JPH0148802B2 - - Google Patents

Info

Publication number
JPH0148802B2
JPH0148802B2 JP59174182A JP17418284A JPH0148802B2 JP H0148802 B2 JPH0148802 B2 JP H0148802B2 JP 59174182 A JP59174182 A JP 59174182A JP 17418284 A JP17418284 A JP 17418284A JP H0148802 B2 JPH0148802 B2 JP H0148802B2
Authority
JP
Japan
Prior art keywords
water
membrane
carbon atoms
separation
aliphatic hydrocarbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP59174182A
Other languages
Japanese (ja)
Other versions
JPS6154205A (en
Inventor
Takeyuki Kawaguchi
Yutaka Takeya
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP17418284A priority Critical patent/JPS6154205A/en
Publication of JPS6154205A publication Critical patent/JPS6154205A/en
Publication of JPH0148802B2 publication Critical patent/JPH0148802B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

a 技術分野 本発明は分離膜及びそれを用いた分離法にす
る。更に詳しくは、分離膜を境にして一方に混合
液体をおき、他方を真空に引いて絶対的蒸気圧を
低く保つか或いは不活性ガスを流すことにより目
的成分の分圧を低く保つかすることにより、膜の
両面における圧力差によつて目的成分液を透過さ
せて低圧側で蒸発させることにより混合液から目
的物を分離する浸透気化分離(パーベーパレーシ
ヨン)膜及びその利用法に関する。 b 背景技術 パーベーパレーシヨン法は、通常の蒸留法では
分離できない液状混合物の分離を目的として考え
出された分離方法である。かかる液状混合物の例
としては、共沸混合物、近沸点混合物及び熱変性
しやすい化合物を含む混合物などを挙げることが
できる。このような分離方法については、既に、
例えば米国特許第2953502号明細書においてポリ
ビニルアルコール系膜を用いての共沸混合物の分
離、米国特許第3726934号明細書においてポリア
クリロニトリル系膜を用いての有機物混合液の分
離が開示されている。 浸透気化分離膜としては、これまで上記の他に
ポリエチレン、ポリプロピレン、セルロースアセ
テート、ポリアミド、ポリウレタン及びポリテト
ラフルオロエチレン等による膜が用いられている
が、これらは一般に選択分離性が悪く、且つ液の
透過速度も小さい。従つて実用に供するため膜厚
を薄くして液の透過速度を高めると膜の機械的強
度が低下するのでその補強のために装置構造が複
雑となり、且つ選択分離性が悪いために多段の分
離装置とせねばならない等の欠点を有していた。 本発明者らは、かかる状況下、選択分離性及び
液透過速度が高く且つ機械的強度にも優れた選択
透過膜を得べく鋭意研究した結果、本発明に到達
したものである。 c 発明の開示 本発明は、下記構成単位(a)、(b)及び(c) 〔但し、式中R1及びR2は同一若しくは異なり、
炭素原子数6〜18の脂肪族炭化水素基を表わす。
Mは水素原子又は1価又は2価のカチオンを表わ
す。〕 から選ばれる構成単位を(a)/((b)+(c))=1〜3
且つ(c)/(b)=0〜1の割合で有するポリマーから
主として成る活性層を有する分離膜、ならびに、
これを用いた水溶性有機物の分離方法である。 本発明における、上記構成単位(a)、(b)および(c)
を有するポリマーとしは、下記のポリ(オレフイ
ン−無水マレイン酸)[]を長鎖アルキルアミ
ンと反応させて得られるもの、[]及びこれを
イミド化して得られるもの[]が挙げられる。 上記重合体[]は、炭素原子数8〜20のα−
オレフイン類と無水マレイン酸との交互共重合に
より得られる公知のものである。重合体[]
は、重合体[]を炭素原子数6〜18の脂肪族ア
ミンと反応させることにより得られる。かかるア
ミンとしては、トリデシルアミン、ステアリルア
ミン、ラウリルアミン等が代表的である。このア
ミン変性反応は重合体[]を上記アミンに不活
性な溶媒中にて行うことができる。かかる溶媒と
しては、クロロホルム、塩化メチレン、テトラヒ
ドロフラン、トルエン等が好適例として挙げられ
る。反応は室温〜70℃にて、数時間で完結する。
反応混合物はメタノールやエタノール中への再沈
処理により精製される。上記[]のポリマー中
のカルボシル基をカルボン酸塩に変換することも
可能であり、本発明に含まれる。かかる変換反応
は、カルボキシル基含有ポリマーをアルカリ金属
塩、アルカリ土類金属塩水溶液と常法に従い接触
させることにより行える。 上記ポリマー[]の内、アルボキシル基を含
むものを、無水酢酸中にて50〜80℃で数時間加熱
することによりイミド環への閉環が達成される。
本発明に於て、良好な分離性能を有する膜をうる
ためには、前記のポリマー繰返し単位(a)、(b)、(c)
のうち(a)を必須成分として含みかつ(b)又は/及び
(c)を(a):(b)+(c)=1:1〜3:1及び、(c):(b)=
0:1〜1:1の割合で有することが重要であ
る。単位(b)および(c)を、(a)に対して、等モルより
多く含むと、得られる膜の選択性が低下し、好ま
しくない。また、該重合体が単位(b)又は(c)を全く
含まないと、重合体の溶解性が一般に低下し、製
膜が困難となる。 以上の如くして得られた重合体は、通常のコー
テイング法によつて製膜することができる。製膜
溶剤としては、ポリマー単位(a)、(b)および(c)の種
類と含有割合にもよるが、一般的に非極性溶媒、
例えば、クロロホルム、テトラヒドロフラン、塩
化メチレン、トルエン、パークレン等が用いられ
る。ポリマー溶液はガラス板やテフロン板上で製
膜可能であるが、本発明に於ては、膜の強度保持
透過量増加のため、微多孔性支持膜上にて薄層コ
ーテイングするのが好ましい。本発明における微
多孔性支持膜とは、その平均孔径が50〜5000Åの
微細構造を有する機械的強度に優れた多孔質膜が
選ばれる。かかる多孔膜の材質としては、ポリプ
ロピレン、ポリエチレン、ポリスルホン、ポリフ
ツ化ビニリデン、ポリテトラフルオロエチレン及
びポリ塩化ビニル等が良好なものとして挙げら
れ、特にポリエチレン、ポロプロピレン多孔膜が
好ましい。これら多孔膜の製造方法は公知であ
り、例えばポリプロピレン多孔膜は、British
Chemical Engineeing 、(8) 523(1964)
記載の方法で製造することができる。膜の微細構
造は、非対称構造であつても、対称構造であつて
もよい。膜定数としては好ましくは1〜10-4g/
cm2・sec・atm、特に好ましくは1〜10-3g/
cm2・sec・atmである。ここに言う膜定数は25
℃・2Kg/cm2の圧力下での純水透過量を表わす値
である。微多孔性支持膜の形態としては、平膜、
管状膜及び中空糸状膜等任意の形態のものを製造
しうるが、平膜、管状膜の場合は膜の裏側を織布
又は不織布などで補強した構造とすることが機械
