JPH0148808B2 - - Google Patents

Info

Publication number
JPH0148808B2
JPH0148808B2 JP60189486A JP18948685A JPH0148808B2 JP H0148808 B2 JPH0148808 B2 JP H0148808B2 JP 60189486 A JP60189486 A JP 60189486A JP 18948685 A JP18948685 A JP 18948685A JP H0148808 B2 JPH0148808 B2 JP H0148808B2
Authority
JP
Japan
Prior art keywords
mercury
exhaust gas
liquid
cleaning
polysulfide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP60189486A
Other languages
Japanese (ja)
Other versions
JPS6253726A (en
Inventor
Yoshinari Fujisawa
Yoji Oogaki
Juji Yoshii
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kokan Ltd filed Critical Nippon Kokan Ltd
Priority to JP60189486A priority Critical patent/JPS6253726A/en
Publication of JPS6253726A publication Critical patent/JPS6253726A/en
Publication of JPH0148808B2 publication Critical patent/JPH0148808B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Treating Waste Gases (AREA)
  • Removal Of Specific Substances (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

「発明の目的」 本発明はゴミ焼却排ガスの水銀除去方法に係
り、ゴミ焼却場などにおける排ガス中の水銀を効
率高く除去することができ、又低コストな水銀除
去を得しめようとするものである。 産業上の利用分野 ゴミ焼却排ガス中の水銀除去技術。 従来の技術 ゴミ焼却排ガス中に水銀が含まれていることが
近時明かにされたところであつて、その処理に関
して未だ確定的な方法が得られていない。即ちガ
ス中の水銀除去技術としては電解ソーダ工場にお
ける水銀回収に用いられている過マンガン酸カリ
ウム―硫酸法或いは次亜塩素酸―食塩法などがあ
るが、これらの方法に用いられる酸化剤はコスト
高であり、又過マンガン酸などの2次公害対策な
どからしてそのままゴミ焼却排ガスの水銀除去に
適用できない。 然してゴミ焼却排ガス対策として現情では脱
硫、脱硝、集塵、脱HClなどが行われているが、
この中で弱アルカリ液でガスを洗浄する湿式HCl
プロセスにおいて水銀がある程度除去される場合
のあることが知られており、この点から湿式HCl
洗浄プロセスで弱アルカリ液に水銀除去用の液体
キレート剤を添加し、或いは液体キレート剤と水
銀の反応を促進させるためにある種の金属塩を添
加するような方法が提案されている。 発明が解決しようとする問題点 しかしこれらのゴミ焼却排ガス中水銀除去方法
について本発明者等が検討した結果によれば、ゴ
ミ焼却排ガス中水銀はすべてが塩化水銀などの水
銀化合物になつているわけでなく、金属水銀の状
態のものも存在するため液体キレート剤のみでは
ガス中の水銀を十分に除去できない。 「発明の構成」 問題点を解決するための手段 ゴミ焼却排ガスの塩化水素除去に用いられた苛
性ソーダ洗浄液にポリ硫化物を添加した処理液に
対し前記ゴミ焼却排ガスを吸収処理させることを
特徴とするゴミ焼却排ガスの水銀除去方法。 作 用 ゴミ焼却排ガスの塩化水素除去に用いられた苛
性ソーダ洗浄液にポリ硫化ソーダのようなポリ硫
化物を添加することによりガス中水銀分を有効に
吸収除去する。 吸収率は90%以上に達し、高い吸収効果をもた
らすことができる。 実施例 上記したような本発明について更に説明する
と、ゴミ焼却排ガス中の水銀は、排ガス中に
HCl、O2などが多量に含まれていることから電
気集塵機以後の250℃以下のような比較的低温条
件下ではHgO、HgCl2などの水銀化合物と金属
水銀の混合物になつていると考えられる。然して
チオール系の液体キレート剤、あるいはNa2Sを
苛性ソーダ溶液に添加して排ガスを洗浄した場合
には金属水銀は殆んどが除去されないため金属水
銀の比率が相対的に高い排ガスでは水銀除去率が
低下する。このような場合に比較的弱い酸化力を
有するポリ硫化物を洗浄液に添加することによ
り、排ガス中の水銀化合物吸収と共に金属水銀に
ついてもその殆んどが酸化吸収されるため排ガス
中水銀分の殆んどを除去し、洗浄液に吸収させる
ことができる。 又洗浄液は循環使用するため、液側が還元性と
なり、洗浄塔で排ガスと接触させた場合に液中に
吸収された水銀が気中に揮散される場合も排ガス
の質によつては考えられるが、斯様な場合でもポ
リ硫化物が添加されているので次の反応により安
定なHgSが生成するため液中から揮散する恐れ
は殆んどない。 Hg+Sx2-→HgS+Sx2-−1 液中に吸収された水銀については、S2-が過剰
に存在する場合は水銀が再溶解するが、これには
他の金属イオン、例えばFe3+を添加して過剰の
S2-を下式のように硫化物となし沈澱させれば上
澄液中の水銀は頗る低濃度となる。 2Fe3++3S2-→Fe2S3 本発明を添附図面を参照して具体的に説明する
と、ゴミ焼却炉を出た排ガスはガスクーラー又は
ボイラーによつて冷却されてから集塵機に入り、
該集塵機を出た250℃以下の排ガス1は通常HCl
を500〜1500ppm程度、水銀を0.2〜2mg/Nm3
度含有している。そしてこのような排ガス1は第
1図に示すようにHClの除去を主目的とした排ガ
ス洗浄塔2に送られ、先ず予冷部3で洗浄液噴霧
により100℃以下に冷却される。該冷却後のガス
は主洗浄部4内で洗浄液と接触せしめられ、HCl
を洗浄液側に移行させた後、あるいは減湿部5で
除湿した後洗浄塔2を出る。斯うして得られる洗
浄液はNaClが一般的に3〜15%程度のものであ
つて、該洗浄液は洗浄塔2下部の洗浄液溜6から
洗浄液ポンプ7によつて予冷部3および主洗浄部
4内を循環させられるが、斯かる循環洗浄液は1
日当り一定量を引抜き、または洗浄液の比重、電
導度などを検知し、バルブ13より手動または自
動的に引抜き、補給はPH指示調節計10によつて
苛性ソーダタンク8よりポンプ9を用い自動的に
行うのが一般的であり、この場合の設定PH値は
7.5〜8程度が普通であつて、そのNaClは代表的
に10%として理解することができる。 本発明では上記のような洗浄液にポリ硫化ソー
ダを添加して排ガスを洗浄し、排ガス中の水銀を
HClと同時に洗浄除去しようとするもので、この
場合においてポリ硫化ソーダの添加はポリ硫化ソ
ーダタンク11からポンプ12により定量的に添
加し、或いは苛性ソーダ液の添加量に対し一定比
率で添加せしめ、若しくは引抜き量に対し一定比
率で添加するなどの方法で行う。なおポリ硫化ソ
ーダを添加するとPHが上昇するため、必要添加量
に応じてPH指示調節計24の設定PHを変えること
が好ましい。 ポリ硫化ソーダの添加量はガス中水銀濃度にも
よるが、洗浄液全量に対して5〜300ppm程度を
一応の目安とすればよく、又ポリ硫化物溶液は沸
騰させると加水分解して硫化ソーダとチオ硫酸ソ
ーダを生成するため洗浄塔2の予冷部3に洗浄液
を循環させる方法は、場合により水銀除去に不利
となるので斯様な場合には第2図に示すように予
冷部3に別の水源からの水17を供給し噴霧する
ことが効果的である。 前記したポリ硫化ソーダは製品を購入してもよ
いが、硫化ソーダと硫黄が容易に作ることがで
き、具体的には硫化ソーダ水溶液に硫黄粉末を添
加して数時間〜1日程度撹拌すればよい。生成す
るポリ硫化ソーダのS/Na(モル比)は混合時の
Na2Sと硫黄の混合比によつて決り、S/Na=1
〜1.6でNa2S2、S/Na=1.6〜2.6でNa2S4、S/
Na=2.6以上でNa2S5が一応の目安となる。なお
