JPH0147862B2 - - Google Patents

Info

Publication number
JPH0147862B2
JPH0147862B2 JP57038996A JP3899682A JPH0147862B2 JP H0147862 B2 JPH0147862 B2 JP H0147862B2 JP 57038996 A JP57038996 A JP 57038996A JP 3899682 A JP3899682 A JP 3899682A JP H0147862 B2 JPH0147862 B2 JP H0147862B2
Authority
JP
Japan
Prior art keywords
lead
alloy
thin plate
content
thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57038996A
Other languages
Japanese (ja)
Other versions
JPS58157054A (en
Inventor
Yukihiro Nagata
Juichi Suzuki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Furukawa Battery Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Furukawa Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd, Furukawa Battery Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP57038996A priority Critical patent/JPS58157054A/en
Publication of JPS58157054A publication Critical patent/JPS58157054A/en
Publication of JPH0147862B2 publication Critical patent/JPH0147862B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/68Selection of materials for use in lead-acid accumulators
    • H01M4/685Lead alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【発明の詳細な説明】 本発明は鉛合金薄板を機械加工方式により鉛蓄
電池極板用基板を製造する方法の改良に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in a method for manufacturing a lead-acid battery electrode plate substrate by machining a lead alloy thin plate.

従来鉛蓄電池用格子基板は鉛に4〜8重量%程
度のアンチモンを含有せしめた鉛―アンチモン系
合金が使用されている。この合金は鋳造性に優れ
且つ格子基板として十分な機械的強度を有してい
るが、電解液中においてアンチモンが溶出して、
これが陰極板の表面に析出し、この析出により自
己放電が促進されて電池容量が低下すると共に充
電に際しては充電完了の附近において又は過充電
状態において電流の流量が大きくなり、そのため
に電解液中の水が容易に分解して所謂カツシング
をおこし、その結果セル内の電解液液面が規定以
下に低下するため、たえずこの液面を点検して必
要に応じて補水を行わねばならないという欠点が
あつた。
Conventionally, grid substrates for lead-acid batteries have been made of a lead-antimony alloy containing about 4 to 8% by weight of antimony in lead. This alloy has excellent castability and sufficient mechanical strength as a lattice substrate, but antimony is eluted in the electrolyte.
This deposits on the surface of the cathode plate, and this precipitation promotes self-discharge and reduces battery capacity. At the same time, during charging, the flow rate of current increases near the end of charging or in an overcharged state, which causes Water easily decomposes and causes so-called cutting, and as a result, the electrolyte level in the cell drops below the specified level, so there is a drawback that this level must be constantly checked and water refilled as necessary. Ta.

従つて近時アンチモン含有量を2〜3質量%程
度に減じた鉛―アンチモン系合金からなる格子基
板を使用したメンテナンスフリー電池が開発され
ているが、この合金を使用した基板においても自
己放電及び充電完了時の電流値がそれ程小さくな
らないものであつた。
Therefore, maintenance-free batteries have recently been developed that use lattice substrates made of lead-antimony alloys with antimony content reduced to about 2 to 3% by mass, but even substrates made of this alloy suffer from self-discharge and The current value at the time of completion of charging did not become so small.

又アンチモンを含有しない代表的合金に鉛―カ
ルシウム系や鉛―ストロンチウム系があるが、こ
の種の合金は連続鋳造による製造による製条の生
産性が低い。このためメンテナンスフリー電池基
板用合金として特公昭55−3421号公報によれば鉛
―すず―ヒ素系合金が提案されているが、この種
の合金は機械的強度の点で問題を生ずるものであ
つた。
In addition, lead-calcium alloys and lead-strontium alloys are typical alloys that do not contain antimony, but these types of alloys have low productivity when manufactured by continuous casting. For this reason, according to Japanese Patent Publication No. 55-3421, a lead-tin-arsenic alloy has been proposed as an alloy for maintenance-free battery substrates, but this type of alloy poses problems in terms of mechanical strength. Ta.