的強度の点から好ましい。かかる織布、不織布と
しては、ポリエチレンテレフタレート、ポリプロ
ビレン、ポリアミド及びポリ塩化ビニル等による
ものが良好なものとして挙げらける。 これら微多孔性支持膜の膜厚は、通常50μ〜5
mm、好ましくは100μ〜1mmである。 本発明の分離膜を得るには、上記の微多孔膜上
に、前記のポリマー溶液をキヤスト法、スプレー
法、浸漬法等でコーテイングし、しかる後、溶媒
を室温〜100℃にて、10〜30分間乾燥するのが一
般的である。ポリマー溶液の濃度は、ポリマー組
成や溶媒の種類によるが、一般的には0.5〜20wt
%、好ましくは、1〜10wt%の範囲が好ましい。 この濃度のポリマー溶液のキヤストにより、膜
厚1〜50μmさらには、5〜20wt%の薄膜が前記
微多孔膜上に形成される。 本発明の有機液体選択透過膜は、水−水溶性有
機液体混合物から水溶性有機液体を高度に選択的
に透過させる目的に適している。このような混合
物としては、水/エチルアルコール、水/イソプ
ロピルアルコール、水/n−ブロピルアルコー
ル、水/アリルアルコール、水/2−メトキシエ
タノール、水/イソブチルアルコール、水/1−
ブタノール、水/2−ブタノール、水/フルフリ
ルアルコール及び水/1−ペンタノールなど水と
アルコールとの混合液、水/テトラハイドロフラ
ン、水/ジオキサン、水/エチルケトン、水/酢
酸、水/プロピオン酸、水/酪酸、水/吉草酸等
の混合物を挙げることができる。 上記、水溶液の中で、本発明の膜により最も効
率的に分離されるのは、炭素原子数3以上のアル
コール/水混合液である。 以下、実施例により本発明を更に説明する。 浸透気化実験法 有機液体混合液の供給側圧力は大気圧とし、透
過側(採集側)は特記しない限り0.3mmHgの減圧
下で行つた。膜の活性層面(超薄膜面)側に上記
混合液を供給し、膜面上を一定温度に保ちつつ供
給液を循環した。膜の有効面積は11.0cm2であつ
た。 膜透過成分は凝縮させて採集し、透過量
(Flux)はKg/m2・hrの単位で求めた。また採集
液中の組成比はTCD−ガスクロマトグラフによ
り定量し、膜の分離係数(α)を求めた。 尚、分離係数αA Bは次式により定義されるもの
である。 αA B=(YA/YB)/(XA/XB) ただし、XA及びXBは供給液中のA成分及びB
成分の重量%、TA及びYBは採集液(透過側)中
のA成分及びB成分の重量%を示し、透過し易い
成分をA成分とした 実施例 1 撹拌機、還流器、および温度計を備えた300ml
の4ツ口丸底フラスコ中でクロロホルム100mlに
オクタデセン−無水マレイン酸共重合体(PA−
18と略す)100gを溶かし、しかる後、8.0gのス
テアリルアミンを50mlのクロロホルムに溶解した
ものを適下ロートより徐々に滴下した。滴下終了
後50℃にて5〜7時間撹拌を行なつた。反応混合
物を1/10N塩酸とエタノールの等容積混合液
500ml中に再沈することにより、粗反応生成物を
得た。このものを濾過、乾燥後、再びクロロホル
ムに溶解し、10重量%溶液となし、エタノール中
に再沈する操作を3回くり返して精製ポリマーを
得た。このものの赤外吸収スペクトルより、酸無
水物基は全て消失しており、カルボキシル基およ
びアミド基が新たに生成していることが判つた。 このものをクロロホルムに溶解し5重量%溶液
となし、ポリプロピレン多孔膜(ジユラガード
2400)にコーテイング後、風乾を30分行なつた。
かくして得られた、55μmの膜厚を有する複合膜
を参考例記載の方法で、2.5重量%のn−ブタノ
ール水溶液の浸透気化テストを30℃、0.1mmHgの
条件下、6時間行なつた所、透過液n−ブタノー
ル濃度51.5%(選択係数αn-BuoH H2O41.4)、透過流速
4.25×10-6Kg・m-2・S-1という、高度なアルコー
ル選択透過が実現した。 実施例 2〜7 実施例1で得た複合膜を用いて、メタノール、
エタノール、プロパノール、イソプロパノール、
アミルアルコール、オクチルアルコールの水溶液
を原液として下記条件で浸透気化テストを行なつ
た。結果を表1に示す。
a Technical Field The present invention relates to a separation membrane and a separation method using the same. More specifically, the mixed liquid is placed on one side of the separation membrane, and the other side is evacuated to keep the absolute vapor pressure low, or the partial pressure of the target component is kept low by flowing an inert gas. The present invention relates to a pervaporation membrane that separates a target component from a mixed liquid by permeating the target component liquid due to the pressure difference on both sides of the membrane and evaporating it on the low pressure side, and a method for using the same. b Background Art The pervaporation method is a separation method devised for the purpose of separating liquid mixtures that cannot be separated by ordinary distillation methods. Examples of such liquid mixtures include azeotropic mixtures, near-boiling point mixtures, and mixtures containing compounds that are easily denatured by heat. Such separation methods have already been described.
For example, US Pat. No. 2,953,502 discloses separation of an azeotrope using a polyvinyl alcohol membrane, and US Pat. No. 3,726,934 discloses separation of an organic liquid mixture using a polyacrylonitrile membrane. In addition to the above, membranes made of polyethylene, polypropylene, cellulose acetate, polyamide, polyurethane, and polytetrafluoroethylene have been used as pervaporation separation membranes, but these generally have poor selective separation properties and are difficult to separate liquids. The permeation rate is