, when used as a casting material, there may be distortion due to shrinkage in the filled object, or the adhesive strength with the mold may be reduced. There are problems such as a drop gap occurring. In addition, when used as a paint, the internal strain causes a decrease in adhesion to the painted plate, causing warping, and when used as an adhesive, the internal strain causes a decrease in adhesive strength, causing problems in use such as warping and deformation. . On the other hand, compound [1] is used as a radical polymerization catalyst.
10.6%, and the volumetric shrinkage rate during cationic polymerization was approximately 2.7%, confirming that general radically polymerizable vinyl monomers are much smaller than cationically polymerizable monomers. Here, the volumetric shrinkage rate (%) is expressed as [1-(specific gravity of compound [1]/specific gravity of polymer)]×100. As mentioned above, the compound [1] of the present invention can be easily and inexpensively produced, can be polymerized by either radical polymerization or cationic polymerization, and has low volume shrinkage during polymerization. It has the characteristic of having a very low rate. Therefore, the compound [1] of the present invention is an extremely useful compound for use in molding materials, composite materials, adhesives, casting materials, paints, etc. Radical polymerization of compound [1] can be carried out by conventional radical polymerization means, such as ultraviolet rays, infrared rays, heat, electron beams, or microwaves. In ultraviolet radical polymerization, a photoinitiator is usually used. Suitable photoinitiators include acetophenone, 2,2-dimethoxy-2-phenylacetophenone, 2,2-diethoxyacetophenone, 4'-isopropyl-2-hydroxy-2-
Methylpropiophenone, 2-hydroxy-2-
Methylpropiophenone, 4,4'-bis(diethylamino)benzophenone, benzophenone, methyl-(0-benzoyl)-benzoate, 1-
Phenyl-1,2-propanedione-2-(0-
ethoxycarbonyl)-oxime, 1-phenyl-1,2-pwapanedione-2-(0-benzoyl)-oxime, benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, benzoin isobutyl ether, benzoin octyl ether, benzyl or Carbonyl compounds such as diacetyl; methylanthraquinone, chloroanthraquinone, crothioxanthone, 2-methylthioxanthone or 2
- Anthraquinone or xanthone derivatives such as i-propylthioxanthone; sulfur compounds such as diphenyl sulfide, diphenyl disulfide or dithiocarbamate; α-chloromethylnaphthalene, anthracene, etc. For polymerization using infrared rays, heat, or microwaves, any radical initiator can be used as long as it can generate radicals by decomposition. For example, di-tert-butyl peroxide, 2,5-
Organic peroxides such as dimethyl-2,5-di(tert-butylperoxy)hexane, tert-butyl hydroperoxide, and tert-butyl peroxybenzoate; Compounds: Persalts such as ammonium persulfate and potassium persulfate can be used. Further, polymerization using ionizing radiation such as an electron beam is usually carried out without a catalyst. When a catalyst is used, the amount used is generally 0.01 to 10 wt%, preferably 0.1% based on the total amount of monomers.
~5wt% range. Radical polymerization proceeds even at room temperature when irradiated with ultraviolet rays or ionizing radiation, but in other cases it proceeds smoothly under heating or heating conditions. When a solvent is used during polymerization, examples of preferably used solvents include toluene, xylene, ethyl acetate, N,N-dimethylformamide, chloroform, and dioxane. Further, the cationic polymerization of compound [1] is carried out by a generally well-known method, that is, by using, for example, ultraviolet rays, infrared rays, heat, or microwaves in the presence of a cationic polymerization initiator. As a cationic polymerization catalyst in the case of ultraviolet irradiation , aromatic diazonium salts such as φ-N + ≡N・PF - 6 and φ - N≡N+・BF - 4 ; Group haloronium salts; Aromatic onium salts of element a of the periodic table, such as;

【匏】等の呚期埋衚第 族元玠の芳銙族オニりム塩
Aromatic onium salts of Group A elements of the periodic table such as [Formula];

