JPH0148340B2 - - Google Patents
Info
- Publication number
- JPH0148340B2 JPH0148340B2 JP59094072A JP9407284A JPH0148340B2 JP H0148340 B2 JPH0148340 B2 JP H0148340B2 JP 59094072 A JP59094072 A JP 59094072A JP 9407284 A JP9407284 A JP 9407284A JP H0148340 B2 JPH0148340 B2 JP H0148340B2
- Authority
- JP
- Japan
- Prior art keywords
- zone
- stripping
- crystallizer
- metal
- stripping solution
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000013078 crystal Substances 0.000 claims description 138
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 93
- 239000007788 liquid Substances 0.000 claims description 65
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 claims description 60
- 239000002184 metal Substances 0.000 claims description 57
- 229910052751 metal Inorganic materials 0.000 claims description 57
- 238000000034 method Methods 0.000 claims description 42
- 239000000203 mixture Substances 0.000 claims description 38
- 239000003960 organic solvent Substances 0.000 claims description 37
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 claims description 35
- 238000000354 decomposition reaction Methods 0.000 claims description 33
- 238000010521 absorption reaction Methods 0.000 claims description 30
- 238000002156 mixing Methods 0.000 claims description 30
- 238000001816 cooling Methods 0.000 claims description 29
- 229910021645 metal ion Inorganic materials 0.000 claims description 28
- 229910021529 ammonia Inorganic materials 0.000 claims description 25
- 229910001512 metal fluoride Inorganic materials 0.000 claims description 24
- 238000000926 separation method Methods 0.000 claims description 24
- 229910017855 NH 4 F Inorganic materials 0.000 claims description 23
- 239000000706 filtrate Substances 0.000 claims description 15
- 238000001035 drying Methods 0.000 claims description 11
- 150000002222 fluorine compounds Chemical group 0.000 claims description 8
- 238000004458 analytical method Methods 0.000 claims description 7
- 229910044991 metal oxide Inorganic materials 0.000 claims description 7
- 150000004706 metal oxides Chemical class 0.000 claims description 7
- 150000002739 metals Chemical class 0.000 claims description 7
- -1 fluoride metal complex Chemical class 0.000 claims description 6
- 238000002425 crystallisation Methods 0.000 claims description 4
- 230000008025 crystallization Effects 0.000 claims description 4
- 239000000243 solution Substances 0.000 description 129
- 239000007789 gas Substances 0.000 description 39
- 229910052731 fluorine Inorganic materials 0.000 description 14
- 238000006243 chemical reaction Methods 0.000 description 13
- 230000000052 comparative effect Effects 0.000 description 12
- 239000011737 fluorine Substances 0.000 description 12
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 11
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 11
- 235000011114 ammonium hydroxide Nutrition 0.000 description 11
- 239000007864 aqueous solution Substances 0.000 description 10
- 150000002500 ions Chemical class 0.000 description 10
- 238000001556 precipitation Methods 0.000 description 10
- 238000005259 measurement Methods 0.000 description 9
- 239000000126 substance Substances 0.000 description 9
- 230000007423 decrease Effects 0.000 description 8
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 7
- 238000007792 addition Methods 0.000 description 7
- 238000000605 extraction Methods 0.000 description 7
- 229910052742 iron Inorganic materials 0.000 description 7
- 238000006386 neutralization reaction Methods 0.000 description 7
- 229910015475 FeF 2 Inorganic materials 0.000 description 5
- 229910017665 NH4HF2 Inorganic materials 0.000 description 4
- 239000002253 acid Substances 0.000 description 4
- 239000002244 precipitate Substances 0.000 description 4
- 239000002002 slurry Substances 0.000 description 4
- 238000000638 solvent extraction Methods 0.000 description 4
- 238000004448 titration Methods 0.000 description 4
- 238000000954 titration curve Methods 0.000 description 4
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 239000003814 drug Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000011084 recovery Methods 0.000 description 3
- 239000002699 waste material Substances 0.000 description 3
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonia chloride Chemical compound [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 2
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 2
- 229910019142 PO4 Inorganic materials 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- LDDQLRUQCUTJBB-UHFFFAOYSA-N ammonium fluoride Chemical class [NH4+].[F-] LDDQLRUQCUTJBB-UHFFFAOYSA-N 0.000 description 2
- 229940079593 drug Drugs 0.000 description 2
- 229910000069 nitrogen hydride Inorganic materials 0.000 description 2
- 238000011017 operating method Methods 0.000 description 2
- 239000012188 paraffin wax Substances 0.000 description 2
- 239000010452 phosphate Substances 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- DDFHBQSCUXNBSA-UHFFFAOYSA-N 5-(5-carboxythiophen-2-yl)thiophene-2-carboxylic acid Chemical compound S1C(C(=O)O)=CC=C1C1=CC=C(C(O)=O)S1 DDFHBQSCUXNBSA-UHFFFAOYSA-N 0.000 description 1
- 230000002745 absorbent Effects 0.000 description 1
- 239000002250 absorbent Substances 0.000 description 1
- 235000019270 ammonium chloride Nutrition 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- 150000001735 carboxylic acids Chemical class 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- SEGLCEQVOFDUPX-UHFFFAOYSA-N di-(2-ethylhexyl)phosphoric acid Chemical compound CCCCC(CC)COP(O)(=O)OCC(CC)CCCC SEGLCEQVOFDUPX-UHFFFAOYSA-N 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 238000004821 distillation Methods 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 238000004299 exfoliation Methods 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- 238000005342 ion exchange Methods 0.000 description 1
- 150000004698 iron complex Chemical class 0.000 description 1
- SHXXPRJOPFJRHA-UHFFFAOYSA-K iron(iii) fluoride Chemical compound F[Fe](F)F SHXXPRJOPFJRHA-UHFFFAOYSA-K 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- JVJQPDTXIALXOG-UHFFFAOYSA-N nitryl fluoride Chemical compound [O-][N+](F)=O JVJQPDTXIALXOG-UHFFFAOYSA-N 0.000 description 1
- 239000012074 organic phase Substances 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 238000003918 potentiometric titration Methods 0.000 description 1
- 230000001376 precipitating effect Effects 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
Landscapes
- Extraction Or Liquid Replacement (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
- Manufacture And Refinement Of Metals (AREA)
Description
【発明の詳細な説明】
本発明は、金属イオンを抽出含有する有機溶媒
と弗化物系剥離液とを混合接触させて弗化金属錯
体結晶を折出させ、かつ結晶の焼成により発生す
る弗素系分解生成物を回収再使用する工程におけ
る弗化物系剥離液の濃度組成調整方法およびその
装置に関するものである。Detailed Description of the Invention The present invention involves mixing and contacting an organic solvent containing extracted metal ions with a fluoride-based stripping solution to precipitate metal fluoride complex crystals, and removing fluorine-based metal complexes generated by firing the crystals. The present invention relates to a method and apparatus for adjusting the concentration composition of a fluoride stripping solution in a process of recovering and reusing decomposition products.
近年、高純度の金属や金属酸化物を得るための
方法として注目されている溶媒抽出法は、精製工
程が簡単でかつエネルギー消費も少ない方法とし
て評価されている。また、抽出の対象となる金属
もMg、Ti、Cr、Mn、Fe、Co、Ni、Cu、Zn、
Cd、Nb、Zr、Ta、Mo、W、Inなど多くに及ん
でいる。 In recent years, solvent extraction has attracted attention as a method for obtaining high-purity metals and metal oxides, and has been evaluated as a method with a simple purification process and low energy consumption. In addition, the metals that can be extracted include Mg, Ti, Cr, Mn, Fe, Co, Ni, Cu, Zn,
These include Cd, Nb, Zr, Ta, Mo, W, In, and many others.
溶媒抽出法では従来抽出された金属イオンの剥
離(逆抽出)方法が問題であつたが、弗化物系剥
離液(HF、NH4、HF2、NH4Fの1種または2
種以上を含有する水溶液)を用いることにより解
決された(特開昭57−42545、特開昭57−73138、
特開昭57−73141、特開昭57−85943号公報参照)。
また、この方法を実施するための装置としては、
特開昭58−81402号公報に示される逆円錐形の
「晶析装置」、その改良型で特願昭59−62432号
(特開昭60−208429号)示された「金属剥離用晶
析装置」、特願昭59−94070号(特開昭60−238427
号)に示された「金属逆抽出装置」などが使用で
きる。さらに、抽出されたFe3+イオンの剥離に
関しては、循環使用される弗化物系剥離液の濃
度・組成等の管理範囲も提示されている(「晶析
装置の運転方法」参照)。 In the solvent extraction method, the stripping (reverse extraction) method of conventionally extracted metal ions has been a problem, but fluoride-based stripping solutions (one or two of HF, NH 4 , HF 2 and NH 4 F) are used.
The problem was solved by using an aqueous solution containing more than one type of
(See Japanese Patent Application Laid-open No. 57-73141 and Japanese Patent Application Laid-open No. 57-85943).
In addition, the equipment for carrying out this method is as follows:
The inverted cone-shaped "crystallizer" shown in JP-A No. 58-81402, and its improved version "Crystallizer for metal peeling" shown in Japanese Patent Application No. 59-62432 (JP-A No. 60-208429) "Device", Patent Application No. 1983-94070 (Japanese Patent Application No. 60-238427)
``Metal back extraction equipment'' shown in No.) can be used. Furthermore, regarding the stripping of extracted Fe 3+ ions, the control range for the concentration, composition, etc. of the fluoride-based stripping solution that is used in circulation is also presented (see "Crystallizer operating method").
しかしながら、これらの発明では、循環使用さ
れる金属剥離液の濃度・組成を一定の管理範囲内
に維持するための調整方法が明らかにされておら
ず、またその方法を実施するための装置も必ずし
も充分なものではなかつた。弗化物系剥離液の循
環フローに対して供給する薬剤の種類や供給する
個所が適切でないと、配管やポンプ内で結晶の析
出や詰まりなどのトラブルが発生し好ましくない
が、第6図に示す金属剥離装置においては、その
運転に際し、比較例に示すような配管やポンプ内
等で結晶の析出や詰まりなどが発生し、装置の運
転停止を余儀なくされるという問題がしばしば生
じた。 However, these inventions do not disclose an adjustment method for maintaining the concentration and composition of the metal stripping solution used in circulation within a certain control range, and the equipment for carrying out the method is not necessarily required. It wasn't enough. If the type and location of the agent supplied to the circulation flow of the fluoride stripper is not appropriate, problems such as crystal precipitation and clogging may occur in the piping and pump, which is not desirable. During operation of metal stripping equipment, problems such as crystal precipitation and clogging occur in piping, pumps, etc., as shown in the comparative example, often occur, forcing the equipment to stop operating.