also low. Therefore, if the membrane thickness is reduced to increase the liquid permeation rate for practical use, the mechanical strength of the membrane decreases, and the equipment structure becomes complicated to strengthen it, and the selective separation is poor, so multi-stage separation is required. However, it has disadvantages such as having to be used as a device. Under such circumstances, the inventors of the present invention have arrived at the present invention as a result of intensive research aimed at obtaining a selectively permeable membrane with high selective separation performance and liquid permeation rate, as well as excellent mechanical strength. c Disclosure of the invention The present invention comprises the following structural units (a), (b) and (c). [However, in the formula, R 1 and R 2 are the same or different,
Represents an aliphatic hydrocarbon group having 6 to 18 carbon atoms.
M represents a hydrogen atom or a monovalent or divalent cation. ] The constituent units selected from (a) / ((b) + (c)) = 1 to 3
and a separation membrane having an active layer mainly composed of a polymer having a ratio of (c)/(b) = 0 to 1, and
This is a method for separating water-soluble organic substances using this method. The above structural units (a), (b) and (c) in the present invention
Examples of the polymer having the following include those obtained by reacting the following poly(olefin-maleic anhydride) [] with a long-chain alkylamine, [] and those obtained by imidizing this []. The above polymer [ ] is α- having 8 to 20 carbon atoms.
This is a known product obtained by alternating copolymerization of olefins and maleic anhydride. Polymer []
is obtained by reacting the polymer [] with an aliphatic amine having 6 to 18 carbon atoms. Typical examples of such amines include tridecylamine, stearylamine, and laurylamine. This amine modification reaction can be carried out on the polymer [] in a solvent inert to the above amine. Suitable examples of such solvents include chloroform, methylene chloride, tetrahydrofuran, and toluene. The reaction is completed in several hours at room temperature to 70°C.
The reaction mixture is purified by reprecipitation treatment in methanol or ethanol. It is also possible to convert the carbosyl group in the polymer [] above into a carboxylate, and this is included in the present invention. Such a conversion reaction can be carried out by bringing the carboxyl group-containing polymer into contact with an aqueous solution of an alkali metal salt or alkaline earth metal salt in accordance with a conventional method. Among the above polymers [], ring closure to imide rings is achieved by heating those containing an aboxyl group in acetic anhydride at 50 to 80°C for several hours.
In the present invention, in order to obtain a membrane having good separation performance, the above polymer repeating units (a), (b), (c)
Contains (a) as an essential component and (b) or/and
(c) to (a):(b)+(c)=1:1~3:1 and (c):(b)=
It is important to have a ratio of 0:1 to 1:1. If the units (b) and (c) are contained in an amount greater than equimolar to (a), the selectivity of the membrane obtained will decrease, which is not preferable. Furthermore, if the polymer does not contain any units (b) or (c), the solubility of the polymer generally decreases, making film formation difficult. The polymer obtained as described above can be formed into a film by a conventional coating method. Film-forming solvents generally include non-polar solvents,
