JPH0147899B2 - - Google Patents
Info
- Publication number
- JPH0147899B2 JPH0147899B2 JP55084747A JP8474780A JPH0147899B2 JP H0147899 B2 JPH0147899 B2 JP H0147899B2 JP 55084747 A JP55084747 A JP 55084747A JP 8474780 A JP8474780 A JP 8474780A JP H0147899 B2 JPH0147899 B2 JP H0147899B2
- Authority
- JP
- Japan
- Prior art keywords
- potential
- semiconductor substrate
- substrate
- circuit
- type
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000000758 substrate Substances 0.000 claims description 50
- 239000004065 semiconductor Substances 0.000 claims description 37
- 238000007599 discharging Methods 0.000 description 9
- 239000003989 dielectric material Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000002955 isolation Methods 0.000 description 3
- 230000003071 parasitic effect Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/02—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
- H01L27/0203—Particular design considerations for integrated circuits
- H01L27/0214—Particular design considerations for integrated circuits for internal polarisation, e.g. I2L
- H01L27/0229—Particular design considerations for integrated circuits for internal polarisation, e.g. I2L of bipolar structures
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Element Separation (AREA)
- Semiconductor Integrated Circuits (AREA)
Description
【発明の詳細な説明】
本発明は半導体集積回路の半導体基板バイアス
方法に関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a semiconductor substrate bias method for a semiconductor integrated circuit.
半導体集積回路では、一般に半導体基板上に形
成された一導電型の半導体層に複数の島状領域を
逆バイアスされたPN接合、あるいは誘電体物質
等によつて分離して形成し、この各島状領域中に
トランジスタ、抵抗等の素子を形成している。例
えば、従来P型半導体基板を用いその上にPN接
合によつて個々に分離してN型の島状領域を形成
したPN接合分離型集積回路では、P型半導体基
板(以後単にP型基板という)を回路の最低電位
端子に接続することによつてP型基板と各N型島
状領域(以下N型アイランドという)とのPN接
合を逆方向にバイアスし各N型アイランド間の絶
縁を行なつている。しかしアナログスイツチ、
ACプラズマデスプレイドライバー等においてN
型アイランドの電位がパルス信号あるいは交流信
号で駆動されるとN型アイランドとP型基板との
間のPN接合容量(以後基板容量)に充放電電流
が流れる。特に、駆動周波数が高くなり集積回路
の規模が大きくなると充放電々流を供給するため
の電力消費が増大するとともに、集積回路内部の
発熱も増加する等の欠点があつた。 In a semiconductor integrated circuit, a plurality of island-like regions are generally formed in a semiconductor layer of one conductivity type formed on a semiconductor substrate, separated by a reverse biased PN junction or a dielectric material, and each island is separated by a reverse biased PN junction or a dielectric material. Elements such as transistors and resistors are formed in the shaped region. For example, in a conventional PN junction isolated integrated circuit in which a P-type semiconductor substrate is used and N-type island-like regions are formed on the substrate by PN junctions, a P-type semiconductor substrate (hereinafter simply referred to as a P-type substrate) is used. ) to the lowest potential terminal of the circuit, biases the PN junction between the P-type substrate and each N-type island region (hereinafter referred to as N-type island) in the opposite direction, and insulates each N-type island. It's summery. However, the analog switch
N in AC plasma display drivers etc.
When the potential of the type island is driven by a pulse signal or an alternating current signal, a charging/discharging current flows through the PN junction capacitance (hereinafter referred to as substrate capacitance) between the N type island and the P type substrate. In particular, as the driving frequency increases and the scale of the integrated circuit increases, the power consumption for supplying charging and discharging currents increases, and the heat generated inside the integrated circuit also increases.
また、各N型アイランドの絶縁に誘電体物質を
用いた誘電体分離型の集積回路でもも半導体基板
を一定電位に接続するとN型アイランドとP型基
板との間の誘電体容量に充放電々流が流れるため
同様な欠点がある。 In addition, even in a dielectric-separated integrated circuit that uses a dielectric material to insulate each N-type island, when the semiconductor substrate is connected to a constant potential, the dielectric capacitance between the N-type island and the P-type substrate is charged and discharged. There is a similar drawback because the current flows.