本発明の目的は、金属逆抽出用弗化物系剥離液
の濃度組成管理のために有効な濃度・組成の測定
方法や調整方法を提供し、さらに金属剥離装置の
問題点を克服した好適な装置を提供することによ
り、金属剥離工程の運転を円滑に行わせることに
ある。 An object of the present invention is to provide a method for measuring and adjusting the concentration and composition that is effective for controlling the concentration and composition of a fluoride-based stripping solution for metal stripping, and also to provide a suitable device that overcomes the problems of metal stripping devices. The object of the present invention is to provide smooth operation of a metal stripping process.
すなわち、本発明は、混合ゾーン、有機溶媒静
置ゾーン、弗化物系剥離液静置ゾーンを有し、こ
れらの下方に弗化金属錯体結晶分離ゾーン、およ
び結晶成長ゾーンまたは剥離液冷却ゾーンを有す
る晶析装置において、前記混合ゾーンで金属イオ
ンを抽出含有する有機溶媒を弗化物系剥離液と接
触させて弗化金属錯体結晶を析出させ、得られた
結晶を金属酸化物または金属とするに際し、前記
晶析装置の前記結晶成長ゾーンまたは剥離液冷却
ゾーンにNH4HF2溶液を供給し、前記晶析装置
の剥離液排出口から排出された剥離液に弗化金属
錯体結晶分解ガスを吸収させたものを前記晶析装
置の混合ゾーンに供給し、結晶分離後の濾液を前
記晶析装置の有機溶媒静置ゾーン下部の剥離液静
置ゾーンに供給し、よつて弗化物系剥離液を循環
使用することにより金属剥離液の濃度・組成を調
整することを特徴とする金属剥離方法を提供する
ものである。 That is, the present invention has a mixing zone, an organic solvent standing zone, a fluoride stripping solution standing zone, and below these a metal fluoride complex crystal separation zone, and a crystal growth zone or a stripping solution cooling zone. In the crystallizer, when extracting metal ions in the mixing zone and bringing the containing organic solvent into contact with a fluoride stripping solution to precipitate metal fluoride complex crystals, and converting the obtained crystals into metal oxides or metals, Supplying an NH 4 HF 2 solution to the crystal growth zone or stripping liquid cooling zone of the crystallizer, and causing the stripping liquid discharged from the stripping liquid outlet of the crystallizer to absorb the metal fluoride complex crystal decomposition gas. The fluoride stripping solution is supplied to the mixing zone of the crystallizer, and the filtrate after crystal separation is supplied to the stripping solution standing zone below the organic solvent standing zone of the crystallizer, thereby circulating the fluoride stripping solution. The present invention provides a metal stripping method characterized in that the concentration and composition of the metal stripping solution can be adjusted by using the metal stripping solution.
本発明はまた、混合ゾーン、有機溶媒静置ゾー
ン、弗化物系剥離液静置ゾーンを有し、これらの
下方に弗化金属錯体結晶分離ゾーン、および結晶
成長ゾーンまたは剥離液冷却ゾーンを有する晶析
装置において、前記混合ゾーンで金属イオンを抽
出含有する有機溶媒を弗化物系剥離液と接触させ
て弗化金属錯体結晶を析出させ、得られた結晶を
金属酸化物または金属とするに際し、前記晶析装
置の前記結晶成長ゾーンまたは剥離液冷却ゾーン
にNH4HF2溶液を供給し、前記晶析装置の剥離
液排出口から排出された剥離液に弗化金属錯体結
晶分解ガスを吸収させたものを前記晶析装置の混
合ゾーンに供給し、前記晶析装置の結晶成長ゾー
ンまたは剥離液冷却ゾーンから、これより排出さ
れた結晶の受槽までの間のアンモニアを供給し、
結晶分離後の濾液を前記晶析装置の有機溶媒静置
ゾーン下部の剥離液静置ゾーンに供給し、よつて
弗化物系剥離液を循環使用することにより金属剥
離液の濃度・組成を調整することを特徴とする金
属剥離方法を提供するものである。 The present invention also has a mixing zone, an organic solvent standing zone, and a fluoride stripping solution standing zone, and below these, a metal fluoride complex crystal separation zone, and a crystal growth zone or a stripping solution cooling zone. In the analysis apparatus, when extracting metal ions in the mixing zone and bringing the containing organic solvent into contact with a fluoride stripping solution to precipitate metal fluoride complex crystals and converting the obtained crystals into metal oxides or metals, An NH 4 HF 2 solution was supplied to the crystal growth zone or the stripping solution cooling zone of the crystallizer, and the stripping solution discharged from the stripping solution outlet of the crystallizer absorbed the metal fluoride complex crystal decomposition gas. supplying ammonia from the crystal growth zone or stripping liquid cooling zone of the crystallizer to a receiving tank for crystals discharged from this,
The filtrate after crystal separation is supplied to the stripping solution standing zone below the organic solvent standing zone of the crystallizer, and the concentration and composition of the metal stripping solution is adjusted by circulating and using the fluoride stripping solution. The present invention provides a metal peeling method characterized by the following.
本発明はまた、金属イオンを抽出含有する有機
溶媒と弗化物系剥離液との混合ゾーン、有機溶媒
静置ゾーンの下方の剥離液静置ゾーンを有し、こ
れらの下方に弗化金属錯体結晶分離ゾーンおよび
結晶成長ゾーンまたは剥離液冷却ゾーンを有する
晶析装置、この晶析装置で得られた結晶の受槽、
結晶の固液分離装置、結晶乾燥・分解装置、結晶
分解ガス吸収装置、前記晶析装置のNH4HF2溶
液供給装置、および剥離液濃度測定装置で構成さ
れ、前記結晶分解ガス吸収装置は前記晶析装置の
剥離液排出口および混合ゾーン内の剥離液供給口
と配管接続されており、前記NH4HF2溶液供給
装置のNH4HF2供給口は前記晶析装置の結晶成
長ゾーンまたは剥離液冷却ゾーンに設けられ、結
晶分離後の濾液の供給口は前記晶析装置の剥離液
静置ゾーンに設けられていることを特徴とする金
属剥離装置を提供するものである。 The present invention also has a mixing zone of an organic solvent containing an extracted metal ion and a fluoride stripping solution, a stripping solution standing zone below the organic solvent standing zone, and a metal fluoride complex crystal below these. A crystallizer having a separation zone and a crystal growth zone or a stripping liquid cooling zone, a receiving tank for crystals obtained in this crystallizer,
It is composed of a crystal solid-liquid separation device, a crystal drying/decomposition device, a crystal decomposition gas absorption device, a NH 4 HF 2 solution supply device for the crystallizer, and a stripping liquid concentration measuring device, and the crystal decomposition gas absorption device is The NH 4 HF 2 supply port of the NH 4 HF 2 solution supply device is connected to the stripping solution outlet of the crystallizer and the stripping solution supply port in the mixing zone by piping, and the NH 4 HF 2 supply port of the NH 4 HF 2 solution supply device is connected to the stripping solution outlet of the crystallizer and the stripping solution supply port in the mixing zone. The present invention provides a metal stripping device, which is provided in a liquid cooling zone, and a supply port for the filtrate after crystal separation is provided in a stripping solution standing zone of the crystallizer.
本発明はさらに、金属イオンを抽出含有する有
機溶媒と弗化物系剥離液との混合ゾーン、有機溶
媒静置ゾーンの下方の剥離液静置ゾーンを有し、
これらの下方に弗化金属錯体結晶分離ゾーンおよ
び結晶成長ゾーンまたは剥離液冷却ゾーンを有す
る晶析装置、この晶析装置で得られた結晶の受
槽、結晶の固液分離装置、結晶乾燥・分解装置、
結晶分解ガス吸収装置、アンモニア供給装置、前
記晶析装置のNH4HF2溶液供給装置、および剥
離液濃度測定装置で構成され、前記結晶分解ガス
吸収装置は前記晶析装置の剥離液排出口および混
合ゾーン内の剥離液供給口と配管接続されてお
り、前記NH4HF2溶液供給装置のNH4HF2供給
口は前記晶析装置の結晶成長ゾーンまたは剥離液
冷却ゾーンに設けられ、前記アンモニア供給装置
のアンモニア供給口は前記晶析装置の結晶成長ゾ
ーンまたは剥離液冷却ゾーンから前記結晶受槽ま
での間に設けられており、結晶分離後の濾液の供
給口は前記晶析装置の剥離液静置ゾーンに設けら
れていることを特徴とする金属剥離装置を提供す
るものである。 The present invention further includes a mixing zone of an organic solvent containing extracted metal ions and a fluoride stripping solution, and a stripping solution standing zone below the organic solvent standing zone,
A crystallizer having a metal fluoride complex crystal separation zone and a crystal growth zone or a stripping liquid cooling zone below these, a receiving tank for the crystals obtained in this crystallizer, a solid-liquid separation device for crystals, and a crystal drying/decomposition device ,
It is composed of a crystal decomposition gas absorption device, an ammonia supply device, an NH 4 HF 2 solution supply device of the crystallizer, and a stripping liquid concentration measuring device, and the crystal decomposition gas absorption device is connected to the stripping liquid outlet of the crystallization device and The NH 4 HF 2 supply port of the NH 4 HF 2 solution supply device is provided in the crystal growth zone or the stripping solution cooling zone of the crystallizer, and the ammonia The ammonia supply port of the supply device is provided between the crystal growth zone or stripping liquid cooling zone of the crystallizer and the crystal receiving tank, and the supply port of the filtrate after crystal separation is provided between the crystal growth zone or stripping liquid cooling zone of the crystallizer. The present invention provides a metal stripping device characterized in that it is installed in a storage zone.
本発明は、弗化物系剥離液の濃度組成を全HF
と全NH4Fの2項目で管理することにより、
NH4HF2溶液や弗素系分解生成物および必要に
応じてアンモニアを適切な個所に供給することを
特徴とする金属剥離方法と、その方法を実施する
ための装置とを提供するものである。 The present invention improves the concentration composition of the fluoride stripper by changing the concentration composition to all HF.
By managing with two items: and total NH 4 F,
The present invention provides a metal stripping method characterized by supplying an NH 4 HF 2 solution, a fluorine-based decomposition product, and, if necessary, ammonia to appropriate locations, and an apparatus for carrying out the method.