For example, chloroform, tetrahydrofuran, methylene chloride, toluene, perchloren, etc. are used. The polymer solution can be formed into a film on a glass plate or a Teflon plate, but in the present invention, it is preferable to form a thin layer coating on a microporous support membrane in order to maintain the strength of the membrane and increase the amount of permeation. As the microporous support membrane in the present invention, a porous membrane having a fine structure with an average pore diameter of 50 to 5000 Å and excellent mechanical strength is selected. Preferred materials for such a porous membrane include polypropylene, polyethylene, polysulfone, polyvinylidene fluoride, polytetrafluoroethylene, and polyvinyl chloride, with polyethylene and polypropylene porous membranes being particularly preferred. The manufacturing method of these porous membranes is known; for example, polypropylene porous membranes are manufactured by British
Chemical Engineering 9 , (8) 523 (1964)
It can be produced by the method described. The microstructure of the membrane may be asymmetric or symmetric. The membrane constant is preferably 1 to 10 -4 g/
cm 2 sec atm, particularly preferably 1 to 10 -3 g/
cm2・sec・atm. The membrane constant here is 25
This value represents the amount of pure water permeated under a pressure of 2 Kg/cm 2 at ℃. The forms of microporous support membranes include flat membranes,
Any form of membrane such as tubular or hollow fiber membranes can be manufactured, but in the case of flat membranes or tubular membranes, it is preferable from the viewpoint of mechanical strength to have a structure in which the back side of the membrane is reinforced with woven fabric or non-woven fabric. . Preferred examples of such woven and nonwoven fabrics include those made of polyethylene terephthalate, polypropylene, polyamide, polyvinyl chloride, and the like. The thickness of these microporous support membranes is usually 50μ to 5μ.
mm, preferably 100 μm to 1 mm. To obtain the separation membrane of the present invention, the above-mentioned polymer solution is coated on the above-mentioned microporous membrane by a casting method, a spray method, a dipping method, etc., and then the solvent is heated at room temperature to 100°C for 10 to 10 minutes. It is common to dry for 30 minutes. The concentration of the polymer solution depends on the polymer composition and type of solvent, but is generally 0.5 to 20wt.
%, preferably in the range of 1 to 10 wt%. By casting the polymer solution at this concentration, a thin film having a thickness of 1 to 50 μm and a thickness of 5 to 20 wt % is formed on the microporous membrane. The organic liquid selectively permeable membrane of the present invention is suitable for the purpose of highly selectively permeating a water-soluble organic liquid from a water-water-soluble organic liquid mixture. Such mixtures include water/ethyl alcohol, water/isopropyl alcohol, water/n-propyl alcohol, water/allylic alcohol, water/2-methoxyethanol, water/isobutyl alcohol, water/1-