硫化ソーダ水溶液に硫黄を添加した場合、チオ硫
酸ナトリウムが少量生成する場合があるが、エタ
ノールの10〜30%水溶液に硫化ソーダと硫黄を添
加することにより反応時間を短縮でき、又チオ硫
酸ソーダの生成を抑制することができる。ポリ硫
化物としての濃度は作り易さなどを考慮すれば20
%以下で適当な濃度を選ぶとよい。 洗煙排水の処理に際しては過剰の硫黄が存在す
ると生成したHgSが再溶解するため、この過剰
の硫黄分を、例えば第3図に示すように前記した
引抜きバルブ13から貯槽18に引抜かれた排液
をポンプ19で攪拌反応槽25、固液分離槽26
に送るに当り塩化第2鉄タンク20、ポンプ21
によりFeCl3などの金属塩を加えて溶液中から除
去する。このようにすることにより同時に安定な
HgSとして水銀を液中から除去することができ、
前記攪拌反応槽25にはタンク22からポンプ2
3とPH指示調節計24により苛性ソーダが適宜添
加されるようになつている。FeCl3については過
剰の硫黄分に見合う量を定量注入することとし、
PHは中性付近にコントロールする。又この場合必
要に応じてポリマーを添加する。 次に本発明による具体例と従来法による比較実
験例について説明すると以下の如くである。 即ち第4図に示すように水銀蒸気発生器32に
空気31を送入して得られる水銀蒸気を硫酸―過
マンガン酸カリウム(KMnO4+H2SO4)吸収液
100mlを収容した250mlの洗浄瓶33,34と試験
用吸収液を100ml収容した洗浄瓶35および同じ
く硫酸―過マンガン酸カリウム吸収液100mlを収
容した洗浄瓶36,37を図示のように連結し、
前記水銀蒸気発生器32を通したガスを0.5/
minのの割合で1時間供給し吸収実験した。洗浄
瓶35には10%NaCl溶液およびこの10%NaCl溶
液にチオール系液体キレート100mg/の割合で
配合したもの、および同じくこの10%NaCl溶液
にポリ硫化物〔20%エタノール水溶液中にNa2S
と、硫黄をS/Na=2.5(モル比)で添加し調整
したもの〕100mg/lの割合に添加した本発明方
法に準ずるものの3種を用い実験測定した結果は
次の第1表の通りであつた。
``Purpose of the Invention'' The present invention relates to a method for removing mercury from waste gas from waste incineration, and aims to remove mercury from waste gas from waste incineration plants with high efficiency and at a low cost. be. Industrial applications Technology for removing mercury from waste incineration gas. BACKGROUND OF THE INVENTION It has recently been revealed that waste incineration exhaust gas contains mercury, but no definitive method for its treatment has yet been obtained. In other words, techniques for removing mercury from gas include the potassium permanganate-sulfuric acid method and the hypochlorous acid-salt method, which are used for mercury recovery at electrolytic soda plants, but the oxidizing agents used in these methods are expensive. Moreover, it cannot be directly applied to remove mercury from waste incineration gas due to secondary pollution countermeasures such as permanganic acid. However, at present, desulfurization, denitrification, dust collection, and HCl removal are being carried out as countermeasures against garbage incineration exhaust gas.
Wet HCl in which the gas is cleaned with a weak alkaline solution.
It is known that mercury may be removed to some extent during the process, and from this point of view wet HCl
Methods have been proposed in which a liquid chelating agent for mercury removal is added to a weak alkaline solution in the cleaning process, or a certain metal salt is added to promote the reaction between the liquid chelating agent and mercury. Problems to be Solved by the Invention However, according to the results of the present inventors' study of methods for removing mercury from garbage incineration exhaust gas, all of the mercury in garbage incineration exhaust gas is in the form of mercury compounds such as mercury chloride. However, there is also metal mercury, so liquid chelating agents alone cannot sufficiently remove mercury from the gas. "Structure of the Invention" Means for Solving the Problems The present invention is characterized in that the garbage incineration exhaust gas is absorbed and treated by a treatment liquid obtained by adding polysulfide to a caustic soda cleaning liquid used for removing hydrogen chloride from the garbage incineration exhaust gas. Method for removing mercury from garbage incineration exhaust gas. Function By adding polysulfide such as polysulfide soda to the caustic soda cleaning solution used to remove hydrogen chloride from garbage incineration exhaust gas, mercury in the gas is effectively absorbed and removed. The absorption rate reaches over 90% and can bring high absorption effect. Example To further explain the present invention as described above, mercury in waste incineration exhaust gas is