金属イオンを抽出する有機溶媒としては、アル
キルりん酸系、カルボン酸系抽出剤をn−パラフ
インで希釈したものなどを使用することができ、
また弗化物系剥離液としては、HF、NH4HF2、
NH4Fの1種または2種以上を含有する水溶液な
どを使用することができる。 As an organic solvent for extracting metal ions, an alkyl phosphate-based or carboxylic acid-based extractant diluted with n-paraffin can be used.
In addition, fluoride strippers include HF, NH 4 HF 2 ,
An aqueous solution containing one or more types of NH 4 F can be used.
本発明の詳細をFe3+イオンの抽出の場合を例
にとつて図面に基づき詳細に説明するが、本発明
の対象とする金属の種類および図面を用いて示そ
うとする方法や装置はこれに限定されるものでは
ない。 The details of the present invention will be explained in detail based on the drawings using the case of extraction of Fe 3+ ions as an example, but the types of metals targeted by the present invention and the method and apparatus to be illustrated using the drawings will be described in detail. It is not limited to.
第1図は本発明の対象である弗化物系剥離液の
循環する工程を含む金属の溶媒抽出設備のフロー
シートである。金属イオン含有水溶液Aと有機溶
媒Sとを金属抽出工程1で混合接触させると、A
中の金属イオンはSに抽出される。金属抽出後の
水溶液が抽残液Rであるが、Aが金属含有廃酸の
場合Rは回収酸である。水溶液A中の金属イオン
がFe3+で有機溶媒Sがアルキルりん酸系のよう
なイオン交換型抽出剤を含有する場合、Sの化学
式はHRと表せるので、抽出反応式は次のように
なる。 FIG. 1 is a flow sheet of metal solvent extraction equipment including a step of circulating a fluoride stripping solution, which is the subject of the present invention. When the metal ion-containing aqueous solution A and the organic solvent S are brought into contact with each other in the metal extraction step 1, A
The metal ions inside are extracted into S. The aqueous solution after metal extraction is the raffinate solution R, and when A is a metal-containing waste acid, R is the recovered acid. When the metal ion in the aqueous solution A is Fe 3+ and the organic solvent S contains an ion exchange extractant such as an alkyl phosphate, the chemical formula of S can be expressed as HR, so the extraction reaction formula is as follows. .
Fe3++3HR→FeR3+3H+ (1)
FeF2 ++3HR→FeR3+H++2HF (2)
FeF2 ++HR→FeF2R+H+ (3)
反応式(2)、(3)はAが鉄含有硝弗酸廃液の場合で
あり、A中のFe3+イオンは主にFeF2 +のイオン形
態をとる。 Fe 3+ +3HR→FeR 3 +3H + (1) FeF 2 + +3HR→FeR 3 +H + +2HF (2) FeF 2 + +HR→FeF 2 R+H + (3) In reaction formulas (2) and (3), A is iron This is the case of a nitrofluoric acid waste solution containing nitric fluoride, and the Fe 3+ ions in A mainly take the form of FeF 2 + ions.
工程1で金属イオンを抽出含有した有機溶媒S
は、金属剥離工程2で加温された弗化物系剥離液
Dと混合され、金属イオンは弗化金属錯体結晶X
となる。金属イオンがFe3+で剥離液Dが
NH4HF2を主体とする水溶液の場合、剥離反応
式は次のようになる。 Organic solvent S containing extracted metal ions in step 1
is mixed with the fluoride stripping solution D heated in metal stripping step 2, and the metal ions are mixed with the fluoride metal complex crystal X.
becomes. The metal ion is Fe 3+ and the stripping solution D is
In the case of an aqueous solution mainly composed of NH 4 HF 2 , the peeling reaction formula is as follows.
FeR3+3NH4HF2→3HR+(NH-4)3FeF6
↓(4)
FeF2R+3NH4HF2→HR+(NH4)3FeF6↓
+2HF(5)
FeR3+3NH4HF2+3NH4F→3NH4R+(NH4
)3FeF6↓+3HF(6)
この場合、鉄剥離後の抽出剤の一部は(6)式のよ
うな反応でアンモニア型(NH4R)となつてい
る。 FeR 3 +3NH 4 HF 2 →3HR+(NH -4 ) 3 FeF 6
↓(4) FeF 2 R+3NH 4 HF 2 →HR+(NH 4 ) 3 FeF 6 ↓
+2HF(5) FeR 3 +3NH 4 HF 2 +3NH 4 F→3NH 4 R+(NH 4
) 3 FeF 6 ↓+3HF(6) In this case, a part of the extractant after the iron is removed becomes ammonia type (NH 4 R) through the reaction shown in equation (6).
工程2から出た結晶Xを含む剥離液Dは、固液
分離工程3でXを分離され、再び剥離工程2に戻
つて循環使用される。 The stripping solution D containing the crystals X that has come out of step 2 has X separated therefrom in solid-liquid separation step 3, returns to the stripping step 2 again, and is recycled.
分離された結晶Xは、乾燥・分解工程4で焼成
されて金属Mまたは金属酸化物Oとなる。弗化鉄
錯体結晶(NH4)3FeF6から金属鉄または酸化鉄
が生成する反応は次のようになる。 The separated crystals X are fired in a drying/decomposition step 4 to become metal M or metal oxide O. The reaction in which metallic iron or iron oxide is produced from iron fluoride complex crystals (NH 4 ) 3 FeF 6 is as follows.
(NH4)3FeF6+3/2H2→3NH4F+3HF+F
e(7)
(NH4)3FeF6+3/4O2→3NH4F+3/2F2+1
/2Fe2O3(8)
工程4から発生するNH4F、HF、F2などから
成る弗素系分解ガスGは、再び剥離液Dに戻して
使用される。 (NH 4 ) 3 FeF 6 +3/2H 2 →3NH 4 F+3HF+F
e(7) (NH 4 ) 3 FeF 6 +3/4O 2 →3NH 4 F+3/2F 2 +1
/2Fe 2 O 3 (8) The fluorine-based decomposition gas G consisting of NH 4 F, HF, F 2 and the like generated in step 4 is returned to the stripping solution D and used again.
さて、工程2を出た有機溶媒Sの抽出剤でアン
モニア型となつているものは、溶媒変換工程5で
塩酸水溶液Cとの接触により再び水素型(HR)
となり、再び工程1に戻つて循環使用される。 Now, the extractant of the organic solvent S that has come out of step 2 and is in the ammonia form is converted back into the hydrogen form (HR) by contact with the aqueous hydrochloric acid solution C in the solvent conversion step 5.
Then, the process returns to step 1 and is used again.
NH4R+HCl→HR+NH4Cl (9)
工程5から出たNH4Clを含む塩酸水溶液Cか
らは、アンモニア回収工程6での中和・蒸留によ
りアンモニア水Eが回収される。 NH 4 R+HCl→HR+NH 4 Cl (9) Aqueous ammonia E is recovered from the aqueous hydrochloric acid solution C containing NH 4 Cl discharged from step 5 through neutralization and distillation in ammonia recovery step 6.
NH4Cl+NaOH→NH4OH+NaCl (10)
回収されたアンモニア水(安水)Eは、必要に
応じて再び剥離液Dに戻して使用される。 NH 4 Cl + NaOH → NH 4 OH + NaCl (10) The recovered ammonia water (ammonium water) E is returned to the stripping solution D and used as necessary.
次に、弗化物系剥離液Dの濃度・組成の変化や
調整に関連して、弗化金属錯体の溶解度曲線の特
徴を、金属イオンがFe3+の場合の(NH4)3FeF6
を例にとつて説明する。 Next, in relation to changes and adjustments in the concentration and composition of fluoride stripping solution D, we will examine the characteristics of the solubility curve of metal fluoride complexes in the case where the metal ion is Fe 3+ (NH 4 ) 3 FeF 6
This will be explained using an example.
この例については、既に昭和59年3月30日付出
願の晶析装置の運転方法において、上方より順次
に混合ゾーンまたは混合槽、結晶分離ゾーン、お
よび結晶成長ゾーンまたは冷却ゾーンを有する晶
析装置においてFe3+イオンを抽出含有する有機
溶媒を弗化物系剥離液と前記混合ゾーンで接触さ
せることにより鉄錯体結晶を析出させる装置を運
転するに際し、前記装置から排出される剥離液の
濃度がNH4HF2は85〜115g/かつHFは10
g/以下となるように前記装置に供給する剥離
液の濃度・組成を調整し、かつ前記装置に供給す
る有機溶媒の温度を20〜25℃、前記有機溶媒と前
記剥離液の二相混合時の液温を40℃以下に、前記
結晶成長ゾーンまたは冷却ゾーンの剥離液温度を
15〜20℃に保つことにより、装置の長期連続運転
を容易にすることを開示している。したがつて、
比較例および実施例ではこの条件で行う。 Regarding this example, in the operating method of a crystallizer already filed on March 30, 1982, a crystallizer having a mixing zone or mixing tank, a crystal separation zone, and a crystal growth zone or cooling zone in order from the top is described. When operating a device that precipitates iron complex crystals by bringing an organic solvent containing Fe 3+ ions into contact with a fluoride stripping solution in the mixing zone, the concentration of the stripping solution discharged from the device is NH 4 . HF 2 is 85-115g/and HF is 10
The concentration and composition of the stripping solution supplied to the device is adjusted so that the concentration and composition of the stripping solution are adjusted to 20 to 25 ° C., and the temperature of the organic solvent supplied to the device is adjusted to 20 to 25 ° C. When the organic solvent and the stripping solution are mixed in two phases. The temperature of the stripping liquid in the crystal growth zone or cooling zone is set to 40℃ or less.
It is disclosed that long-term continuous operation of the device is facilitated by maintaining the temperature at 15 to 20°C. Therefore,
Comparative Examples and Examples are conducted under these conditions.
第2図から第5図までは(NH4)3FeF6の弗化
物系剥離液に対する溶解度のグラフであつて、
NH4HF2は75〜150g/、HFは0〜20g/
の範囲で溶解度曲線を与えている。 Figures 2 to 5 are graphs of the solubility of (NH 4 ) 3 FeF 6 in fluoride-based stripping solutions.
NH 4 HF 2 is 75-150g/, HF is 0-20g/
The solubility curve is given in the range of .