Mixtures of water and alcohol such as butanol, water/2-butanol, water/furfuryl alcohol and water/1-pentanol, water/tetrahydrofuran, water/dioxane, water/ethyl ketone, water/acetic acid, water/propion Mention may be made of acids, mixtures of water/butyric acid, water/valeric acid and the like. Among the aqueous solutions mentioned above, the one most efficiently separated by the membrane of the present invention is an alcohol/water mixture having three or more carbon atoms. The present invention will be further explained below with reference to Examples. Pervaporation experimental method The pressure on the supply side of the organic liquid mixture was atmospheric pressure, and the permeation side (collection side) was conducted under reduced pressure of 0.3 mmHg unless otherwise specified. The above mixed solution was supplied to the active layer surface (ultra-thin film surface) side of the membrane, and the supplied solution was circulated while maintaining the temperature on the membrane surface at a constant temperature. The effective area of the membrane was 11.0 cm 2 . The components that permeated the membrane were condensed and collected, and the amount of permeation (Flux) was determined in units of Kg/m 2 ·hr. In addition, the composition ratio in the collected liquid was determined by TCD-gas chromatography, and the separation coefficient (α) of the membrane was determined. Note that the separation coefficient α A B is defined by the following equation. α A B = (Y A / Y B ) / (X A / X B ) However, X A and X B are the A component and B component in the feed liquid.
Component weight %, T A and Y B indicate the weight % of A component and B component in the collected liquid (permeate side), and the easily permeable component was used as the A component Example 1 Stirrer, reflux device, and temperature 300ml with meter
Octadecene-maleic anhydride copolymer (PA-
18) was dissolved, and then a solution of 8.0 g of stearylamine in 50 ml of chloroform was gradually added dropwise through a dropping funnel. After the dropwise addition was completed, stirring was performed at 50°C for 5 to 7 hours. The reaction mixture was mixed with an equal volume of 1/10N hydrochloric acid and ethanol.
A crude reaction product was obtained by reprecipitation in 500 ml. After filtration and drying, this product was dissolved again in chloroform to make a 10% by weight solution, and the procedure of reprecipitation in ethanol was repeated three times to obtain a purified polymer. The infrared absorption spectrum of this product revealed that all acid anhydride groups had disappeared, and carboxyl groups and amide groups were newly generated. This material was dissolved in chloroform to make a 5% by weight solution, and a porous polypropylene membrane (Jyuragard) was prepared.
2400) and air-dried for 30 minutes.
The thus obtained composite membrane having a film thickness of 55 μm was subjected to a pervaporation test with a 2.5% by weight n-butanol aqueous solution at 30°C and 0.1 mmHg for 6 hours using the method described in the reference example. Permeate n-butanol concentration 51.5% (selectivity coefficient α n-BuoH H2O 41.4), permeate flow rate
A high degree of alcohol selective permeation of 4.25×10 -6 Kg・m -2・S -1 was achieved. Examples 2 to 7 Using the composite membrane obtained in Example 1, methanol,
ethanol, propanol, isopropanol,
A pervaporation test was conducted using aqueous solutions of amyl alcohol and octyl alcohol as stock solutions under the following conditions. The results are shown in Table 1.

