JPH0148659B2 - - Google Patents

Info

Publication number
JPH0148659B2
JPH0148659B2 JP58195232A JP19523283A JPH0148659B2 JP H0148659 B2 JPH0148659 B2 JP H0148659B2 JP 58195232 A JP58195232 A JP 58195232A JP 19523283 A JP19523283 A JP 19523283A JP H0148659 B2 JPH0148659 B2 JP H0148659B2
Authority
JP
Japan
Prior art keywords
silicon
additive
resin
present
polycrystalline silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58195232A
Other languages
Japanese (ja)
Other versions
JPS6088448A (en
Inventor
Koji Nose
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electronics Corp filed Critical Matsushita Electronics Corp
Priority to JP58195232A priority Critical patent/JPS6088448A/en
Publication of JPS6088448A publication Critical patent/JPS6088448A/en
Publication of JPH0148659B2 publication Critical patent/JPH0148659B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic
    • H01L23/295Organic, e.g. plastic containing a filler
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/291Oxides or nitrides or carbides, e.g. ceramics, glass
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、樹脂封止形電子装置に関し、特に、
その封止用樹脂に添加された添加物に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a resin-sealed electronic device, and in particular,
The present invention relates to additives added to the sealing resin.

(従来例の構成とその問題点) 従来の半導体装置の封止用樹脂内には、添加材
として結晶性若しくは溶融性のシリカ(二酸化珪
素)が混入されている。そして、これらを使い分
けることで、半導体装置の材料であるシリコンと
の熱膨張率の整合や、半導体装置内での電力消費
によつて発生する熱を効率よく放散させるための
高熱伝導率化を図つてきた。しかし、この場合、
熱膨張率の整合を改善すると熱伝導率が低下し、
逆に、熱伝導率の改善を図ると、シリコンとの熱
膨張率の差が大きくなるという問題があつた。
(Structure of a conventional example and its problems) Crystalline or fusible silica (silicon dioxide) is mixed as an additive into the sealing resin of a conventional semiconductor device. By using these materials properly, we aim to match the coefficient of thermal expansion with silicon, which is the material of semiconductor devices, and to achieve high thermal conductivity to efficiently dissipate heat generated by power consumption within semiconductor devices. It came. But in this case,
Improving thermal expansion matching reduces thermal conductivity and
On the other hand, when trying to improve thermal conductivity, there was a problem in that the difference in thermal expansion coefficient with silicon increased.

これらの問題は、封止用樹脂中に混入される添
加材が、半導体チツプの材料であるシリコンと異
なることに起因する。
These problems are caused by the fact that the additive mixed into the sealing resin is different from silicon, which is the material of the semiconductor chip.

第1図は、従来の添加材の製造工程を示したも
のであり、得られるシリカの形状例を第3図aに
示している。
FIG. 1 shows a conventional additive manufacturing process, and an example of the shape of the obtained silica is shown in FIG. 3a.

このように、シリカの原材料は一般に鉱山より
採掘した原石を用いるので、この中には天然のウ
ランやトリウムが微量に含まれており、このウラ
ンやトリウムを含むシリカを半導体装置封止用樹
脂中に添加材として用いた場合、ウランやトリウ
ムからα線が放出され、このα線照射エネルギー
(5MeV)はシリコン中で電子−正孔対をつく
り、例えば、半導体メモリー装置の場合には、回
路要素のダイナミツクRAMのメモリーセルを構
成しているメモリー容量中の蓄積電荷を反転さ
せ、誤動作を誘発する。
In this way, the raw material for silica is generally raw stone extracted from mines, which contains trace amounts of natural uranium and thorium, and the silica containing this uranium and thorium is used in resin for encapsulating semiconductor devices. When used as an additive in silicon, α-rays are emitted from uranium and thorium, and this α-ray irradiation energy (5 MeV) creates electron-hole pairs in silicon, and for example, in the case of semiconductor memory devices, it This reverses the accumulated charge in the memory capacitance that makes up the memory cells of dynamic RAM, causing malfunctions.

さらに、天然シリカ中には、半導体不純物汚染
の物質であるナトリウムや塩素、カリウム等の不
純物が混入しているなどの問題があつた。
Furthermore, natural silica has the problem of being contaminated with impurities such as sodium, chlorine, and potassium, which are semiconductor impurity contaminants.

(発明の目的) 本発明は、上記従来例の問題点を一挙に解消す
るもので、添加材の純度並びに熱伝導率を著しく
向上させた半導体装置封止用樹脂を用いてなる樹
脂封止形電子装置を提供するものである。
(Object of the Invention) The present invention solves the problems of the above-mentioned conventional methods at once, and is a resin-sealed type using a resin for encapsulating semiconductor devices in which the purity of additives and thermal conductivity are significantly improved. The present invention provides an electronic device.