本発明の目的はこれらの欠点を取り除いた半導
体集積回路を提供することにある。 An object of the present invention is to provide a semiconductor integrated circuit that eliminates these drawbacks.
本発明の集積回路では、半導体基板をダイオー
ドを介してのみ回路の一定電圧端子に接続してい
る。これにより半導体基板は電位の最大値あるい
は最小値がダイオードの順方向電圧を介して一定
電圧に固定される。特に、P型基板を順方向ダイ
オードを介し回路の最低電位に接続した場合に
は、P型基板電位の最大値はほぼ回路の最低電位
に固定される。 In the integrated circuit of the present invention, the semiconductor substrate is connected to the constant voltage terminal of the circuit only via a diode. As a result, the maximum value or minimum value of the potential of the semiconductor substrate is fixed to a constant voltage via the forward voltage of the diode. In particular, when the P-type substrate is connected to the lowest potential of the circuit via a forward diode, the maximum value of the P-type substrate potential is approximately fixed to the lowest potential of the circuit.
このように本発明によれば、島状領域をパルス
信号等で駆動すると、基板容量をパルス信号の波
高値で一旦充電した後、基板電位はパルス信号に
追従して変動する。従つて、以後、基板容量への
充放電々流はほとんどなくなり、基板容量を充放
電するための電力消費を著しく減少させる。更に
基板電極の最高値あるいは最低値を一定電位に固
定するため、半導体基板をフローテングにした時
にPN接含分離型や、誘電体分離型の半導体集積
回路でそれぞれ生じ易い寄生サイリスタ効果、寄
生MOS効果を防ぐこつができる。 As described above, according to the present invention, when the island-like region is driven by a pulse signal or the like, after the substrate capacitance is once charged with the peak value of the pulse signal, the substrate potential changes in accordance with the pulse signal. Therefore, thereafter, there will be almost no charging/discharging current to the substrate capacitance, and the power consumption for charging and discharging the substrate capacitance will be significantly reduced. Furthermore, in order to fix the highest or lowest value of the substrate electrode to a constant potential, the parasitic thyristor effect and parasitic MOS that are likely to occur in PN contact isolation type and dielectric isolation type semiconductor integrated circuits when the semiconductor substrate is made floating are avoided. There are ways to prevent the effects.
以下に、図面を参照して設明する。 The following will be explained with reference to the drawings.
第1図はACプラズマデスプレイドライバー回
路をP型半導体基板を用いた従来のPN接合分離
型の集積回路で実現した場合の等価回路図の一部
を表わす。入力1及びゲート2端子にそれぞれ第
4図に示す入力信号VINおよびゲート信号VGATEが
印加されると、出力端子3に出力電圧Vputの波形
が現われる。このとき、トランジスタQ1とQ2の
コレクタは半導体基板との間にPN接合による基
板容量C1,C2をもつており、C1,C2への充放電
電流ICHG(b)が流れる。第1図の回におけるゲート
信号VGATEが低レベルにある場合の平均充電々流
ICHGは、
C1=6PF,C2=6PF,PW=2μs,VP=150Vと
して
ICHG=C1+C2/PWVPS=0.9mA
例えば第1図の回路を40回路含むACプラズマ
デスプレイドライバー用半導体集積回路の場合
ICHG=0.9×40=36mA
これによる消費電力の増加は5.4Wになる。 FIG. 1 shows a part of an equivalent circuit diagram when an AC plasma display driver circuit is realized with a conventional PN junction separated integrated circuit using a P-type semiconductor substrate. When the input signal V IN and gate signal V GATE shown in FIG. 4 are applied to the input 1 and gate 2 terminals, respectively, the waveform of the output voltage V put appears at the output terminal 3. At this time, the collectors of transistors Q 1 and Q 2 have substrate capacitances C 1 and C 2 due to PN junctions between them and the semiconductor substrate, and a charging/discharging current I CHG(b) flows to C 1 and C 2 . . Average charging current when the gate signal V GATE is at a low level in the cycle shown in Figure 1
I CHG is, C 1 = 6PF, C 2 = 6PF, P W = 2μs, V P = 150V, I CHG = C 1 + C 2 /P W V PS = 0.9 mA For example, an AC that includes 40 circuits of the circuit shown in Figure 1. In the case of a semiconductor integrated circuit for a plasma display driver I CHG = 0.9 x 40 = 36 mA This increases the power consumption by 5.4 W.