【表】 実施例 8〜14 実施例1において、ステアリルアミンの代りに
オレイルアミンを用いて、同様にPA−18を変性
することにより得た41μmの膜厚を有する複合膜
のアルコール水溶液分離性能を調べた。結果を表
2に示した。
[Table] Examples 8 to 14 The alcohol aqueous solution separation performance of a composite membrane having a film thickness of 41 μm obtained by modifying PA-18 in the same manner as in Example 1 using oleylamine instead of stearylamine was investigated. Ta. The results are shown in Table 2.

【表】 実施例 15〜16 実施例1に於て、ステアリルアミンを用いる代
りに、オクチルアミンまたはラウリルアミンを用
いて同様にPA−18を変性することにより得た複
合膜のエタノール水溶液分離性能を調べた。結果
を表3に示した。
[Table] Examples 15 to 16 In Example 1, the ethanol aqueous solution separation performance of composite membranes obtained by similarly modifying PA-18 using octylamine or laurylamine instead of using stearylamine was evaluated. Examined. The results are shown in Table 3.

【表】【table】

Claims (1)

【特許請求の範囲】 1 下記構成単位(a)、(b)及び(c) 〔但し、式中R1及びR2は同一若しくは異なり、
炭素原子数6〜18の脂肪族炭化水素基を表わす。
Mは水素原子或は1価又は2価のカチオンを表わ
す。〕 から選ばれる構成単位を、(a)/((b)+(c))=1〜
3且つ(c)/(b)=0〜1の割合で有するポリマーか
ら主として成る活性層を有する有機物選択透過性
浸透気化分離膜。 2 R1及びR2が炭素原子数12〜18の脂肪族炭化
水素基から選ばれた基である特許請求の範囲第1
項記載の有機物選択透過性浸透気化分離膜。 3 (a)/((b)+(c))=1である特許請求の範囲第
1項又は第2項記載のいずれかの有機物選択透過
性浸透気化分離膜。 4 活性層が多孔質支持体より支持されている特
許請求の範囲第1項乃至第3項記載のいずれかの
有機物選択透過性浸透気化分離膜。 5 下記構成単位(a)、(b)及び(c) 〔但し、式中R1及びR2は同一若しくは異なり、
炭素原子数6〜18の脂肪族炭化水素基を表わす。
Mは水素原子或は1価又は2価のカチオンを表わ
す。〕 から選ばれる構成単位を、(a)/((b)+(c))=1〜
3且つ(c)/(b)=0〜1の割合で有するポリマーか
ら主としてなる分離膜を用いて小割合の水溶性有
機化合物を含有する水溶液から浸透気化法により
水溶性有機化合物を分離することからなる水溶性
有機化合物の分離方法。 6 R1及びR2が炭素原子数12〜18の脂肪族炭化
水素基である特許請求の範囲第5項記載の分離方
法。 7 (a)/((b)+(c))が1である特許請求の範囲第
5項又は第6項記載の分離方法。 8 小割合の水溶性有機化合物を含有する水溶液
が、0.1〜20wt%の炭素原子数1〜8のアルコー
ルを含有する水溶液である特許請求の範囲第5項
乃至第7項記載のいずれかの分離方法。
[Claims] 1. The following structural units (a), (b) and (c) [However, in the formula, R 1 and R 2 are the same or different,
Represents an aliphatic hydrocarbon group having 6 to 18 carbon atoms.
M represents a hydrogen atom or a monovalent or divalent cation. ] The constituent units selected from (a)/((b)+(c))=1~
3 and a ratio of (c)/(b)=0 to 1. 2. Claim 1, wherein R 1 and R 2 are groups selected from aliphatic hydrocarbon groups having 12 to 18 carbon atoms.
The organic substance permselective pervaporation separation membrane described in 2. 3. The organic substance permselective pervaporation separation membrane according to claim 1 or 2, wherein (a)/((b)+(c))=1. 4. An organic matter selectively permeable pervaporation separation membrane according to any one of claims 1 to 3, wherein the active layer is supported by a porous support. 5 The following structural units (a), (b) and (c) [However, in the formula, R 1 and R 2 are the same or different,
Represents an aliphatic hydrocarbon group having 6 to 18 carbon atoms.
M represents a hydrogen atom or a monovalent or divalent cation. ] The constituent units selected from (a)/((b)+(c))=1~
3 and separating water-soluble organic compounds from an aqueous solution containing a small proportion of water-soluble organic compounds by pervaporation using a separation membrane mainly composed of a polymer having a ratio of (c)/(b) = 0 to 1. A method for separating water-soluble organic compounds consisting of: 6. The separation method according to claim 5, wherein R 1 and R 2 are aliphatic hydrocarbon groups having 12 to 18 carbon atoms. 7. The separation method according to claim 5 or 6, wherein (a)/((b)+(c)) is 1. 8. The separation according to any one of claims 5 to 7, wherein the aqueous solution containing a small proportion of a water-soluble organic compound is an aqueous solution containing 0.1 to 20 wt% of an alcohol having 1 to 8 carbon atoms. Method.
JP17418284A 1984-08-23 1984-08-23 Separation membrane and separation of water-soluble organic material by using said membrane Granted JPS6154205A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17418284A JPS6154205A (en) 1984-08-23 1984-08-23 Separation membrane and separation of water-soluble organic material by using said membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17418284A JPS6154205A (en) 1984-08-23 1984-08-23 Separation membrane and separation of water-soluble organic material by using said membrane