Since it contains a large amount of HCl, O 2 , etc., it is thought that under relatively low temperature conditions such as 250℃ or less after electrostatic precipitator, it becomes a mixture of mercury compounds such as HgO and HgCl 2 and metallic mercury. . However, when cleaning exhaust gas by adding a thiol-based liquid chelating agent or Na 2 S to a caustic soda solution, most of the metallic mercury is not removed, so the mercury removal rate is low for exhaust gases with a relatively high proportion of metallic mercury. decreases. In such cases, by adding polysulfide, which has relatively weak oxidizing power, to the cleaning solution, most of the mercury compounds in the exhaust gas are absorbed, and most of the metallic mercury is also oxidized and absorbed. The dirt can be removed and absorbed into the cleaning solution. Also, because the cleaning liquid is used in circulation, the liquid side becomes reducing, and depending on the quality of the exhaust gas, the mercury absorbed in the liquid may be volatilized into the air when it comes into contact with the exhaust gas in the cleaning tower. Even in such a case, since polysulfide is added, stable HgS is generated in the next reaction, so there is almost no risk of it volatilizing from the liquid. Hg + Sx 2- → HgS + Sx 2- -1 Regarding mercury absorbed in the liquid, if S 2- is present in excess, mercury will be redissolved, but this can be done by adding other metal ions, e.g. Fe 3+ . and excessive
If S 2- is converted into sulfide and precipitated as shown in the formula below, the concentration of mercury in the supernatant liquid will be extremely low. 2Fe 3+ +3S 2- →Fe 2 S 3 To explain the present invention in detail with reference to the attached drawings, the exhaust gas leaving the garbage incinerator is cooled by a gas cooler or boiler and then enters the dust collector.
The exhaust gas 1 of 250℃ or less that comes out of the dust collector is usually HCl.
It contains about 500 to 1500 ppm of mercury and about 0.2 to 2 mg/ Nm3 of mercury. As shown in FIG. 1, such exhaust gas 1 is sent to an exhaust gas cleaning tower 2 whose main purpose is to remove HCl, and is first cooled to below 100° C. in a pre-cooling section 3 by spraying a cleaning liquid. The cooled gas is brought into contact with a cleaning liquid in the main cleaning section 4, and HCl
After being transferred to the cleaning liquid side or after being dehumidified in the dehumidifying section 5, it exits the cleaning tower 2. The cleaning liquid thus obtained generally has a NaCl content of about 3 to 15%, and the cleaning liquid is pumped from the cleaning liquid reservoir 6 at the bottom of the cleaning tower 2 into the precooling section 3 and the main cleaning section 4 by the cleaning liquid pump 7. can be circulated, but such circulating cleaning solution is 1
A fixed amount is drawn out per day, or the specific gravity, conductivity, etc. of the cleaning liquid is detected, and the liquid is drawn out manually or automatically from the valve 13. Replenishment is performed automatically using the pump 9 from the caustic soda tank 8 using the PH indicator controller 10. is common, and the setting PH value in this case is
It is normal to have a concentration of about 7.5 to 8, and the NaCl can be understood to be typically 10%. In the present invention, polysulfide soda is added to the above-mentioned cleaning liquid to clean the exhaust gas and remove mercury from the exhaust gas.