剥離工程2において、Fe3+イオンが(4)式の反
応で剥離される場合、剥離液D中のNH4HF2が
消費されて濃度が減少する。また、金属イオン含
有水溶液Aが鉄含有硝弗酸廃液の場合であつて、
Fe3+イオンが(5)式の反応で剥離される場合、剥
離液D中のNH4HF2濃度が減少するだけでなく、
有機相から剥離液に移行したF-イオンがHFとな
るためHF濃度が増大する。この場合、前記の溶
解度曲線から容易にわかるように、剥離液D中の
NH4HF2濃度が減少すると、(NH4)3FeF6の溶解
度が増大する。さらに、HF濃度が増大すると、
この傾向はさらに顕著となる。 In stripping step 2, when Fe 3+ ions are stripped by the reaction of formula (4), NH 4 HF 2 in stripping solution D is consumed and the concentration decreases. Further, when the metal ion-containing aqueous solution A is an iron-containing nitrofluoric acid waste solution,
When Fe 3+ ions are stripped by the reaction of equation (5), not only does the NH 4 HF 2 concentration in stripping solution D decrease;
The F - ions transferred from the organic phase to the stripping solution become HF, increasing the HF concentration. In this case, as can be easily seen from the solubility curve above,
As the NH 4 HF 2 concentration decreases, the solubility of (NH 4 ) 3 FeF 6 increases. Furthermore, as the HF concentration increases,
This trend will become even more pronounced.
このように、金属イオンの剥離反応が進行する
とNH4HF2濃度が減少し、金属イオンが弗化物
イオンとして抽出されるという特別な場合には
HF濃度が増大するので、金属剥離液を循環し再
使用するためには、その濃度・組成を調整するこ
とによりある管理範囲内に維持する必要がある。 Thus, in the special case where the metal ion stripping reaction progresses, the NH 4 HF 2 concentration decreases, and the metal ions are extracted as fluoride ions.
As the HF concentration increases, in order to circulate and reuse the metal stripping solution, it is necessary to maintain it within a certain control range by adjusting its concentration and composition.
循環使用される弗化物系剥離液Dの濃度・組成
を調整するために供給されるべき薬剤等は次の通
りである。NH4HF2濃度を増大させるためには、
NH4HF2溶液(通常30〜40%濃度のもの)Fを
添加するか、(7)(8)式のような反応で発生する弗素
系分解ガスGをしかるべき方法で剥離液に吸収さ
せるという2つの方法がある。(7)(8)式の反応で発
生するガスの組成はNH4HF2の組成すなわち
NH4F+HFに対応しており、分解ガスGの吸収
は実質的にNH4HF2溶液の添加と同等の効果を
有する。また、HFの濃度を減少させるために
は、アンモニア水またはNH3ガスEを添加して
HFを中和してやるとよいが、アンモニアEの添
加は、次の反応式で示すように、NH4HF2濃度
の増加にも寄与する。 The chemicals, etc. that should be supplied to adjust the concentration and composition of the fluoride stripping solution D that is used in circulation are as follows. To increase the NH4HF2 concentration,
Either add NH 4 HF 2 solution (usually 30 to 40% concentration) F, or absorb the fluorine-based decomposition gas G generated in reactions such as equations (7) and (8) into the stripping solution in an appropriate manner. There are two methods. The composition of the gas generated in the reaction of equations (7) and (8) is the composition of NH 4 HF 2 , i.e.
It corresponds to NH 4 F + HF, and the absorption of cracked gas G has substantially the same effect as the addition of NH 4 HF 2 solution. Also, to reduce the concentration of HF, add ammonia water or NH3 gas E.
Although it is preferable to neutralize HF, the addition of ammonia E also contributes to an increase in the NH 4 HF 2 concentration, as shown in the following reaction formula.
HF+1/2NH3→1/2NH4HF2 (11)
このように、NH4HF2溶液Fを添加するか弗
素系分解ガスGを吸収させると剥離液Dの
NH4HF2濃度が増加し、アンモニア水または
NH3ガスEを添加すると剥離液DのHF濃度が減
少しかつNH4HF2濃度が増加するが、これらの
薬剤等の供給はいずれも剥離液への弗化金属錯体
の溶解度が減少する方向に作用する。 HF+1/2NH 3 →1/2NH 4 HF 2 (11) In this way, when adding NH 4 HF 2 solution F or absorbing fluorine-based decomposition gas G, stripping solution D
NH4HF2 concentration increases, ammonia water or
When NH 3 gas E is added, the HF concentration in stripping solution D decreases and the NH 4 HF 2 concentration increases, but the supply of these chemicals, etc., tends to decrease the solubility of the metal fluoride complex in the stripping solution. It acts on
しかるに、金属剥離反応が進行して弗化金属錯
体の溶解度が増大していた剥離液Dに濃度調整の
ための薬剤等を供給すると、弗化金属錯体の溶解
度は急速に減少し、弗化金属錯体結晶Xが一時に
析出する。したがつて、薬剤等を供給する個所が
適切でないと、望ましくない結晶の析出が起こ
り、前述のような配管の詰まりなどのトラブルが
発生するのである。 However, when a chemical for concentration adjustment is supplied to Stripper D, in which the metal stripping reaction has progressed and the solubility of the metal fluoride complex has increased, the solubility of the metal fluoride complex rapidly decreases, and the solubility of the metal fluoride complex decreases rapidly. Complex crystals X precipitate at once. Therefore, if the location where the medicine is supplied is not appropriate, undesirable precipitation of crystals will occur, leading to troubles such as clogging of the piping as described above.
そこで、比較例の第6図および本発明の金属剥
離装置の基本構成を示す第7図および第8図を用
いて、濃度・組成調整のための薬剤等を提供すべ
き好ましい個所について説明する。 Therefore, preferable locations where chemicals and the like for concentration/composition adjustment should be provided will be explained using FIG. 6 of a comparative example and FIGS. 7 and 8 showing the basic configuration of the metal stripping apparatus of the present invention.
NH4HF2溶液(30〜40%)Fは、晶析装置1
0の本体下部に添加するのが好ましい。この供給
個所73は晶析装置10本体としては弗化金属錯
体結晶Xが次第に成長する領域に当たるので、こ
こにFを添加することは、剥離液Dの温度勾配に
よる結晶成長だけでなく、濃度勾配による結晶成
長も起こることになり、結晶成長が促進される。
これ以外の個所では望ましくない結晶の析出が起
こり、添加個所として好ましくない。たとえば、
比較例の第6図ではFを分解ガス吸収装置60の
吸収液槽62に添加しているが、この個所に添加
すると吸収液槽62内で結晶Xが析出し、吸収液
ポンプ63や分解ガス吸収塔61あるいはこれら
を結ぶ配管内でXの付着や詰まりを生じる。ま
た、Fを添加すべき個所として結晶受槽30も考
えられるが、結晶受槽30を出たあとの結晶濾液
は晶析装置10の有機溶媒静置ゾーン13下部の
剥離液静置ゾーン20に供給されるので、Fの添
加個所としての効果は晶析装置10の本体下部に
劣る。 NH4HF2 solution (30-40% ) F crystallizer 1
It is preferable to add it to the lower part of the main body of 0. This supply point 73 corresponds to a region in the main body of the crystallizer 10 where the metal fluoride complex crystal Crystal growth also occurs, and crystal growth is promoted.
At other locations, undesirable precipitation of crystals occurs, making them undesirable addition locations. for example,
In FIG. 6 of the comparative example, F is added to the absorption liquid tank 62 of the cracked gas absorption device 60, but when added to this location, crystals X precipitate in the absorption liquid tank 62, and the absorption liquid pump 63 and the cracked gas This causes X to adhere or become clogged in the absorption tower 61 or the pipes connecting these. Further, the crystal receiver tank 30 is also considered as a place where F should be added, but the crystal filtrate after leaving the crystal receiver tank 30 is supplied to the stripping solution standing zone 20 below the organic solvent standing zone 13 of the crystallizer 10. Therefore, the effect of adding F is inferior to the lower part of the main body of the crystallizer 10.
アンモニアEは、必要に応じて添加され、アン
モニア水としてもNH3ガスとしても添加するこ
とができるが、アンモニア水として添加する場合
は、第1図に示すアンモニア回収工程6から回収
される安水も利用することができる。Eは第7図
に示すように前述の晶析装置10の本体下部か、
あるいは第8図に示すように結晶受槽30に、あ
るいはこれらの間に添加するのが望ましい。Eを
晶析装置10の本体下部に添加すべき理由は、
NH4HF2溶液Fの場合と同様である。結晶受槽
30にFを添加すると、剥離液中のHFが中和に
より減少し、それに見合う分だけNH4HF2が増
加するので結晶Xがさらに析出する。そして、固
液分離後の結晶濾液は、HFが減少しているの
で、晶析装置10の剥離液静置ゾーン20に供給
すべき剥離液として適している。以上の2個所あ
るいはその間以外の個所にEを添加すると、やは
り望ましくない結晶の析出が起こる。たとえば、
比較例の第6図ではNH3ガスEを分解ガス吸収
装置60の分解ガス吸収塔61に導入している
が、NH4HF2溶液Fを吸収液槽62に添加した
場合と同様の結晶Xの析出や付着・詰まりを生
じ、好ましくない。 Ammonia E is added as necessary, and can be added as aqueous ammonia or NH 3 gas, but when added as aqueous ammonia, ammonium chloride recovered from ammonia recovery step 6 shown in Figure 1 is used. can also be used. E is the lower part of the main body of the crystallizer 10 mentioned above as shown in FIG.
Alternatively, as shown in FIG. 8, it is preferable to add it to the crystal receiving tank 30 or between these. The reason why E should be added to the lower part of the main body of the crystallizer 10 is as follows.
The same is true for NH 4 HF 2 solution F. When F is added to the crystal receiving tank 30, HF in the stripping solution is reduced by neutralization, and NH 4 HF 2 increases by a corresponding amount, so that the crystals X are further precipitated. Since the crystal filtrate after solid-liquid separation has reduced HF, it is suitable as a stripping solution to be supplied to the stripping solution standing zone 20 of the crystallizer 10. If E is added to the above two locations or to a location other than those in between, undesirable crystal precipitation will also occur. for example,
In FIG. 6 of the comparative example, NH 3 gas E is introduced into the cracked gas absorption tower 61 of the cracked gas absorption device 60, but crystals This is undesirable because it causes precipitation, adhesion, and clogging.