第2図及び第3図は、本発明の一実施例による
ACプラズマデスプレイドライバー用半導体集積
回路の等価回路と断面図の一部である。P型半導
体基板10上にN型アイランド11,12を有
し、各N型アイランドにトランジスタQ1,Q2が
形成されている。回路の接地端子5′はP型半導
体基板10とは別に接地電位を与えてP型半導体
基板10はフローテイングとしてある。等価回路
は第1図の従来例とほぼ同じであるが、P型半導
体基板10は端子4からダイオードD1を介して
端子6で接地電位よりも若干低い電位、例えば−
1Vである負電源−Vsに接続されている。半導体
基板10の電位は固定されておらず、N型アイラ
ンド11,12と半導体基板10との間の基板1
0との間の基板容量C1,C2とダイオードD1の容
量C3とで決まりその電位VSUBは入力電圧VINと連
動して変化して、第4図の基板電圧VSUBに示す波
形になる。なお、−Vs+VF(D1の順方向電圧)<0
としておくことによつて、基板電位VSUBは入力信
号Vinに比し常に負であり、トランジスタQ1,Q2
のコレクタのNアイランド11,12は逆バイア
スされたPN接合によつて電気的に絶縁される。 FIG. 2 and FIG. 3 are according to an embodiment of the present invention.
This is part of an equivalent circuit and cross-sectional view of a semiconductor integrated circuit for an AC plasma display driver. It has N-type islands 11 and 12 on a P-type semiconductor substrate 10, and transistors Q 1 and Q 2 are formed on each N-type island. The ground terminal 5' of the circuit is provided with a ground potential separately from the P-type semiconductor substrate 10, so that the P-type semiconductor substrate 10 is floating. The equivalent circuit is almost the same as the conventional example shown in FIG. 1, but the P-type semiconductor substrate 10 is connected to the terminal 6 via the diode D1 from the terminal 4 at a potential slightly lower than the ground potential, for example -
Connected to negative power supply -Vs which is 1V. The potential of the semiconductor substrate 10 is not fixed, and the potential of the substrate 1 between the N-type islands 11 and 12 and the semiconductor substrate 10 is
The potential V SUB is determined by the substrate capacitances C 1 and C 2 between C 1 and C 2 and the capacitance C 3 of the diode D 1 , and changes in conjunction with the input voltage V IN , as shown in the substrate voltage V SUB in Figure 4. It becomes a waveform. Note that −V s + V F (forward voltage of D 1 ) < 0
By setting , the substrate potential V SUB is always negative compared to the input signal Vin, and the transistors Q 1 and Q 2
The collector N islands 11, 12 of are electrically isolated by a reverse biased PN junction.
本実施例における基板容量C1,C2への充放
電々流ICHG(a)は基板容量C1,C2の並列容量とダイ
オードD1の接合容量C1との直列容量によつて決
まる。 In this embodiment, the charging/discharging current I CHG(a) to the substrate capacitances C1 and C2 is determined by the series capacitance of the parallel capacitance of the substrate capacitances C1 and C2 and the junction capacitance C1 of the diode D1.