(発明の構成) 本発明における封止用樹脂の添加材は、半導体
純度の単結晶又は多結晶シリコン塊を所定の粒度
(粒径は約30〜250μm)に一旦粉砕し、この粉砕
したシリコン粒を、高温水蒸気(700〜1200℃)
中に通してシリコン粒の表面に一定厚さ(1〜
10μm)の二酸化珪素被膜を形成したもので、こ
れを添加剤として混入した封止用樹脂で電子装置
を封止する。
(Structure of the Invention) The additive material for the sealing resin in the present invention is obtained by pulverizing a single crystal or polycrystalline silicon lump of semiconductor purity to a predetermined particle size (particle size is approximately 30 to 250 μm), and then producing the pulverized silicon particles. , high temperature steam (700~1200℃)
A certain thickness (1~
A silicon dioxide coating of 10 μm) is formed, and electronic devices are sealed with a sealing resin containing this as an additive.

(実施例の説明) 以下、図面を参照して、実施例を説明する。(Explanation of Examples) Examples will be described below with reference to the drawings.

第2図は、本発明の一実施例の添加材の製造工
程を示したものである。まず、多結晶シリコンを
得る代表的な製法として、三塩化シラン法とモノ
シラン法とがあり、これらの方法で高純度の多結
晶シリコンを得る。この多結晶シリコンを必要に
応じて30〜250μmの粒度に粉砕する。この粒径
の多結晶シリコン粒を700〜1200℃の湿中雰囲気
で酸化させ、表面に1〜10μm程度の二酸化シリ
コンの膜を形成する。この酸化処理当り、例えば
酸素(O2)と水素(H2)を炉内で燃焼させ、発
生した水蒸気を利用するパイロ酸化法を採用す
る。具体的には、例えば酸素と水素の供給流量
を、酸素(O2)8/分、水素(H2)14/分
とし、酸化温度を1000±50℃に設定した炉内へ多
結晶シリコン粒を配置して約15時間にわたる酸化
処理を施す。これにより、多結晶シリコン粒の表
面には厚さが2.5〜3.0μmの二酸化シリコン膜が
形成される。そして、不純物分析の後、これを添
加材として得る。
FIG. 2 shows the manufacturing process of an additive material according to an embodiment of the present invention. First, typical manufacturing methods for obtaining polycrystalline silicon include the trichlorosilane method and the monosilane method, and highly pure polycrystalline silicon is obtained by these methods. This polycrystalline silicon is ground to a particle size of 30 to 250 μm, if necessary. Polycrystalline silicon grains having this grain size are oxidized in a humid atmosphere at 700 to 1200°C to form a silicon dioxide film of about 1 to 10 μm on the surface. For this oxidation treatment, for example, a pyro-oxidation method is employed in which oxygen (O 2 ) and hydrogen (H 2 ) are burned in a furnace and the generated steam is utilized. Specifically, for example, the supply flow rate of oxygen and hydrogen was set to 8/min for oxygen (O 2 ) and 14/min for hydrogen (H 2 ), and polycrystalline silicon grains were introduced into a furnace with an oxidation temperature set at 1000±50°C oxidation treatment for approximately 15 hours. As a result, a silicon dioxide film having a thickness of 2.5 to 3.0 μm is formed on the surface of the polycrystalline silicon grains. After impurity analysis, this is obtained as an additive.

第3図bは、得られた添加材の断面を示したも
のであり、1は二酸化シリコン膜、2は多結晶シ
リコンである。
FIG. 3b shows a cross section of the obtained additive material, in which 1 is a silicon dioxide film and 2 is polycrystalline silicon.

添加材は、用途に応じて60〜80重量%の割合で
樹脂中に混入され、これを封止用樹脂として電子
装置の外囲封止に使用する。
The additive material is mixed into the resin at a ratio of 60 to 80% by weight depending on the purpose, and this is used as a sealing resin to seal the outer envelope of an electronic device.

なお、用途に応じて樹脂の熱伝導率を向上させ
たい場合には、多結晶シリコンから単結晶シリコ
ンに結晶成長させた後粉砕し、以下、上述の方法
で二酸化シリコン膜を形成するようにしてもよ
い。
If you want to improve the thermal conductivity of the resin depending on the application, you can grow polycrystalline silicon into single crystal silicon, then crush it, and then form a silicon dioxide film using the method described above. Good too.

(発明の効果) 本発明によれば、添加材の熱膨張率は、従来の
11×10-6/℃に対し本発明では5×10-6〜8×
10-6/℃とシリコンの3.5×10-6/℃に近い。さ
らに、熱伝導率も、従来の9.3W・m-1・K-1に対
して本発明では30〜50W・m-1・K-1と高くな
る。
(Effect of the invention) According to the invention, the coefficient of thermal expansion of the additive material is lower than that of the conventional one.
11×10 -6 /°C, whereas in the present invention it is 5×10 -6 to 8×
10 -6 /℃, which is close to silicon's 3.5×10 -6 /℃. Furthermore, the thermal conductivity of the present invention is also higher, 30 to 50 W·m −1 ·K −1 , compared to 9.3 W·m −1 ·K −1 in the conventional case.