【匏】等の呚期埋衚第― の族元玠のゞカルボニル錯化合物が䜿甚され
うる。 たた、その他のカチオン重合觊媒ずしおは、䟋
えばBF3FeCl3SnCl4SbF3TiCl4などのル
むス酞BF3OEt2BF3―アニリンコンプレツク
ス等のごずきルむス酞ずなどを有する
化合物ずの配䜍化合物ルむス酞のオキ゜ニりム
塩、ゞアゟニりム塩、カルボニりム塩ハロゲン
酞誘導䜓などがあげられる。 觊媒の䜿甚量は䞀般に重合しようずする単量䜓
に察し、0.001〜10wt奜たしくは0.1から5wt
の範囲が奜適である。重合枩床に関する制限は特
にないが、通垞垞枩〜200℃で行なわれる。 重合時に溶媒を䜿甚する堎合は、生長カチオン
ず反応しおその掻性を䜎䞋させない化合物を遞ぶ
こずが望たしい。䜿甚に適した溶媒ずしおは、ヘ
キサン、オクタン等の脂肪族炭化氎玠トル゚
ン、キシレン等の芳銙族炭化氎玠塩化メチレ
ン、―ゞクロル゚タン等のハロゲン化炭化
氎玠その他がある。 実斜䟋  撹拌機、コンデンサヌ、枩床蚈及び滎䞋ロヌト
を備えた぀口フラスコに、ε―カプロラク
トン740.65モル及び塩化メチレン150mlを
仕蟌み、氷氎で℃に冷华した。釜液を撹拌しな
がらBF3・Et2O2mlを添加した。ブタゞ゚ンモノ
オキシド350.5モル及び塩化メチレン100ml
を滎䞋ロヌトに仕蟌み、釜液を撹拌しながら玄
1.5時間かけおブタゞ゚ンモノオキシドの塩化メ
チレン溶液を滎䞋した。なお滎䞋の間䞭釜液は氷
氎で冷华した。 その埌、宀枩で時間撹拌した埌、トリ゚チル
アミンmlを加えお觊媒を䞭和した。 次に未反応ε―カプロラクトンを陀去するため
反応液を氷氎で冷华し、撹拌しながら、10
NaOH氎溶液300mlを埐々に加え、添加完了埌
分間撹拌を継続した埌、アルカリ氎溶液局ず有機
局を分離した。分離した有機局に䞊蚘10
NaOH氎溶液による掗浄操䜜を曎に回繰返し
た埌、有機局を10NaCl氎溶液300mlで掗浄埌、
硫酞マグネシりムで有機局を脱氎した。 次に有機局を垞圧単蒞留に付しお脱溶剀埌、枛
圧蒞留し、沞点72℃1.5mmHgにおいお、―ビ
ニル――トリオキサスピロ〔〕
りンデカン46.9収率51を埗た。 その物性倀は䞋蚘の通りである。 Γ 比重 1.06025℃ Γ 屈折率n20 D1.470 Γ 沞点72℃1.5mmHg Γ IR赀倖線吞収スペクトル 1645cm-1―CHCH2   第図参照 1125cm-11070cm-1―― 955cm-1 Γ NMR栞磁気共鳎スペクトルCDCl3䞭
  第図参照 Ύppm4.95〜5.93HCH2CH― 4.2〜4.71H―CH―― 3.3〜4.24H―CH2―――CH2―
― 1.8〜2.22H―CH2 1.3〜1.86H―CH2―3 実斜䟋  撹拌機、コンデンサヌ、枩床蚈及び滎䞋ロヌト
を備えた぀口500mlフラスコにγ―ブチロラク
トン60.20.7モル及び塩化メチレン100mlを
仕蟌み、滎䞋ロヌトにブタゞ゚ンモノオキシド35
0.5モル及び塩化メチレン70mlを仕蟌む。
釜液を氷氎で10℃に冷华埌、BF3・Et2Oを0.7ml
添加する。釜液を撹拌しながら玄時間かけお、
ブタゞ゚ンモノオキシド溶液を滎䞋した。なお滎
䞋の間釜液は氷氎で冷华し、玄10℃に保持した。
滎䞋完了埌宀枩で時間撹拌した埌、トリ゚チル
アミン1.5mlを加え觊媒を䞭和した。次に反応液
を氷氎で冷华し、撹拌しながら10NaOH氎溶
液100mlを埐々に加え、添加完了埌10分間撹拌し
た埌、アルカリ氎溶液局ず有機局を分離した。有
機局䞭から未反応γ―ブチロラクトンがなくなる
たで䞊蚘アルカリ掗浄を繰返した埌、10NaCl
氎溶液200mlで有機局を掗浄した。次に硫酞マグ
ネシりムで脱氎した有機局を垞圧単蒞留に付すこ
ずによ぀お脱溶剀した埌、枛圧蒞留しお沞点70
℃mmHgにおいお―ビニル――
トリオキサスピロ〔〕ノナン17.9収率
23を埗た。 その生成物の質量スペクトルGC―MS分
析より、芪ピヌクは70ev156であ぀
た。 たたその物性倀は以䞋のようである。 Γ 沞点70℃mmHg Γ 屈折率n25 D1.457 Γ IR 1645cm-1CH2CH― 1130cm-11050cm-1952cm-1―― Γ NMRCDCl3䞭   第図参照 Ύppm5.5〜6.21HCH― 5.0〜5.52HCH2― 4.3〜4.81H―CH―― 3.4〜4.34H―CH2―― 1.7〜2.34HγC―CH2―CH2― 参考䟋  実斜䟋で埗た―ビニル――トリ
オキサスピロ〔〕りンデカンに重合觊媒ず
しおゞタ―シダリ―ブチルパヌオキサむドモル
を添加し、封管䞭で120℃においお40時間反応
させた。反応物を塩化メチレンに溶解し、぀い
で、―ヘキサン䞭にそそいで沈殿させるこずに
より重合䜓を粟補した。収率的玄40で癜色粉末
状重合物を埗た。 HLC分析により、重合物の重量平均分子量は
6700であ぀た。 たた、重合物のIRスペクトルは第図に瀺す
ずおりであり、1645cm- 1のピヌクがほが消倱し、
955cm-1、1125cm-1、1070cm-1――のピ
ヌクは残存しおいる。 NMRスペクトルによればΎppm4.95〜5.9
CH2CH―のピヌクが消倱しおいた。 この重合䜓の比重は、1.18625℃であり、こ
の倀より算出される重合の際の䜓積収瞮率は10.6
である。 参考䟋  ―ビニル――トリオキサスピロ
〔〕りンデカンにベンゟむン゚チル゚ヌテ
ル1wtを加え、マむラヌフむルムの間にはさん
で、30Wcmオゟンレスタむプ散光型高圧氎銀灯
束䞋電噚産業(æ ª)補高圧氎銀灯―2000TQを
甚い、20cmの照射距離でコンベア速10分で、
玫倖線を20回照射した。 被照射物のHCL分析により重合物の䞻成が認
められた。 参考䟋  ―ビニル――トリオキサスピロ
〔〕りンデカンに重合觊媒ずしおおBF3・
Et2Oをモル添加し、80℃で時間重合した。
その結果、黒か぀色の粘皠な重合物及び少量のゲ
ル化物が生成した。これらのうちの重合物の重量
平均分子量は、HCL分析によるず玄7600であ぀
た。 この重合物のIRスペクトル分析では、1735cm
-1―CO――に匷いピヌクが認められ、1645
cm-1―CHCH2のピヌクは残存しおいた。た
た、NMRスペクトル分析では、Ύppm4.95
〜5.9―CHCH2のピヌクが残存し、Ύ
ppm4.0〜4.2
Dicarbonyl complex compounds of elements of groups a-a of the periodic table, such as the formula: [Formula] may be used. Other cationic polymerization catalysts include, for example, Lewis acids such as BF 3 , FeCl 3 , SnCl 4 , SbF 3 , TiCl 4 ; Lewis acids such as BF 3 OEt 2 , BF 3 -aniline complex, etc., and O, S , N, etc.; oxonium salts, diazonium salts, and carbonium salts of Lewis acids; halogen acid derivatives, and the like. The amount of catalyst used is generally 0.001 to 10 wt%, preferably 0.1 to 5 wt%, based on the monomer to be polymerized.