In this case, polysulfide soda is added quantitatively from the polysulfide soda tank 11 with a pump 12, or added at a fixed ratio to the amount of caustic soda solution added, or This is done by adding it at a fixed ratio to the amount of drawing. Since the pH increases when polysulfide soda is added, it is preferable to change the PH setting of the PH indicator controller 24 depending on the required amount of addition. The amount of polysulfide soda to be added depends on the mercury concentration in the gas, but it should be around 5 to 300 ppm based on the total amount of the cleaning solution.Also, when the polysulfide solution is boiled, it will hydrolyze and turn into sodium sulfide. The method of circulating the cleaning liquid through the pre-cooling section 3 of the cleaning tower 2 to generate sodium thiosulfate may be disadvantageous in removing mercury in some cases. It is advantageous to supply and spray water 17 from a water source. The aforementioned polysulfide soda can be purchased as a product, but soda sulfide and sulfur can be easily made by adding sulfur powder to an aqueous sodium sulfide solution and stirring for several hours to a day. good. The S/Na (molar ratio) of the generated polysulfide soda is
Determined by the mixing ratio of Na 2 S and sulfur, S/Na = 1
Na 2 S 2 at ~1.6, S/Na = 1.6 to 2.6, Na 2 S 4 , S/
Na=2.6 or more and Na 2 S 5 is a tentative guideline. Note that when sulfur is added to an aqueous solution of sodium thiosulfide, a small amount of sodium thiosulfate may be produced, but the reaction time can be shortened by adding sodium sulfide and sulfur to a 10-30% aqueous solution of ethanol. The generation of can be suppressed. Considering the ease of production, the concentration as polysulfide is 20
It is best to choose an appropriate concentration within %. When treating smoke washing wastewater, if excess sulfur is present, the generated HgS will be redissolved. Therefore, this excess sulfur content can be removed, for example, by draining the wastewater drawn from the above-mentioned drawing valve 13 into the storage tank 18, as shown in FIG. The liquid is stirred by a pump 19 in a reaction tank 25 and a solid-liquid separation tank 26.
Ferric chloride tank 20, pump 21
Add a metal salt such as FeCl 3 and remove it from the solution. By doing this, at the same time stable
Mercury can be removed from the liquid as HgS,
A pump 2 is connected to the stirring reaction tank 25 from the tank 22.
3 and a PH indicator controller 24, caustic soda is added as appropriate. Regarding FeCl 3 , we decided to inject a fixed amount in an amount corresponding to the excess sulfur content.
Control pH around neutrality. In this case, a polymer may be added if necessary. Next, specific examples according to the present invention and comparative experimental examples according to the conventional method will be explained as follows. That is, as shown in FIG. 4, the mercury vapor obtained by feeding air 31 into a mercury vapor generator 32 is converted into a sulfuric acid-potassium permanganate (KMnO 4 +H 2 SO 4 ) absorption liquid.
A 250 ml washing bottle 33, 34 containing 100 ml, a washing bottle 35 containing 100 ml of the test absorption liquid, and a washing bottle 36, 37 containing 100 ml of the sulfuric acid-potassium permanganate absorption liquid are connected as shown in the figure.
The gas passed through the mercury vapor generator 32 is
An absorption experiment was carried out by supplying the solution at a rate of 10 min for 1 hour. The washing bottle 35 contains a 10% NaCl solution, a thiol-based liquid chelate mixed in this 10% NaCl solution at a ratio of 100 mg/1, and a polysulfide [Na 2 S in a 20% ethanol aqueous solution] in the same 10% NaCl solution.
and one prepared by adding sulfur at S/Na = 2.5 (molar ratio)] The results of experimental measurements using three types of sulfur according to the method of the present invention in which sulfur was added at a ratio of 100 mg/l are shown in Table 1 below. It was hot.