弗素系結晶分解ガスGは、晶析装置10の剥離
液出口28から出た排出剥離液に分解ガス吸収塔
61で吸収させて晶析装置10の混合ゾーン18
に供給するのが適当である。これ以外の供給方法
では、やはり望ましくない結晶の析出が問題とな
る。なお、上記の好ましいGの供給方法において
も、排出剥離液のNH4HF2濃度増大による結晶
Xの析出が懸念されるが、これは排出剥離液の濃
度・組成をある管理範囲内に維持することにより
解消される。たとえば金属イオンがFe3+の場合、
排出口28から出る排出剥離液のNH4HF2濃度
を85g/以上115g/以下、HF濃度を10
g/以下に維持すれば、(NH4)3FeF6結晶Xの
望ましくない析出を抑制することができる。 The fluorine-based crystal decomposition gas G is absorbed by the decomposed gas absorbing tower 61 into the discharged stripping liquid discharged from the stripping liquid outlet 28 of the crystallizer 10, and is then absorbed into the mixing zone 18 of the crystallizer 10.
It is appropriate to supply With other feeding methods, undesirable crystal precipitation still remains a problem. In addition , even in the above preferred method of supplying G, there is a concern that crystals This will resolve the issue. For example, if the metal ion is Fe 3+ ,
The NH 4 HF 2 concentration of the draining liquid discharged from the discharge port 28 is set to 85 g/ or more and 115 g/ or less, and the HF concentration is set to 10
If the amount is maintained at less than g/g, undesirable precipitation of (NH 4 ) 3 FeF 6 crystals X can be suppressed.
以上に述べたように、本発明で提供する金属剥
離方法においてはNH4HF2溶液やアンモニアは
結晶分析が起こつても問題のない晶析装置本体の
下部から結晶スラリーの受槽までのうち効果的な
個所に供給され、弗素系結晶分解ガスは濃度・組
成の管理された排出剥離液に吸収させて晶析装置
の混合槽に供給され、よつて実施例に示すよう
に、金属剥離工程の運転を円滑に継続することが
できる。 As described above, in the metal stripping method provided by the present invention, the NH 4 HF 2 solution and ammonia are used in an effective manner from the bottom of the crystallizer main body to the crystal slurry receiving tank, where there is no problem even if crystal analysis occurs. The fluorine-based crystal decomposition gas is absorbed into the discharge stripping solution whose concentration and composition are controlled and then supplied to the mixing tank of the crystallizer, and as shown in the example, the metal stripping process is operated. can be continued smoothly.
次に、上記金属剥離方法を実施するための装置
について説明する。 Next, an apparatus for carrying out the above metal peeling method will be explained.
第7図および第8図は、本発明の金属剥離装置
の実施態様を示す基本構成図である。本装置は晶
析装置10、結晶受槽30、固液分離装置40、
結晶乾燥・分解装置50、分解ガス吸収装置6
0、NH4HF2溶液供給装置70、アンモニア供
給装置80、剥離液濃度・組成測定装置90で構
成される。 FIG. 7 and FIG. 8 are basic configuration diagrams showing an embodiment of the metal stripping apparatus of the present invention. This device includes a crystallizer 10, a crystal receiver 30, a solid-liquid separator 40,
Crystal drying/decomposition device 50, cracked gas absorption device 6
0, NH 4 HF 2 solution supply device 70, ammonia supply device 80, and stripping solution concentration/composition measurement device 90.
晶析装置10としては、特開昭50−81402号公
報に示される、および特願昭59−62432号に示さ
れた金属剥離用晶析装置、あるいは特願昭59−
94070号に示された金属逆抽出装置に記載されて
いる逆円錐型晶析装置が使用できるが、好ましく
は特願昭59−62432号に示された金属剥離用晶析
装置、あるいは特願昭59−94070号に示された金
属逆抽出装置に記載されている逆円錐型晶析装置
で、本体下部に第8図に示すような剥離液強制循
環ゾーン25を有し、供給された薬剤を直ちに剥
離液と混合できる型のものがよい。固液分離装置
40としては第7図および第8図の濾過器のほか
遠心分離機も用いることができる。また、結晶乾
燥・分解装置50としては、結晶乾燥キルンと結
晶分解キルンとを分離した型のものや、いろいろ
な形式の炉を採用することができる。 The crystallizer 10 may be a crystallizer for metal stripping as shown in Japanese Patent Application Laid-open No. 50-81402 or Japanese Patent Application No. 59-62432, or
The inverted conical crystallizer described in the metal stripping device shown in Japanese Patent Application No. 94070 can be used, but preferably the metal stripping crystallizer shown in Japanese Patent Application No. 59-62432 or the metal stripping crystallizer described in Japanese Patent Application No. This is an inverted conical crystallizer described in the metal reverse extraction device shown in No. 59-94070, which has a stripping liquid forced circulation zone 25 as shown in Figure 8 at the bottom of the main body, and is capable of discharging the supplied chemical. It is best to use a type that can be mixed with the stripping solution immediately. As the solid-liquid separator 40, a centrifugal separator can be used in addition to the filters shown in FIGS. 7 and 8. Further, as the crystal drying/decomposition device 50, a type in which a crystal drying kiln and a crystal decomposition kiln are separated, or various types of furnaces can be adopted.
分解ガス吸収装置60は分解ガス吸収塔61、
吸収液槽62、吸収液ポンプ63、供給剥離液ポ
ンプ64等から成り、晶析装置10の剥離液排出
口28および混合槽18内の剥離液供給口16と
配管接続されており、また結晶乾燥・分解キルン
51から出た弗素系分解ガスGが導入される。
NH4HF2溶液供給装置70は、NH4HF2溶液槽
71、NH4HF2溶液ポンプ72、NH4HF2溶液
供給口73等から成り、供給口73は晶析装置1
0の本体下部に設けられている。また、アンモニ
ア供給装置80は必要に応じて設けられ、アンモ
ニア水槽81、アンモニア水ポンプ82、アンモ
ニア供給口85またはNH3ガスホルダー83、
NH3ガスバルブ84、アンモニア供給口85等
から成り、供給口85は晶析装置10の本体下部
または結晶受槽30に設けられている。
NH4HF2溶液供給口73およびアンモニア供給
口85の付近では当然新たな結晶Xの析出が起こ
るので、この領域の剥離液Dは流動状態にあるこ
とが望ましいが、これは晶析装置10として前述
のように本体下部に剥離液強制循環ゾーン25を
有する型のものを採用し、結晶受槽30に結晶ス
ラリー撹拌機31を設けることにより実現され
る。 The cracked gas absorption device 60 includes a cracked gas absorption tower 61,
It consists of an absorption liquid tank 62, an absorption liquid pump 63, a supply stripping liquid pump 64, etc., and is connected by piping to the stripping liquid outlet 28 of the crystallizer 10 and the stripping liquid supply port 16 in the mixing tank 18, and is also used for crystal drying. - Fluorine-based decomposition gas G discharged from the decomposition kiln 51 is introduced.
The NH 4 HF 2 solution supply device 70 includes an NH 4 HF 2 solution tank 71, an NH 4 HF 2 solution pump 72, an NH 4 HF 2 solution supply port 73, etc., and the supply port 73 is connected to the crystallizer 1.
It is provided at the bottom of the main body of 0. Further, the ammonia supply device 80 is provided as necessary, and includes an ammonia water tank 81, an ammonia water pump 82, an ammonia supply port 85 or an NH 3 gas holder 83,
It consists of an NH 3 gas valve 84, an ammonia supply port 85, etc., and the supply port 85 is provided in the lower part of the main body of the crystallizer 10 or in the crystal receiving tank 30.
Naturally, new crystals X will precipitate near the NH 4 HF 2 solution supply port 73 and the ammonia supply port 85, so it is desirable that the stripping solution D in this region be in a fluid state. This is realized by adopting the type having the stripping liquid forced circulation zone 25 at the lower part of the main body as described above, and by providing the crystal slurry stirrer 31 in the crystal receiving tank 30.
以上に述べたように、第7図および第8図は本
発明で提供する金属剥離装置の基本構成を示すも
のであつて、その実施態様がこれに限定されるも
のでないことは言うまでもない。 As described above, FIGS. 7 and 8 show the basic configuration of the metal stripping apparatus provided by the present invention, and it goes without saying that the embodiments thereof are not limited thereto.
次に、前記金属剥離方法を実施するための弗化
物系剥離液の濃度・組成管理方法について説明す
る。 Next, a method for controlling the concentration and composition of a fluoride stripping solution for carrying out the metal stripping method described above will be described.
以上の説明で明らかなように、金属剥離工程2
において金属イオンを抽出含有する有機溶媒Sと
の混合接触により弗化金属錯体結晶Xを析出させ
るための弗化物系剥離液Dは、一般にNH4HF2
とHFとから成る水溶液である。前述のごとく
NH4HF2の組成はNH4F+HFと同等であるから、
剥離液Dの濃度・組成を全HF(以降T.HFと記
す)と全NH4F(以降T.NH4Fと記す)の2項目
で管理するのが有効である。剥離液Dの
NH4HF2、HFのモル濃度(mol/)をそれぞ
れa、bとすると、次のような関係が成り立つ。 As is clear from the above explanation, metal stripping step 2
The fluoride-based stripping solution D for precipitating metal fluoride complex crystals X through mixed contact with an organic solvent S containing extracted metal ions is generally NH 4 HF 2
It is an aqueous solution consisting of and HF. As mentioned above
Since the composition of NH 4 HF 2 is equivalent to NH 4 F + HF,
It is effective to manage the concentration and composition of stripping solution D using two items: total HF (hereinafter referred to as T.HF) and total NH 4 F (hereinafter referred to as T.NH 4 F). Stripping liquid D
When the molar concentrations (mol/) of NH 4 HF 2 and HF are a and b, respectively, the following relationship holds true.
T.HF=b (12)
T.NH4F=a+b (13)
さて、T.HFおよびT.NH4Fの測定は、次に述
べるように、電位差滴定装置を用いる中和滴定法
か、あるいは電磁導電率計を用いる導電率測定と
イオン電極法等による全弗素(以降T.Fと記す)
分析との組み合わせ法によつて行うことができ
る。 T.HF=b (12) T.NH 4 F=a+b (13) Now, T.HF and T.NH 4 F can be measured by neutralization titration using a potentiometric titrator, as described below. Alternatively, conductivity measurement using an electromagnetic conductivity meter and total fluorine (hereinafter referred to as TF) using the ion electrode method, etc.
This can be done by a combination method with analysis.
第9図から第11図までは、電位差滴定装置を
使つて求めた剥離液DのN/2NaOH溶液による
中和滴定曲線(微分形)の例である。それぞれ剥
離液Dを1ml採取して滴定を行つており、濃度・
組成は、第9図がNH4HF2濃度a=1.75mol/
=100g/、HF濃度b=0mol/=0g/、
第10図がa=1.75mol/=100g/、b=
0.50mol/=10g/、第11図がa=
1.75mol/=100g/、b=1.00mol/=20
g/に対応している。これらの滴定曲線にはい
ずれも主なピークが2つずつ現れており、滴定開
始(0ml)から第1ピークまでをT.HFに、第1
ピークから第2ピークまでをT.NH4Fに割り当
て、それぞれの濃度を計算すると、(11)、(13)式
によりa、bの値から求めたT.HFおよびT.