従つて、ゲート信号VGATEが低くレベルにある
場合の平均充電々流ICHGは
C3=0.5PFとして
ICHG=C3/PWVCS=C3/PW×C1+C2/C1+C2+C3Vp
=0.036mA
本実施例の回路を40回路含むACプラズマデス
プレイードライバー用半導体集積回路の場合の全
電流と消費電力の増加分は
ICHG=1.44mA Ploss=0.216W
と従来の回路に対して著しく減少する。 Therefore, the average charging current I CHG when the gate signal V GATE is at a low level is C 3 = 0.5PF, I CHG = C 3 /PWV CS = C 3 /PW×C 1 +C 2 /C 1 +C 2 +C 3 V p = 0.036mA The increase in total current and power consumption in the case of a semiconductor integrated circuit for an AC plasma display driver that includes 40 circuits of the circuit of this example is I CHG = 1.44mA Ploss = 0.216W and the conventional circuit. significantly decreased compared to
このように、回路の接地電位端子5には半導体
基板10とは別に固定電位を与え、半導体基板1
0は電位的に浮遊状態とし、さらに素子間の絶縁
分離を確保するために半導体基板10に順方向ダ
イオードD1を介して前述の固定電位より若干低
い電位(1V以上)を与えることにより、絶縁分
離のための寄性容量への充放電電流を極めて少く
することができる。 In this way, a fixed potential is applied to the ground potential terminal 5 of the circuit separately from the semiconductor substrate 10, and the semiconductor substrate 1
0 is in a potential floating state, and furthermore, in order to ensure insulation separation between elements, insulation is achieved by applying a potential (1V or more) slightly lower than the above-mentioned fixed potential to the semiconductor substrate 10 via a forward diode D1. The charging and discharging current to the parasitic capacitance for isolation can be extremely reduced.
なお実施例ではP型基板を用いたPN接合分離
型のACプラズマデスプレイドライバー回路につ
いて述べたが、アナログスイツチ等の回路にも同
様に適用される。更にN型基板を用いる場合は
D1を最高電位に接続することにより同様な効果
が得られる。 In the embodiment, a PN junction separated type AC plasma display driver circuit using a P-type substrate has been described, but the present invention can be similarly applied to circuits such as analog switches. Furthermore, when using an N-type substrate,
A similar effect can be obtained by connecting D 1 to the highest potential.
第1図は従来のACプラズマデスプレイドライ
バー用半導体集積回路の等価回路の一部、第2図
は本発明の一実施例によるACプラズマデスプレ
イドライバー用半導体集積回路の等価回路の一
部、第3図は上記一実施例の集積回路の断面図の
一部、第4図は各部の波形図で、VINはACプラ
ズマデスプレイドライバーの入力パルス電圧、
VGATEはゲート電圧、VOUTは出力電圧、VSUBは、
基板電位、ICHG(a)は第2図の実施例での基板容量
充放電々流、ICHG(b)は従来の回路における基板充
放電々流をそれぞれ示す。
1……駆動パルスの入力端子、2……ゲート端
子、3……出力端子、4……基板端子、5,5′
……接地端子、6……−VS電圧を供給する端子、
10……P型半導体基板、11,12……アイラ
ンド。
FIG. 1 shows a part of an equivalent circuit of a conventional semiconductor integrated circuit for an AC plasma display driver, FIG. 2 shows a part of an equivalent circuit of a semiconductor integrated circuit for an AC plasma display driver according to an embodiment of the present invention, and FIG. is a part of the cross-sectional view of the integrated circuit of the above embodiment, FIG. 4 is a waveform diagram of each part, V IN is the input pulse voltage of the AC plasma display driver,
V GATE is the gate voltage, V OUT is the output voltage, V SUB is
The substrate potential, I CHG(a) , indicates the current of charging and discharging the substrate capacitance in the embodiment of FIG. 2, and I CHG(b) indicates the current of charging and discharging the substrate in the conventional circuit, respectively. 1... Drive pulse input terminal, 2... Gate terminal, 3... Output terminal, 4... Board terminal, 5, 5'
...ground terminal, 6...terminal that supplies −V S voltage,
10... P-type semiconductor substrate, 11, 12... Island.