【表】 即ち10%NaCl溶液にポリ硫化物を添加したも
のを吸収液としたのものは極めて高い吸収効果
を示すことが確認された。 そこで上記したような実験結果に基き、実際に
水銀を含有したゴミ焼却排ガスを用いると共に、
第1図に示したような焼却炉排ガスの塩化水素
除去処理に使用される苛性ソーダ洗浄液および
該洗浄液にチオール系液体キレートを100mg/
の割合合で添加したもの、該洗浄液に本発明に
従いポリ硫化物を100mg/の割合で添加したも
のを用い、前述したところと同様に吸収処理結果
を測定した。 即ちこの結果は次の第2表に示す通りであつ
て、本発明によるのものが94%に達する高い吸
収効果を示した。
[Table] In other words, it was confirmed that the absorption liquid made by adding polysulfide to a 10% NaCl solution showed an extremely high absorption effect. Therefore, based on the experimental results mentioned above, we used garbage incineration exhaust gas that actually contained mercury, and
As shown in Figure 1, a caustic soda cleaning solution used for hydrogen chloride removal treatment from incinerator exhaust gas and a thiol-based liquid chelate added at 100 mg/ml are added to the cleaning solution.
The results of the absorption treatment were measured in the same manner as described above using the cleaning solution in which polysulfide was added at a ratio of 100 mg/ml according to the present invention. That is, the results are shown in Table 2 below, and the material according to the present invention showed a high absorption effect of up to 94%.