Publications (2)

Publication Number Publication Date
JPS6154205A JPS6154205A (en) 1986-03-18
JPH0148802B2 true JPH0148802B2 (en) 1989-10-20

Family

ID=15974146

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17418284A Granted JPS6154205A (en) 1984-08-23 1984-08-23 Separation membrane and separation of water-soluble organic material by using said membrane

Country Status (1)

Country Link
JP (1) JPS6154205A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5471782A (en) * 1977-11-21 1979-06-08 Toray Ind Inc Semipermeable membrane

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5471782A (en) * 1977-11-21 1979-06-08 Toray Ind Inc Semipermeable membrane

Also Published As

Publication number Publication date
JPS6154205A (en) 1986-03-18

Similar Documents

Publication Publication Date Title
JPH0334969B2 (en)
US4591440A (en) Membranes for liquid separations
EP0592706B1 (en) Use of cellulose ester blend membranes
JPS6354903A (en) Separation membrane for pervaporation
JPS5850522B2 (en) Composite semipermeable membrane and its manufacturing method
CA2026660A1 (en) Dehydration of organic oxygenates
JPH05301035A (en) Separation membrane made of polyion complex
JPH07275676A (en) Multiple membrane,its preparation and method of application
JPH0148802B2 (en)
US5147549A (en) Membrane separation process
JPS6260924B2 (en)
JPS5892402A (en) Preparation of composite membrane having selective permeability of organic substance
JPH0157604B2 (en)
JPH0761411B2 (en) Concentration method of organic matter aqueous solution
JP2900184B2 (en) Aromatic copolymer separation membrane
KR102067861B1 (en) Composition for preparing reverse osmosis membrane, method for preparing reverse osmosis membrane using the same, and reverse osmosis membrane and water treatment module
JPH0516290B2 (en)
JPH06182167A (en) Fluorine-containing polyimide-based gas separation membrane and method of mixture gas separation/ concentration using said membrane
US5221482A (en) Polyparabanic acid membrane for selective separation
JPS6125606A (en) Impregnated liquid film
JP2782770B2 (en) Pervaporation separation method of organic matter aqueous solution
JPS6099314A (en) Concentration of aqueous solution of organic substance
JP3018093B2 (en) Polyimide water selective separation membrane
JPS63126504A (en) Sulfonated and polysaccharide crosslinked composite membrane
JPS6144524B2 (en)

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term