NH4F濃度とよく一致する。したがつて、これら
の中和滴定曲線よりT.HFおよびT.NH4F値を求
め、次式によりaおよびbの値を知ることができ
る。 FIG. 9 to FIG. 11 are examples of neutralization titration curves (differential type) of stripping solution D with N/2NaOH solution obtained using a potentiometric titration device. 1 ml of stripping solution D was collected for each titration, and the concentration and
The composition in Figure 9 is NH 4 HF 2 concentration a = 1.75 mol/
=100g/, HF concentration b=0mol/=0g/,
Figure 10 shows a=1.75mol/=100g/, b=
0.50mol/=10g/, Figure 11 shows a=
1.75mol/=100g/, b=1.00mol/=20
It corresponds to g/. Two main peaks appear in each of these titration curves, and the one from the start of titration (0 ml) to the first peak is T.HF, and the first peak is T.HF.
Assigning the peak to the second peak to T.NH 4 F and calculating the respective concentrations, T.HF and T.
It agrees well with the NH 4 F concentration. Therefore, the T.HF and T.NH 4 F values can be determined from these neutralization titration curves, and the values of a and b can be determined using the following equations.
a=T.NH4F−T.HF (14)
b=T.HF (15)
第12図は、電磁導電率計を使つて測定した、
いろいろなa、b値をもつ剥離液Dの25℃におけ
る導電率の値Cに基いて作成した等導電率曲線
で、横軸、縦軸はそれぞれT.HF、T.NH4F値を
とつてある。等導電率曲線はやや右下がりの曲線
になる。電磁導電率計で導電率Cを測定し、たと
えばイオン電極法で全F(T.Fと記す)を分析す
ると、次のようにして剥離液DのT.HFおよびT.
NH4F値を求めることができる。たとえばc=
160mS/cm、T.F=3.00mol/が得られた場
合、第12図においてc=160mS/cm=一定の
曲線とT.F=3.00mol/=一定の線分XYとの交
点から横軸および縦軸に垂線を下ろすと、両軸に
出会つた点の値がそれぞれ剥離液DのT.HFおよ
びT.NH4F値となるのである。 a=T.NH 4 F−T.HF (14) b=T.HF (15) Figure 12 shows the conductivity measured using an electromagnetic conductivity meter.
The isoconductivity curve was created based on the conductivity value C at 25°C of stripping solution D with various a and b values, and the horizontal and vertical axes represent the T.HF and T.NH 4 F values, respectively. It is attached. The isoconductivity curve is a slightly downward sloping curve. When the conductivity C is measured with an electromagnetic conductivity meter and the total F (denoted as TF) is analyzed using the ion electrode method, for example, T.HF and T. of stripping solution D are determined as follows.
The NH 4 F value can be determined. For example c=
If 160mS/cm and TF = 3.00mol/ are obtained, in Figure 12, from the intersection of the c = 160mS/cm = constant curve and the TF = 3.00mol/ = constant line segment XY, it is plotted on the horizontal and vertical axes. When the perpendicular lines are drawn down, the values at the points where both axes meet become the T.HF and T.NH 4 F values of stripping solution D, respectively.
なお、剥離液Dには弗化金属アンモニウム錯体
が溶解しており、厳密には、金属イオンがFe3+
の場合を例にとると、剥離液DはNH4HF2−HF
−(NH4)3FeF6系溶液である。しかし、一般に弗
化金属アンモニウム塩は剥離液Dへの溶解度が比
較的小さく、溶解している弗化金属アンモニウム
塩は分析や測定にはほとんど影響を与えないの
で、T.HFおよびT.NH4F値を決定する上では剥
離液DをNH4HF2−HF系溶液と考えて差し支え
ない。 Note that a metal ammonium fluoride complex is dissolved in stripping solution D, and strictly speaking, metal ions are Fe 3+
For example, stripping solution D is NH 4 HF 2 −HF
-(NH 4 ) 3 FeF 6 based solution. However, in general, metal fluoride ammonium salts have a relatively low solubility in stripping solution D, and dissolved metal fluoride ammonium salts have almost no effect on analysis or measurement, so T.HF and T.NH 4 When determining the F value, stripping solution D can be considered to be an NH 4 HF 2 -HF-based solution.
以上述べたように、弗化物系剥離液の濃度・組
成は全HFと全NH4Fの値を求めることにより管
理することができる。全HFおよび全NH4F値は
2つの方法によつて求めることができる。中和滴
定法は、全HFおよび全NH4F値を直接求めるこ
とができて便利であるが、測定は間欠的になる。
導電率測定と全弗素分析との組み合わせ法では、
全弗素分析を間欠的に行つておけば、導電率測定
は連続的に行えるから、剥離液の濃度・組成を連
続的に管理することができる。 As described above, the concentration and composition of the fluoride stripper can be controlled by determining the values of total HF and total NH 4 F. Total HF and total NH 4 F values can be determined by two methods. The neutralization titration method is convenient because it allows direct determination of total HF and total NH 4 F values, but the measurements are intermittent.
In the combined method of conductivity measurement and total fluorine analysis,
If the total fluorine analysis is performed intermittently, the conductivity measurement can be performed continuously, so that the concentration and composition of the stripping solution can be continuously controlled.
第7図および第8図に示す本発明金属剥離装置
において、剥離液Dの濃度・組成を測定すべき個
所は、供給剥離液測定部91、排出剥離液測定部
92、結晶濾液測定部93の3個所である。これ
らの測定個所でそれぞれ適当な濃度・組成の管理
範囲を決定し、全HFおよび全NH4F値を測定し
つつ薬剤等を供給して調整すればよい。 In the metal stripping apparatus of the present invention shown in FIGS. 7 and 8, the locations where the concentration and composition of the stripping solution D should be measured are the supply stripping solution measuring section 91, the discharged stripping solution measuring section 92, and the crystal filtrate measuring section 93. There are 3 locations. Appropriate control ranges for concentration and composition can be determined at each of these measurement points, and adjustments can be made by supplying drugs, etc. while measuring the total HF and total NH 4 F values.
以上で詳細に説明したように、本発明で提供す
る弗化物系剥離液の濃度・組成を全HFと全
NH4Fの2項目で管理することにより薬剤等を適
切な個所に供給することを特徴とする金属剥離方
法およびその装置を用いて、金属剥離工程の運転
を実施することにより、薬剤等の供給に伴う配管
の詰まりなどのトラブルの発生を防止し、長期に
わたる安定した運転を実現することができる。 As explained in detail above, the concentration and composition of the fluoride stripper provided by the present invention are different from total HF to total HF.
The supply of chemicals, etc. can be achieved by operating the metal stripping process using a metal stripping method and equipment that is characterized by supplying chemicals, etc. to appropriate locations by controlling them using two items: NH 4 F. It is possible to prevent troubles such as piping clogging caused by this, and achieve stable operation over a long period of time.
次に、本発明を実施例および比較例につき具体
的に説明する。 Next, the present invention will be specifically explained with reference to Examples and Comparative Examples.
比較例 1
第6図に示す装置を用いて、30v/v%ジ−
(2−エチルヘキシル)りん酸と70v/v%n−
パラフインとから成る有機溶媒に抽出された
Fe3+イオンの(NH4)3FeF6結晶としての剥離を
45トン−結晶/月の規模で実施した。晶析装置1
0内の混合ゾーン18内の液温を30〜40℃に、剥
離液冷却ゾーン22内の液温を15〜20℃に調節し
た。そして、排出剥離液測定部92における剥離
液の濃度・組成がNH4HF2は85〜115g/、
HFは0〜10g/となるように調整するため、
30%NH4HF2溶液を吸収液槽62内のNH4HF2
溶液供給口73より添加したところ、添加後24時
間経過しないうちに吸収液槽62内で析出した
(NH4)3FeF6結晶が吸収液ポンプ63や分解ガス
吸収塔61内に付着して詰まりを生じ、装置の運
転が継続できなくなつた。また、NH4HF2溶液
Fとは別個に、NH3ガスEを分解ガス吸収塔6
1のアンモニア供給口85に添加したところ、や
はり吸収液ポンプ63や分解ガス吸収塔61内に
(NH4)3FeF6結晶の詰まりを生じた。Comparative Example 1 Using the apparatus shown in Figure 6, 30v/v% di-
(2-ethylhexyl) phosphoric acid and 70v/v%n-
extracted into an organic solvent consisting of paraffin and
Exfoliation of Fe 3+ ions as (NH 4 ) 3 FeF 6 crystals
It was carried out on a scale of 45 tons - crystals/month. Crystallizer 1
The temperature of the liquid in the mixing zone 18 was adjusted to 30 to 40°C, and the temperature of the liquid in the stripping liquid cooling zone 22 was adjusted to 15 to 20°C. Then, the concentration and composition of the stripping solution in the discharged stripping solution measuring section 92 is 85 to 115 g/NH 4 HF 2 ,
In order to adjust HF to 0 to 10g/,
30% NH 4 HF 2 solution is absorbed into the NH 4 HF 2 in the liquid tank 62.
When the solution was added through the solution supply port 73, (NH 4 ) 3 FeF 6 crystals precipitated in the absorption liquid tank 62 within 24 hours after addition and adhered to the absorption liquid pump 63 and the cracked gas absorption tower 61, causing clogging. This caused the equipment to be unable to continue operating. In addition, separately from the NH 4 HF 2 solution F, NH 3 gas E is sent to the decomposition gas absorption tower 6.
When the ammonia was added to the ammonia supply port 85 of No. 1, the absorbent pump 63 and cracked gas absorption tower 61 were clogged with (NH 4 ) 3 FeF 6 crystals.
実施例 1
第8図に示す本発明の装置を用いて、比較例と
ほぼ同様の条件で、鉄剥離工程の運転を実施し
た。排出剥離液測定部92における剥離液Dの濃
度・組成を比較例と同じ管理範囲に維持するた
め、30%NH4HF2溶液を晶析装置10の結晶成
長ゾーンまたは剥離液強制循環ゾーン25内に、
適宜添加を行つた。運転開始後30日間経過して
も、薬剤等の添加に伴う(NH4)3FeF6結晶の析
出や詰まりは認められず、問題なく運転を継続す
ることができた。Example 1 Using the apparatus of the present invention shown in FIG. 8, an iron stripping process was carried out under substantially the same conditions as in the comparative example. In order to maintain the concentration and composition of the stripping solution D in the discharged stripping solution measuring section 92 within the same control range as in the comparative example, a 30% NH 4 HF 2 solution is placed in the crystal growth zone of the crystallizer 10 or in the stripping solution forced circulation zone 25. To,
Additions were made as appropriate. Even after 30 days had passed since the start of operation, no precipitation or clogging of (NH 4 ) 3 FeF 6 crystals due to the addition of chemicals was observed, and operation could be continued without any problems.