A range of is suitable. Although there are no particular restrictions regarding the polymerization temperature, it is usually carried out at room temperature to 200°C. When using a solvent during polymerization, it is desirable to choose a compound that does not react with the growing cation and reduce its activity. Suitable solvents for use include aliphatic hydrocarbons such as hexane and octane; aromatic hydrocarbons such as toluene and xylene; halogenated hydrocarbons such as methylene chloride, 1,1-dichloroethane, and others. Example 1 74 g (0.65 mol) of ε-caprolactone and 150 ml of methylene chloride were placed in a four-neck flask equipped with a stirrer, condenser, thermometer, and dropping funnel, and the mixture was cooled to 5° C. with ice water. While stirring the pot liquid, 2 ml of BF 3 ·Et 2 O was added. 35 g (0.5 mol) of butadiene monoxide and 100 ml of methylene chloride
into the dropping funnel, and while stirring the pot liquid, add about
A solution of butadiene monoxide in methylene chloride was added dropwise over 1.5 hours. During the dropping, the solution in the pot was cooled with ice water. After stirring at room temperature for 5 hours, 5 ml of triethylamine was added to neutralize the catalyst. Next, in order to remove unreacted ε-caprolactone, the reaction solution was cooled with ice water, and while stirring, 10%
Gradually add 300ml of NaOH aqueous solution, and after the addition is complete,
After continuing stirring for a minute, the alkaline aqueous solution layer and the organic layer were separated. Add 10% of the above to the separated organic layer
After repeating the washing operation with NaOH aqueous solution two more times, the organic layer was washed with 300 ml of 10% NaCl aqueous solution.
The organic layer was dried with magnesium sulfate. Next, the organic layer was subjected to simple distillation at normal pressure to remove the solvent, and then distilled under reduced pressure to obtain 2-vinyl-1,4,6-trioxaspiro[4,6] at a boiling point of 72°C/1.5mmHg.
46.9 g (yield 51%) of undecane was obtained. Its physical property values are as follows. Γ Specific gravity: 1.060 (25℃) Γ Refractive index: n 20 D = 1.470 Γ Boiling point: 72℃/1.5mmHg Γ IR (infrared absorption spectrum): 1645cm -1 (-CH=CH 2 ) ... (see Figure 1) ) 1125cm -1 , 1070cm -1 , (C-O-C), 955cm -1 Γ NMR (Nuclear Magnetic Resonance Spectrum) (in CDCl 3 )
...(See Figure 2) ÎŽ (ppm) 4.95 to 5.9 (3H, CH 2 = CH-) 4.2 to 4.7 (1H, -CH-O-) 3.3 to 4.2 (4H, -CH 2 -O-, - CH2 -O
―) 1.8 to 2.2 (2H, C―CH 2 ) 1.3 to 1.8 (6H, ―(CH 2 ―) 3 Example 2 γ― in a four-necked 500 ml flask equipped with a stirrer, condenser, thermometer, and dropping funnel. Charge 60.2g (0.7mol) of butyrolactone and 100ml of methylene chloride, and add 35ml of butadiene monoxide to the dropping funnel.
(0.5 mol) and 70 ml of methylene chloride.
After cooling the pot liquid to 10℃ with ice water, add 0.7ml of BF 3 · Et 2 O.
Added. For about an hour while stirring the pot liquid,
Butadiene monoxide solution was added dropwise. During the dropping, the solution in the pot was cooled with ice water and kept at about 10°C.