【表】 「発明の効果」 以上説明したような本発明によるときは、ゴミ
焼却排ガス中に含有される水銀分をを、該排ガス
の塩素化除去に使用される苛性ソーダ洗浄液を用
い、これにポリ硫化ソーダを添加して効率的且つ
低コストに吸収除去することが可能であり、工業
的にその効果の大きい発明である。
[Table] "Effects of the Invention" According to the present invention as explained above, mercury contained in garbage incineration exhaust gas is removed by using a caustic soda cleaning solution used for removing chlorination from the exhaust gas, It is possible to absorb and remove sodium sulfide efficiently and at low cost, and this invention has great industrial effects.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明の技術的内容を示すもので、第1
図と第2図はゴミ焼却排ガスの洗浄処理状態を示
した各説明図、第3図はその洗浄排液に対する除
去処理行程の説明図、第4図は水銀蒸気を準備し
吸収実験をなしたものの説明図である。 然してこれらの図面において、1は焼却排ガ
ス、2は洗浄塔、3は予冷部、4は主洗浄部、5
は減湿部、6は洗浄液溜、7は洗浄液ポンプ、8
は苛性ソーダタンク、9は苛性ソーダポンプ、1
0はPH指示調節計、11はポリ硫化ソーダタン
ク、12はポリ硫化ソーダポンプ、13は洗浄液
液引抜バルブ、16は処理排ガス、17は予冷液
ライン、18は洗浄排液貯槽、19は洗浄排液供
給ポプ、20は塩化第二鉄タンク、21はそのポ
ンプ、22は苛性ソーダタンク、23はそのポン
プ、24はPH指示調節計、25は攪拌反応槽、2
6は固液分離槽、27は処理水、28は汚泥、3
1は空気、32は水銀蒸気発生器、33,34お
よび36,37は硫酸―過マンガン酸カリウム吸
収液、35は洗浄液、39はエアポンプ、40は
ガスメータ、41はエアポンプを夫々示すもので
ある。
The drawings show the technical content of the present invention, and
Figure 2 and Figure 2 are explanatory diagrams showing the cleaning treatment status of garbage incineration exhaust gas, Figure 3 is an explanatory diagram of the removal treatment process for the cleaning waste liquid, and Figure 4 is an absorption experiment with mercury vapor prepared. FIG. However, in these drawings, 1 is incineration exhaust gas, 2 is a cleaning tower, 3 is a pre-cooling section, 4 is a main cleaning section, and 5 is a washing tower.
is a dehumidifying part, 6 is a cleaning liquid reservoir, 7 is a cleaning liquid pump, 8
is a caustic soda tank, 9 is a caustic soda pump, 1
0 is a PH indicator controller, 11 is a polysulfide soda tank, 12 is a polysulfide soda pump, 13 is a cleaning liquid withdrawal valve, 16 is a processing exhaust gas, 17 is a pre-cooling liquid line, 18 is a cleaning drainage liquid storage tank, and 19 is a cleaning drainage Liquid supply pop, 20 is a ferric chloride tank, 21 is its pump, 22 is a caustic soda tank, 23 is its pump, 24 is a PH indicator controller, 25 is a stirring reaction tank, 2
6 is a solid-liquid separation tank, 27 is treated water, 28 is sludge, 3
1 is air, 32 is a mercury vapor generator, 33, 34 and 36, 37 are sulfuric acid-potassium permanganate absorption liquids, 35 is a cleaning liquid, 39 is an air pump, 40 is a gas meter, and 41 is an air pump.