実施例 2
第8図に示す本発明の装置を用いて、比較例と
ほぼ同様の条件で、鉄剥離工程の運転を実施し
た。排出剥離液測定部92における剥離液Dの濃
度・組成を比較例と同じ管理範囲に維持するた
め、30%NH4HF2溶液を晶析装置10の結晶成
長ゾーンまたは剥離液強制循環ゾーン25内に、
NH3ガスを晶析装置10の本体下部の結晶成長
ゾーンまたは冷却ゾーンあるいは結晶受槽30内
にそれぞれ適宜添加を行つた。運転開始後30日間
経過しても、薬剤等の添加に伴う(NH4)3FeF6
結晶の析出や詰まりは認められず、問題なく運転
を継続することができた。Example 2 Using the apparatus of the present invention shown in FIG. 8, an iron stripping process was carried out under substantially the same conditions as in the comparative example. In order to maintain the concentration and composition of the stripping solution D in the discharged stripping solution measuring section 92 within the same control range as in the comparative example, a 30% NH 4 HF 2 solution is placed in the crystal growth zone of the crystallizer 10 or in the stripping solution forced circulation zone 25. To,
NH 3 gas was appropriately added to the crystal growth zone or cooling zone at the lower part of the main body of the crystallizer 10, or to the crystal receiving tank 30, respectively. Even after 30 days have passed since the start of operation, (NH 4 ) 3 FeF 6 due to the addition of drugs, etc.
No crystal precipitation or clogging was observed, and operation could be continued without any problems.
第1図は、溶媒抽出法による、弗化物系剥離液
の循環する工程を含む金属イオンの分離工程のフ
ローシートである。第2図〜第5図は、
NH4HF2を75〜150g/、HFを0〜20g/
の範囲で含有する弗化物系剥離液に対する
(NH4)3FeF6の溶解度曲線のグラフである。第6
図は、比較例の金属剥離装置の基本構成図、第7
図および第8図は、本発明の装置の実施態様例を
示す基本構成図である。第9〜第11図は、電位
差滴定装置による弗化物系剥離液の中和滴定曲線
(微分形)の例で、NH4HF2濃度が100g/で
一定、HF濃度がそれぞれ0、10、20g/の剥
離液の測定結果を表す。第12図は、25℃におけ
る弗化物系剥離液の、電磁導電率計を用いる測定
により作製した等導電率曲線である。
符号の説明、A……金属イオン含有水溶液、C
……塩酸水溶液、D……弗化物系剥離液、E……
アンモニア水またはNH3ガス、F……NH4HF2
溶液(30〜40%)、G……弗素系分解ガス、M…
…金属、O……金属酸化物、R……抽残液、S…
…有機溶媒、X……弗化金属錯体結晶、1……金
属抽出工程、2……金属剥離工程、3……固液分
離工程、4……結晶乾燥・分解工程、5……有機
溶媒変換工程、6……アンモニア回収工程、10
……晶析装置本体、11……有機溶媒熱交換器、
12……有機溶媒供給口、13……有機溶媒静置
ゾーン、14……有機溶媒排出口、15……剥離
液熱交換器、16……剥離液供給口、17……結
晶濾液供給口、18……混合ゾーンまたは混合
槽、19……下降管、20……剥離液静置ゾー
ン、21……結晶成長ゾーン、22……剥離液冷
却ゾーン、23……冷却剥離液ポンプ、24……
冷却剥離液熱交換器、25……剥離液強制循環ゾ
ーン、26……循環剥離液ポンプ、27……結晶
分離ゾーン、28……剥離液排出口、29……結
晶排出管、30……結晶受槽、31……結晶スラ
リー撹拌器、40……固液分離装置、41……結
晶スラリーポンプ、42……結晶濾過器、43…
…濾液槽、44……結晶濾液ポンプ、50……結
晶乾燥・分解装置、51……結晶乾燥・分解キル
ン、60……分解ガス吸収装置、61……分解ガ
ス吸収塔、62……吸収液槽、63……吸収液ポ
ンプ、64……供給剥離液ポンプ、70……
NH4HF2溶液供給装置、71……NH4HF2溶液
槽、72……NH4HF2溶液ポンプ、73……
NH4HF2溶液供給口、80……アンモニア供給
装置、81……アンモニア水槽、82……アンモ
ニア水ポンプ、83……NH3ガスホルダー、8
4……NH3ガスバルブ、85……アンモニア供
給口、90……剥離液濃度・組成測定装置、91
……供給剥離液測定部、92……排出剥離液測定
部、93……結晶濾液測定部。
FIG. 1 is a flow sheet of a metal ion separation process using a solvent extraction method, including a process of circulating a fluoride stripping solution. Figures 2 to 5 are
NH 4 HF 2 75-150g/, HF 0-20g/
It is a graph of the solubility curve of ( NH4 ) 3FeF6 with respect to the fluoride stripping solution containing in the range of. 6th
The figure is a basic configuration diagram of a metal stripping device of a comparative example.
8 and 8 are basic configuration diagrams showing embodiments of the apparatus of the present invention. Figures 9 to 11 are examples of neutralization titration curves (differential type) for fluoride-based strippers using a potentiometric titrator, where the NH 4 HF 2 concentration is constant at 100 g/, and the HF concentrations are 0, 10, and 20 g, respectively. / represents the measurement results of the stripping solution. FIG. 12 is an isoconductivity curve of a fluoride stripper at 25° C., prepared by measurement using an electromagnetic conductivity meter. Explanation of symbols, A... Metal ion-containing aqueous solution, C
...Hydrochloric acid aqueous solution, D...Fluoride stripper, E...
Ammonia water or NH 3 gas, F...NH 4 HF 2
Solution (30-40%), G...Fluorine decomposition gas, M...
...Metal, O...Metal oxide, R...Raffinate, S...
...Organic solvent, Process, 6...Ammonia recovery process, 10
... Crystallizer main body, 11 ... Organic solvent heat exchanger,
12... Organic solvent supply port, 13... Organic solvent standing zone, 14... Organic solvent outlet, 15... Stripping liquid heat exchanger, 16... Stripping liquid supply port, 17... Crystal filtrate supply port, 18... Mixing zone or mixing tank, 19... Downcomer, 20... Stripping liquid standing zone, 21... Crystal growth zone, 22... Stripping liquid cooling zone, 23... Cooling stripping liquid pump, 24...
Cooling stripping liquid heat exchanger, 25... Stripping liquid forced circulation zone, 26... Circulating stripping liquid pump, 27... Crystal separation zone, 28... Stripping liquid outlet, 29... Crystal discharge pipe, 30... Crystal Receiving tank, 31...Crystal slurry stirrer, 40...Solid-liquid separator, 41...Crystal slurry pump, 42...Crystal filter, 43...
...Filtrate tank, 44...Crystal filtrate pump, 50...Crystal drying/decomposition device, 51...Crystal drying/decomposition kiln, 60...Cracked gas absorption device, 61...Cracked gas absorption tower, 62...Absorption liquid Tank, 63... Absorption liquid pump, 64... Supply stripping liquid pump, 70...
NH 4 HF 2 solution supply device, 71... NH 4 HF 2 solution tank, 72... NH 4 HF 2 solution pump, 73...
NH4HF2 solution supply port, 80...Ammonia supply device, 81...Ammonia water tank, 82...Ammonia water pump, 83... NH3 gas holder, 8
4...NH 3 gas valve, 85... Ammonia supply port, 90... Stripper concentration/composition measuring device, 91
...Supplied stripping liquid measuring section, 92... Discharged stripping liquid measuring section, 93... Crystal filtrate measuring section.