After the dropwise addition was completed, the mixture was stirred at room temperature for 1 hour, and then 1.5 ml of triethylamine was added to neutralize the catalyst. Next, the reaction solution was cooled with ice water, and while stirring, 100 ml of a 10% NaOH aqueous solution was gradually added. After the addition was completed, the mixture was stirred for 10 minutes, and then the alkali aqueous solution layer and the organic layer were separated. After repeating the above alkaline washing until there is no unreacted γ-butyrolactone in the organic layer, 10% NaCl
The organic layer was washed with 200 ml of aqueous solution. Next, the organic layer dehydrated with magnesium sulfate was subjected to simple distillation at normal pressure to remove the solvent, and then distilled under reduced pressure to obtain a boiling point of 70.
2-vinyl-1,4,6- at °C/2mmHg
Trioxaspiro[4,4]nonane 17.9g (yield
23%). Mass spectrum (GC-MS) analysis of the product revealed that the parent peak was (70ev) m/e=156. Moreover, its physical property values are as follows. Γ Boiling point: 70℃/2mmHg Γ Refractive index; n 25 D = 1.457 Γ IR; 1645cm -1 (CH 2 = CH-), 1130cm -1 , 1050cm -1 , 952cm -1 (C-O-C) Γ NMR (in CDCl 3 ) ... (see Figure 3) ÎŽ (ppm); 5.5 to 6.2 (1H, C=CH-) 5.0 to 5.5 (2H, CH 2 = C-) 4.3 to 4.8 (1H, -CH- O-) 3.4-4.3 (4H, -CH 2 -O-) 1.7-2.3 (4H, γC-CH 2 -CH 2 -) Reference Example 1 2-vinyl-1,4,6- obtained in Example 1 To trioxaspiro[4,6]undecane, 3 mol% of di-tert-shari-butyl peroxide was added as a polymerization catalyst, and the mixture was reacted in a sealed tube at 120°C for 40 hours. The polymer was purified by dissolving the reaction in methylene chloride and then pouring into n-hexane for precipitation. A white powdery polymer was obtained with a yield of about 40%. By HLC analysis, the weight average molecular weight of the polymer was
It was 6700. In addition, the IR spectrum of the polymer is as shown in Figure 3, and the peak at 1645 cm - 1 almost disappears.
The peaks at 955 cm -1 , 1125 cm -1 and 1070 cm -1 (C—O—C) remain. According to the NMR spectrum, ή (ppm) = 4.95~5.9
The peak of (CH 2 =CH-) had disappeared. The specific gravity of this polymer is 1.186 (25℃), and the volumetric shrinkage rate during polymerization calculated from this value is 10.6.
%. Reference example 2 Add 1wt% of benzoin ethyl ether to 2-vinyl-1,4,6-trioxaspiro[4,6]undecane, sandwich it between Mylar films, and make a 30W/cm ozone-less type diffused high-pressure mercury lamp. Using a high-pressure mercury lamp H-2000TQ manufactured by Matsushita Electric Industrial Co., Ltd., at a conveyor speed of 10 m/min at an irradiation distance of 20 cm,
It was irradiated with ultraviolet light 20 times. HCL analysis of the irradiated material revealed that it mainly consisted of polymers. Reference Example 3 BF 3 was added to 2-vinyl-1,4,6-trioxaspiro[4,6]undecane as a polymerization catalyst.
3 mol % of Et 2 O was added and polymerization was carried out at 80° C. for 4 hours.
As a result, a black and colored viscous polymer and a small amount of gelled product were produced. The weight average molecular weight of these polymers was approximately 7,600 according to HCL analysis. IR spectrum analysis of this polymer shows that 1735cm
A strong peak was observed at -1 (-CO-O-), 1645
The peak of cm -1 (-CH=CH 2 ) remained. In addition, in NMR spectrum analysis, ÎŽ (ppm) = 4.95
A peak of ~5.9 (-CH=CH 2 ) remains, and ÎŽ
(ppm)=4.0~4.2