Claims (1)
島領域を有し、各島領域に形成した回路素子を配
線して所定の回路を形成し、前記回路素子の中に
島領域をコレクタ領域とするトランジスタを有す
る半導体集積回路において、電圧レベルが基準電
位と第1の電位との間で変化する信号電圧が前記
トランジスタの前記コレクタ領域に供給され、前
記回路の基準電位点に前記半導体基板を介するこ
となく前記基準電位が与えられ、かつ前記半導体
基板にダイオードを介して一定電位が供給されて
おり、前記ダイオードは前記信号電圧の変化に応
じて導通状態となつたり遮断状態となつたりして
前記半導体基板の電位を前記PN接合を順方向に
バイアスすることのない電圧範囲で変動させるこ
とを特徴とする半導体集積回路。1 A semiconductor substrate has a plurality of island regions separated by PN junctions, circuit elements formed in each island region are wired to form a predetermined circuit, and the island region is used as a collector region in the circuit element. In a semiconductor integrated circuit having a transistor, a signal voltage whose voltage level changes between a reference potential and a first potential is supplied to the collector region of the transistor, and is connected to a reference potential point of the circuit via the semiconductor substrate. The reference potential is applied without any change, and a constant potential is supplied to the semiconductor substrate via a diode, and the diode is turned on or off depending on the change in the signal voltage, and the semiconductor substrate is supplied with a constant potential through a diode. A semiconductor integrated circuit characterized in that the potential of a semiconductor substrate is varied within a voltage range that does not forward bias the PN junction.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8474780A JPS5710261A (en) | 1980-06-23 | 1980-06-23 | Semiconductor integrated circuit |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8474780A JPS5710261A (en) | 1980-06-23 | 1980-06-23 | Semiconductor integrated circuit |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5710261A JPS5710261A (en) | 1982-01-19 |
JPH0147899B2 true JPH0147899B2 (en) | 1989-10-17 |
Family
ID=13839278
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8474780A Granted JPS5710261A (en) | 1980-06-23 | 1980-06-23 | Semiconductor integrated circuit |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5710261A (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58168752A (en) * | 1982-03-29 | 1983-10-05 | 清水建設株式会社 | Brick building |
JPS6065854A (en) * | 1983-09-21 | 1985-04-15 | スパンクリ−ト製造株式会社 | Concrete slab and its construction |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4934729A (en) * | 1972-08-02 | 1974-03-30 | ||
JPS5056183A (en) * | 1973-09-14 | 1975-05-16 |
-
1980
- 1980-06-23 JP JP8474780A patent/JPS5710261A/en active Granted
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4934729A (en) * | 1972-08-02 | 1974-03-30 | ||
JPS5056183A (en) * | 1973-09-14 | 1975-05-16 |
Also Published As
Publication number | Publication date |
---|---|
JPS5710261A (en) | 1982-01-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0314221B1 (en) | Semiconductor switch with parallel LDMOS and LIGT | |
US7436015B2 (en) | Driver for driving a load using a charge pump circuit | |
US6897492B2 (en) | Power device with bi-directional level shift circuit | |
US4926074A (en) | Semiconductor switch with parallel lateral double diffused MOS transistor and lateral insulated gate transistor | |
US6759692B1 (en) | Gate driver with level shift circuit | |
US6638808B1 (en) | Method of manufacturing gate driver with level shift circuit | |
JPH0744846B2 (en) | DC / AC converter | |
US4413237A (en) | Sawtooth wave oscillator | |
US6914297B2 (en) | Configuration for generating a voltage sense signal in a power semiconductor component | |
JP4256476B2 (en) | Power device with short circuit detector | |
JPH0322487A (en) | Transfer type solid-state relay | |
JPS5943096B2 (en) | Manufacturing method for power circuit switch circuits and MOS integrated switch circuits | |
JPH0645530A (en) | Bidirectional-continuity insulated-gate field-effect transistor | |
US5767555A (en) | Compound semiconductor device controlled by MIS gate, driving method therefor and electric power conversion device using the compound semiconductor device and the driving method | |
EP0544047B1 (en) | High current MOS transistor integrated bridge structure optimising conduction power losses | |
US6861880B2 (en) | Driving circuit for push-pull operated transistors | |
JPH0147899B2 (en) | ||
US4761679A (en) | Complementary silicon-on-insulator lateral insulated gate rectifiers | |
JP4617527B2 (en) | Circuit equipment | |
EP0272753B1 (en) | Complementary silicon-on-insulator lateral insulated gate rectifiers | |
JP2545979B2 (en) | Semiconductor integrated circuit device | |
JP2001015691A (en) | Semiconductor integrated circuit | |
JP4830195B2 (en) | Semiconductor device, application circuit using the same, and semiconductor integrated circuit device formed with the application circuit | |
NL8902345A (en) | HV integrated circuit for intelligent power supply - uses buried layer and isolation barrier to reduce risk of short circuits | |
JPS6477155A (en) | Semiconductor integrated circuit device |