Claims (1)
剥離液静置ゾーンを有し、これらの下方に弗化金
属錯体結晶分離ゾーン、および結晶成長ゾーンま
たは剥離液冷却ゾーンを有する晶析装置におい
て、前記混合ゾーンで金属イオンを抽出含有する
有機溶媒を弗化物系剥離液と接触させて弗化金属
錯体結晶を析出させ、得られた結晶を金属酸化物
または金属とするに際し、前記晶析装置の前記結
晶成長ゾーンまたは剥離液冷却ゾーンに
NH4HF2溶液を供給し、前記晶析装置の剥離液
排出口から排出された剥離液に弗化金属錯体結晶
分解ガスを吸収させたものを前記晶析装置の混合
ゾーンに供給し、結晶分離後の濾液を前記晶析装
置の有機溶媒静置ゾーン下部の剥離液静置ゾーン
に供給し、よつて弗化物系剥離液を循環使用する
ことにより金属剥離液の濃度・組成を調整するこ
とを特徴とする金属剥離方法。 2 弗化物系剥離液の濃度・組成は全HFと全
NH4Fの2項目で管理することを特徴とする特許
請求の範囲第1項に記載の金属剥離方法。 3 混合ゾーン、有機溶媒静置ゾーン、弗化物系
剥離液静置ゾーンを有し、これらの下方に弗化金
属錯体結晶分離ゾーン、および結晶成長ゾーンま
たは剥離液冷却ゾーンを有する晶析装置におい
て、前記混合ゾーンで金属イオンを抽出含有する
有機溶媒を弗化物系剥離液と接触させて弗化金属
錯体結晶を析出させ、得られた結晶を金属酸化物
または金属とするに際し、前記晶析装置の前記結
晶成長ゾーンまたは剥離液冷却ゾーンに
NH4HF2溶液を供給し、前記晶析装置の剥離液
排出口から排出された剥離液に弗化金属錯体結晶
分解ガスを吸収させたものを前記晶析装置の混合
ゾーンに供給し、前記晶析装置の結晶成長ゾーン
または剥離液冷却ゾーンから、これより排出され
た結晶の受槽までの間でアンモニアを供給し、結
晶分離後の濾液を前記晶析装置の有機溶媒静置ゾ
ーン下部の剥離液静置ゾーンに供給し、よつて弗
化物系剥離液を循環使用することにより金属剥離
液の濃度・組成を調整することを特徴とする金属
剥離方法。 4 弗化物系剥離液の濃度・組成を全HFと全
NH4Fの2項目で管理する特許請求の範囲第3項
に記載の金属剥離方法。 5 金属イオンを抽出含有する有機溶媒と弗化物
系剥離液との混合ゾーン、有機溶媒静置ゾーンの
下方の剥離液静置ゾーンを有し、これらの下方に
弗化金属錯体結晶分離ゾーンおよび結晶成長ゾー
ンまたは剥離液冷却ゾーンを有する晶析装置、こ
の晶析装置で得られた結晶の受槽、結晶の固液分
離装置、結晶乾燥・分解装置、結晶分解ガス吸収
装置、前記晶析装置のNH4HF2溶液供給装置、
および剥離液濃度測定装置で構成され、前記結晶
分解ガス吸収装置は前記晶析装置の剥離液排出口
および混合ゾーン内の剥離液供給口と配管接続さ
れており、前記NH4HF2溶液供給装置の
NH4HF2供給口は前記晶析装置の結晶成長ゾー
ンまたは剥離液冷却ゾーンに設けられ、結晶分離
後の濾液の供給口は前記晶析装置の剥離液静置ゾ
ーンに設けられていることを特徴とする金属剥離
装置。 6 金属イオンを抽出含有する有機溶媒と弗化物
系剥離液との混合ゾーン、有機溶媒静置ゾーンの
下方の剥離液静置ゾーンを有し、これらの下方に
弗化金属錯体結晶分離ゾーンおよび結晶成長ゾー
ンまたは剥離液冷却ゾーンを有する晶析装置、こ
の晶析装置で得られた結晶の受槽、結晶の固液分
離装置、結晶乾燥・分解装置、結晶分解ガス吸収
装置、アンモニア供給装置、前記晶析装置の
NH4HF2溶液供給装置、および剥離液濃度測定
装置で構成され、前記結晶分解ガス吸収装置は前
記晶析装置の剥離液排出口および混合ゾーン内の
剥離液供給口と配管接続されており、前記
NH4HF2溶液供給装置のNH4HF2供給口は前記
晶析装置の結晶成長ゾーンまたは剥離液冷却ゾー
ンに設けられ、前記アンモニア供給装置のアンモ
ニア供給口は前記晶析装置の結晶成長ゾーンまた
は剥離液冷却ゾーンから前記結晶受槽までの間に
設けられており、結晶分離後の濾液の供給口は前
記晶析装置の剥離液静置ゾーンに設けられている
ことを特徴とする金属剥離装置。[Claims] 1. It has a mixing zone, an organic solvent standing zone, and a fluoride stripping solution standing zone, and below these, a metal fluoride complex crystal separation zone, and a crystal growth zone or a stripping solution cooling zone. In a crystallizer having a metal ion, in the mixing zone, metal ions are extracted and an organic solvent containing the metal ions is brought into contact with a fluoride-based stripping solution to precipitate metal fluoride complex crystals, and the resulting crystals are converted into metal oxides or metals. , in the crystal growth zone or stripping liquid cooling zone of the crystallizer.
NH 4 HF 2 solution is supplied, and the stripping solution discharged from the stripping solution outlet of the crystallizer absorbs the metal fluoride complex crystal decomposition gas, and the resulting mixture is supplied to the mixing zone of the crystallizer, and the stripping solution discharged from the stripping solution outlet of the crystallizer is supplied to the mixing zone of the crystallizer. The filtrate after separation is supplied to the stripping solution standing zone below the organic solvent standing zone of the crystallizer, and the concentration and composition of the metal stripping solution is adjusted by circulating and using the fluoride stripping solution. A metal peeling method characterized by: 2 The concentration and composition of the fluoride stripper are total HF and total HF.
The metal stripping method according to claim 1, characterized in that the metal stripping method is controlled by two items: NH 4 F. 3. A crystallizer having a mixing zone, an organic solvent standing zone, a fluoride stripping liquid standing zone, and below these a metal fluoride complex crystal separation zone, and a crystal growth zone or a stripping liquid cooling zone, When extracting metal ions in the mixing zone and bringing the containing organic solvent into contact with a fluoride stripping solution to precipitate metal fluoride complex crystals and converting the obtained crystals into metal oxides or metals, In the crystal growth zone or stripping liquid cooling zone
NH 4 HF 2 solution is supplied, and the stripping solution discharged from the stripping solution outlet of the crystallizer absorbs the metal fluoride complex crystal decomposition gas, and the mixture is supplied to the mixing zone of the crystallizer. Ammonia is supplied from the crystal growth zone or stripping liquid cooling zone of the crystallizer to the receiving tank for the crystals discharged from this zone, and the filtrate after crystal separation is stripped at the lower part of the organic solvent standing zone of the crystallizer. A metal stripping method characterized by adjusting the concentration and composition of a metal stripping solution by supplying the solution to a stationary zone and then circulating the fluoride stripping solution. 4 Change the concentration and composition of the fluoride stripper to total HF and total HF.
The metal stripping method according to claim 3, which is controlled by two items: NH 4 F. 5 A mixing zone of an organic solvent containing an extracted metal ion and a fluoride stripping solution, a stripping solution standing zone below the organic solvent standing zone, and a fluoride metal complex crystal separation zone and a crystallization zone below these. A crystallizer having a growth zone or a stripping liquid cooling zone, a receiving tank for crystals obtained in this crystallizer, a solid-liquid separation device for crystals, a crystal drying/decomposition device, a crystal decomposition gas absorption device, an NH of the crystallizer 4 HF 2 solution supply device,
and a stripping solution concentration measuring device, the crystal decomposition gas absorption device is connected via piping to a stripping solution outlet of the crystallizer and a stripping solution supply port in the mixing zone, and the NH 4 HF 2 solution supply device of
The NH 4 HF 2 supply port is provided in the crystal growth zone or stripping solution cooling zone of the crystallizer, and the supply port for the filtrate after crystal separation is provided in the stripping solution standing zone of the crystallizer. Characteristic metal stripping equipment. 6 It has a mixing zone of an organic solvent containing an extracted metal ion and a fluoride stripping solution, a stripping solution standing zone below the organic solvent standing zone, and a fluoride metal complex crystal separation zone and a crystallization zone below these. A crystallizer having a growth zone or a stripping liquid cooling zone, a receiving tank for crystals obtained with this crystallizer, a solid-liquid separator for crystals, a crystal drying/decomposition device, a crystal decomposition gas absorption device, an ammonia supply device, the crystallization device analysis equipment
It is composed of an NH 4 HF 2 solution supply device and a stripping solution concentration measuring device, and the crystal decomposition gas absorption device is connected by piping to a stripping solution outlet of the crystallizer and a stripping solution supply port in the mixing zone, Said
The NH 4 HF 2 supply port of the NH 4 HF 2 solution supply device is provided in the crystal growth zone or stripping liquid cooling zone of the crystallizer, and the ammonia supply port of the ammonia supply device is provided in the crystal growth zone or stripping liquid cooling zone of the crystallizer. A metal stripping device, which is provided between a stripping solution cooling zone and the crystal receiving tank, and a supply port for the filtrate after crystal separation is provided in a stripping solution standing zone of the crystallizer.
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59094072A JPS60238428A (en) | 1984-05-11 | 1984-05-11 | Method and apparatus for regulating concentration of metal releasing liquid |
US06/713,862 US4830836A (en) | 1984-03-30 | 1985-03-20 | Metal stripping system and an operation process therefor |
EP85302029A EP0157561B1 (en) | 1984-03-30 | 1985-03-25 | Metal stripping system and an operation process therefor |
DE8585302029T DE3586011D1 (en) | 1984-03-30 | 1985-03-25 | METAL STRIPING DEVICE AND OPERATING PROCEDURE THEREFOR. |
CA000477476A CA1246326A (en) | 1984-03-30 | 1985-03-26 | Metal stripping system and an operation process therefor |
KR1019850002118A KR890000167B1 (en) | 1984-03-30 | 1985-03-29 | Metal stripping system and an operation process therefor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59094072A JPS60238428A (en) | 1984-05-11 | 1984-05-11 | Method and apparatus for regulating concentration of metal releasing liquid |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS60238428A JPS60238428A (en) | 1985-11-27 |
JPH0148340B2 true JPH0148340B2 (en) | 1989-10-18 |
Family
ID=14100293
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59094072A Granted JPS60238428A (en) | 1984-03-30 | 1984-05-11 | Method and apparatus for regulating concentration of metal releasing liquid |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60238428A (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6143808B2 (en) * | 2015-05-28 | 2017-06-07 | 曽田香料株式会社 | Extraction method of solute components in aqueous solution |
-
1984
- 1984-05-11 JP JP59094072A patent/JPS60238428A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS60238428A (en) | 1985-11-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5392576B2 (en) | Method for recovering silicon, titanium and fluorine | |
RU2726618C1 (en) | Method of producing solutions containing nickel or cobalt | |
CA1214382A (en) | Method for regenerating pickling acids | |
CN104843789A (en) | Method for purifying vanadium pentoxide | |
US4105743A (en) | Selectively extracting copper, zinc, nickel from a mixture of metal hydroxides | |
EP1932829A1 (en) | Potassium perfluoroalkanesulfonates and process for production thereof | |
EP2167424A1 (en) | Method for recovering nitric acid and purifying silver nitrate electrolyte | |
JP2703487B2 (en) | Method for producing nickel hydroxide | |
JP5549648B2 (en) | Molybdenum recovery method and molybdenum extraction solvent | |
JPH0148340B2 (en) | ||
KR940009676B1 (en) | Method of treating nickelaining etching waste fluid | |
CN1076322C (en) | Method for treatment of waste water of ammonium sulfate | |
EP0189831B1 (en) | Cobalt recovery method | |
KR890000167B1 (en) | Metal stripping system and an operation process therefor | |
JPH10156102A (en) | Continuous crystallization method | |
US4314976A (en) | Purification of nickel sulfate | |
JPH05279875A (en) | Etching with alkaline ammonical etchant solution and device and method for reproducing the same etchant solution | |
JP2009119382A (en) | Crystallization reactor and crystallization reaction method | |
CN114455561A (en) | Comprehensive utilization process of hot galvanizing pickling wastewater and method for preparing battery-grade iron phosphate | |
JPS6320768B2 (en) | ||
JP4257467B2 (en) | Titanium recovery method | |
US3647686A (en) | Method of treating industrial waste water without contamination of the environment | |
JPH09271603A (en) | Operation of crystallizer | |
JP3644245B2 (en) | Separation of ruthenium and rhodium | |
JP4200567B2 (en) | Extraction method |