【匏】のピヌクが 䞻成しおいる。 䞊蚘のずおり、カチオン重合による重合物では
スピロオル゜゚ステル基が閉環し、゚ステル基、
メチレン基が生成しおいる。この重合物の比重は
1.08925℃であり、この倀より算出される重合
の際の䜓積収瞮はわずか2.7である。 参考䟋  参考䟋で埗た重合物を―ゞクロロ
゚タン20mlに完党に溶解させた埌、BF3・
Et2O25mgを加え、70℃で時間反応させた。生
成物は、―ゞクロロ゚タンに䞍溶のゲル化
物であ぀た。真空也燥により䜎沞点物を陀去し粟
補したゲル化物のIRスペクトル分析では、1735
cm-1―COO―に匷いピヌクが生成しおいる。 このゲル化物の比重は1.16525℃であり、重
合により1.8膚匵しおいた。
The peak of [Formula] is the main component. As mentioned above, in the polymer obtained by cationic polymerization, the spiro-orthoester group is ring-closed, and the ester group,
Methylene groups are generated. The specific gravity of this polymer is
1.089 (25°C), and the volumetric shrinkage during polymerization calculated from this value is only 2.7%. Reference Example 4 After completely dissolving 1 g of the polymer obtained in Reference Example 1 in 20 ml of 1,1-dichloroethane, BF 3 .
25 mg of Et 2 O was added and the mixture was reacted at 70°C for 8 hours. The product was a gel insoluble in 1,1-dichloroethane. IR spectrum analysis of gelled product purified by removing low boiling point substances by vacuum drying revealed that 1735
A strong peak is generated at cm -1 (-COO-). The specific gravity of this gelled product was 1.165 (25°C), and it had expanded by 1.8% due to polymerization.