添加材中のウラン、トリウム、ナトリウム等の
不純物含有量は、従来のものに比べれば無視し得
る程度に低く、半導体装置の不純物汚染や半導体
メモリー等で生じる情報反転も防げる。
The content of impurities such as uranium, thorium, and sodium in the additive material is negligible compared to conventional additives, and impurity contamination of semiconductor devices and information inversion that occurs in semiconductor memories can be prevented.

以上の効果から、シリコン半導体装置の封止用
樹脂に係る諸問題を一挙に解決し、高純度、低応
力、高熱伝導という優れた特性を有する樹脂封止
形電子装置を得ることができる利点がある。
From the above effects, it is possible to solve all the problems related to the sealing resin of silicon semiconductor devices at once, and to obtain resin-sealed electronic devices with excellent properties such as high purity, low stress, and high thermal conductivity. be.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、従来の添加物(シリカ)の製造工程
図、第2図は、本発明の一実施例の添加物の製造
工程図、第3図aは、従来の添加物の断面図、第
3図bは、本発明実施例の添加物の断面図であ
る。 1……二酸化シリコン、2……シリコン(粒)。
FIG. 1 is a manufacturing process diagram of a conventional additive (silica), FIG. 2 is a manufacturing process diagram of an additive according to an embodiment of the present invention, and FIG. 3a is a cross-sectional diagram of a conventional additive. FIG. 3b is a cross-sectional view of an additive according to an example of the present invention. 1...Silicon dioxide, 2...Silicon (grains).

Claims (1)

【特許請求の範囲】[Claims] 1 表面酸化処理されたシリコン粉末を添加材と
して含む外囲樹脂で封止されたことを特徴とする
樹脂封止形電子装置。
1. A resin-sealed electronic device characterized in that it is sealed with an outer resin containing surface-oxidized silicon powder as an additive.
JP58195232A 1983-10-20 1983-10-20 Resin-sealed type electronic device Granted JPS6088448A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58195232A JPS6088448A (en) 1983-10-20 1983-10-20 Resin-sealed type electronic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58195232A JPS6088448A (en) 1983-10-20 1983-10-20 Resin-sealed type electronic device

Publications (2)

Publication Number Publication Date
JPS6088448A JPS6088448A (en) 1985-05-18
JPH0148659B2 true JPH0148659B2 (en) 1989-10-20

Family

ID=16337674

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58195232A Granted JPS6088448A (en) 1983-10-20 1983-10-20 Resin-sealed type electronic device

Country Status (1)

Country Link
JP (1) JPS6088448A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2773660B2 (en) * 1994-10-27 1998-07-09 日本電気株式会社 Semiconductor device
JP2019131669A (en) * 2018-01-30 2019-08-08 帝人株式会社 Resin composition and insulation heat conductive sheet

Also Published As

Publication number Publication date
JPS6088448A (en) 1985-05-18

Similar Documents

Publication Publication Date Title
Bullett Structure and bonding in crystalline boron and B12C3
Kachurin et al. Visible and near-infrared luminescence from silicon nanostructures formed by ion implantation and pulse annealing
JP5062396B2 (en) High purity cristobalite particles and production method thereof
JPS5595605A (en) High purity silicon nitride and production thereof
JPH0148659B2 (en)
JPH05170421A (en) Method of refining silicon
KR20150044794A (en) Thermoelectric materials and their manufacturing method
CN104844162A (en) High-temperature ferrimagnetic semiconductor CaCu3Fe2Os2O12 and preparation method thereof
US20100092363A1 (en) Combustion synthesis method and materials produced therefrom
JPH01319567A (en) Seal composition containing ultrapure molten silica filler and production thereof
DE2558387A1 (en) METHOD AND DEVICE FOR PRODUCING POLYCRYSTALLINE SILICON
JPS6018959B2 (en) Defluorination reduction method for uranium compositions
EP3026720B1 (en) Thermoelectric materials and their manufacturing method
JP6775841B2 (en) New compound semiconductors and their utilization
Jain et al. Rice husk ash as a potential source of silicon and its varied applications
JP3318946B2 (en) Powdery dry gel, silica glass powder, and method for producing silica glass melt molded article
JPS61222910A (en) Production of copper selenide
JPS6240860B2 (en)
JPH0450132A (en) Purification of silica-based raw material
JPS6316344B2 (en)
Jakubiszyn et al. Electrification of the Dust of NaCl and KCl Whiskers
US4361529A (en) Method for producing plate or tape shaped silicon crystal bodies having crystalline pillar-like structures, equivalent to columnar structures, for large surface solar cells
JPS6296311A (en) Production of high-purity spherical silica filler
CN117800297A (en) Method for preparing silicon nitride from silicon waste
Pasternak et al. A high efficient single line absorber for iodine Mössbauer spectroscopy