Claims (1)

【特許請求の範囲】[Claims] 1 ゴミ焼却排ガスの塩化水素除去に用いられた
苛性ソーダ洗浄液にポリ硫化物を添加した処理液
に対し前記ゴミ焼却排ガスを吸収処理させること
を特徴とするゴミ焼却排ガスの水銀除去方法。
1. A method for removing mercury from garbage incineration exhaust gas, which comprises absorbing and treating the garbage incineration exhaust gas with a treatment solution prepared by adding polysulfide to a caustic soda cleaning solution used to remove hydrogen chloride from garbage incineration exhaust gas.
JP60189486A 1985-08-30 1985-08-30 Method for removing mercury from flue gases of refuse incinerator Granted JPS6253726A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60189486A JPS6253726A (en) 1985-08-30 1985-08-30 Method for removing mercury from flue gases of refuse incinerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60189486A JPS6253726A (en) 1985-08-30 1985-08-30 Method for removing mercury from flue gases of refuse incinerator

Publications (2)

Publication Number Publication Date
JPS6253726A JPS6253726A (en) 1987-03-09
JPH0148808B2 true JPH0148808B2 (en) 1989-10-20

Family

ID=16242065

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60189486A Granted JPS6253726A (en) 1985-08-30 1985-08-30 Method for removing mercury from flue gases of refuse incinerator

Country Status (1)

Country Link
JP (1) JPS6253726A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1154038C (en) 1998-04-24 2004-06-16 日本写真印刷株式会社 Touch panel device
KR100919077B1 (en) 2001-09-06 2009-09-28 니폰샤신인사츠가부시키가이샤 Touch panel having high durability
US7758829B2 (en) * 2007-12-05 2010-07-20 Alstom Technology Ltd Process for promoting mercury retention in wet flue gas desulfurization systems
DE102008005742A1 (en) * 2008-01-23 2009-07-30 Vosteen Consulting Gmbh Process for the improved and cost-effective wet separation of mercury from flue gases

Also Published As

Publication number Publication date
JPS6253726A (en) 1987-03-09

Similar Documents

Publication Publication Date Title
CA1233965A (en) Process for cleaning mercury-containing gaseous emissions
TWI430833B (en) Treatment of waste gas
CA2359304C (en) Method for controlling elemental mercury emissions
KR100325571B1 (en) REMOVAL OF NOx AND SOx EMISSIONS FROM PICKLING LINES FOR METAL TREATMENT
CN102921278B (en) Method for collaboratively controlling multi-pollutants produced from waste incineration smokes
JPWO2011104840A1 (en) Exhaust gas treatment system and exhaust gas treatment method
CN105107340A (en) Desulfurization, denitrification and demercuration integration apparatus based on amino absorber and method therefor
JPH0148808B2 (en)
JP2014057912A (en) Mercury processing system in exhaust gas
JPH02139092A (en) Method of detoxicating waste water containing element mercury
US5292440A (en) Removal of hydrogen sulfide from sour water without loss of heavy metal
CN106512611A (en) Method for desulfurizing and treating flue gas from boiler of thermal power plant
JPH0252558B2 (en)
JP4146042B2 (en) Flue gas treatment method
JPH0356123A (en) Removal of mercury and nox in gas
CA1100122A (en) Removal of noxious contaminants from gas
JPS6139096B2 (en)
JPH08117555A (en) Method and apparatus for treating mercury vapor
JP5467586B2 (en) Selenium-containing liquid treatment system, wet desulfurization apparatus, and selenium-containing liquid treatment method
JPS60132695A (en) Treatment of waste water containing sulfur compound
CN113233989B (en) 1, 4-trihydroxyethylbenzdiammonium sulfate, 1,3, 5-trihydroxyethylbenztriammonium sulfate, synthesis and application thereof
JPS58109190A (en) Treatment for waste water generated by scrubbing smoke of waste incineration furnace
JP2013215689A (en) Method and apparatus for treating exhaust gas
JP2006026520A (en) Method for removing mercury in exhaust gas
Schippert Combating corrosive substances produced during the surface treatment of metals