【図面の簡単な説明】[Brief explanation of drawings]

第図は―ビニル――トリリオキ
サスピロ〔〕りンデカンの赀倖線吞収スペ
クトル図、第図は、同化合物の栞磁気共鳎スペ
クトル図、第図は―ビニル――ト
リオキサスピロ〔〕ノナンの栞磁気共鳎ス
ペクトル図である。
Figure 1 is an infrared absorption spectrum diagram of 2-vinyl-1,4,6-trilioxaspiro[4,6]undecane, Figure 2 is a nuclear magnetic resonance spectrum diagram of the same compound, and Figure 3 is a diagram of 2-vinyl-1,4,6-trilioxaspiro[4,6]undecane. FIG. 1 is a nuclear magnetic resonance spectrum diagram of -1,4,6-trioxaspiro[4,4]nonane.

Claims (1)

【特蚱請求の範囲】  䞋蚘䞀般匏で瀺されるスピロオル゜゚ステル
化合物。 䞊匏においお、はたたはの敎数であ
る。
[Claims] 1. A spiroorthoester compound represented by the following general formula. In the above formula, l is an integer of 3, 4 or 5.
JP56158626A 1981-10-07 1981-10-07 Spiroortho ester compound having vinyl group Granted JPS5859986A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56158626A JPS5859986A (en) 1981-10-07 1981-10-07 Spiroortho ester compound having vinyl group

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56158626A JPS5859986A (en) 1981-10-07 1981-10-07 Spiroortho ester compound having vinyl group

Publications (2)

Publication Number Publication Date
JPS5859986A JPS5859986A (en) 1983-04-09
JPH0148909B2 true JPH0148909B2 (en) 1989-10-20

Family

ID=15675814

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56158626A Granted JPS5859986A (en) 1981-10-07 1981-10-07 Spiroortho ester compound having vinyl group

Country Status (1)

Country Link
JP (1) JPS5859986A (en)

Also Published As

Publication number Publication date
JPS5859986A (en) 1983-04-09

Similar Documents

Publication Publication Date Title
EP0041396B1 (en) Dienyl methacrylates
Endo et al. Spiro orthocarbonate undertaking radical and cationic polymerization
JP4741508B2 (en) Fluorinated polymer, optical member, electrical member and coating material
JPH0148909B2 (en)
JP3155274B2 (en) Butadiene monoepoxide / maleic anhydride copolymer
Nishikubo et al. Synthesis of polymers in aqueous solutions: esterification reaction of poly (methacrylic acid) with alkyl halides using DBU in aqueous solutions
JPH0154353B2 (en)
EP2626342A1 (en) Novel vinyl-ether compound and manufacturing method therefor
US4332731A (en) 2-Methylene-1,4,6-trioxaspiro[4,6]undecane, process for the preparation thereof and process for the preparation of polymers
JPH0149716B2 (en)
JPH0149717B2 (en)
JP2611614B2 (en) Method for producing lactone-modified acrylate or methacrylate
JPH0148274B2 (en)
JPS59155384A (en) Methylene group-containing spiro ortho-carbonate compound
JPH0244314B2 (en)
JP3861353B2 (en) Curable composition
US6077932A (en) Polymers of 2,7-dioxabicyclo[3.2.1]octane derivatives
JPH1072404A (en) (meth)acrylic acid ester of sorbitol and its production
Yokozawa et al. Selective cationic addition polymerization of 2, 4-dimethylene-1, 3-dioxolane by a common Lewis acid: synthesis of vinyl ether-pendant polymer under cationic polymerization conditions
JP2003055420A (en) Method for producing block copolymer
JPH0241527B2 (en)
JP2869749B2 (en) Reactive unsaturated monomer composition containing carboxyl group and method for producing the same
Zhu et al. Cationic copolymerization of 2‐methylene‐5, 5‐dimethyl‐1, 3‐dioxane with 2‐methylene‐1, 3‐dioxolane and 2‐methylene‐1, 3‐dioxane
JPS626569B2 (en)
JPS6354288B2 (en)