本発明はメンテナンスフリー用電池における機
械加工方式により形成される格子基板について高
強度にして耐食性に優れ且つ生産性が良好な基板
の製造方法を提供せんとするものである。即ち本
発明方法は鉛合金薄板を機械加工方式により鉛蓄
電池極板用基板を製造する方法において、0.04〜
1.0重量%の砒素と、0.04〜1.5重量%の錫と、残
部鉛とからなる鉛合金薄板を205℃〜300℃に加熱
し、ついで急冷し、ついで常温にて放置し、つい
で機械加工により極板用基板をうることを特徴と
するものである。
The present invention aims to provide a method for manufacturing a lattice substrate formed by a machining method for a maintenance-free battery, which has high strength, excellent corrosion resistance, and good productivity. That is, the method of the present invention is a method for manufacturing a lead-acid battery electrode plate substrate by machining a lead alloy thin plate.
A thin lead alloy sheet consisting of 1.0% by weight arsenic, 0.04-1.5% by weight tin, and the balance lead is heated to 205°C to 300°C, then rapidly cooled, then left at room temperature, and then mechanically processed to become extremely thin. It is characterized in that it can be used as a substrate for a plate.

本発明方法において、その工程をフロー図にて
示すと第4図の如くであり、又鉛合金薄板の組成
範囲を三元図にて示すと第5図の如くである。
In the method of the present invention, the steps are shown in a flow diagram as shown in FIG. 4, and the composition range of the lead alloy thin plate is shown in a ternary diagram as shown in FIG.

本発明における鉛合金薄板をうるにおいて、砒
素を含有せしめることにより該薄板の機械的強度
並に生産性を向上せしめるものであり、その含有
量を0.04〜1.0重量%(以下%とあるは重量%を
示す)と限定した理由は、0.04%未満の場合には
上記の機械的強度並に生産性の向上は認められな
いものである。又1.0%を越した場合には薄板の
機械的強度並に生産性が1.0%の場合に比して変
らないと共にコスト高になる。更に連続鋳造圧延
にて形成された薄板条の端面にひび割れが発生す
るおそれがある。
In preparing the lead alloy thin sheet according to the present invention, arsenic is added to improve the mechanical strength and productivity of the thin sheet. The reason for this limitation is that if the content is less than 0.04%, no improvements in mechanical strength or productivity will be observed. Moreover, if it exceeds 1.0%, the mechanical strength and productivity of the thin plate will not change compared to the case of 1.0%, and the cost will increase. Furthermore, there is a risk that cracks may occur on the end faces of the thin plate strips formed by continuous casting and rolling.

又錫を含有せしめることにより連続鋳造圧延に
より薄板条の生産速度を向上せしめ且つ該薄板の
耐食性並に機械的強度を向上せしめるものであ
り、その含有量を0.04%未満の場合には耐食性並
に機械的強度の向上はえられず且つ生産性速度も
低下する。又、1.5%を越えた場合には耐食性並
に生産性速度が1.5%の場合とほとんど同様であ
り且つ機械的強度が低下し、コスト高になるため
である。
In addition, the inclusion of tin improves the production rate of thin sheets by continuous casting and rolling, and also improves the corrosion resistance and mechanical strength of the thin sheets.If the content is less than 0.04%, the corrosion resistance and No improvement in mechanical strength can be obtained and the productivity rate is also reduced. Moreover, if it exceeds 1.5%, the corrosion resistance and productivity rate will be almost the same as in the case of 1.5%, and the mechanical strength will decrease, resulting in high cost.

又本発明において薄板の加熱温度を205〜300℃
に限定して加熱した後急冷する理由は、該薄板に
時効硬化を附与せしめるためであり、加熱温度を
205℃未満にした場合には時効硬化が認められな
いものであり、又300℃以上に加熱した場合は薄
板が硬化溶融するおそれがある。
In addition, in the present invention, the heating temperature of the thin plate is 205 to 300℃.
The reason for rapidly cooling after heating is to impart age hardening to the thin plate, and the heating temperature is
If the temperature is below 205°C, no age hardening will be observed, and if the temperature is above 300°C, the thin plate may harden and melt.

次に本発明の実施例について説明する。 Next, examples of the present invention will be described.

実施例 1 Pb―0.6%、Sn―As合金においてAsの含有量
を種々変化せしめた合金について連続鋳造圧延法
により厚さ1mmの薄板を作成し、TQ=200℃、
250℃及び280℃において2時間加熱後、水中に入
れて急冷し室温にて3日間放置したものをエキス
パンド加工し、厚さ0.9mmの極板用基板を作つた。
またエキスパンド加工前の薄板から成る試料につ
いて引張速度1.6×10-3S-1にて引張試験を行つて
求めた降伏応力σ0.2を、Pb―0.6%Sn合金のσ0.2
て割つた比を示する第1図―Aに示す如くであ
る。
Example 1 Thin plates with a thickness of 1 mm were made by continuous casting and rolling method using Pb-0.6% and Sn-As alloys with various As contents, T Q = 200℃,
After heating at 250° C. and 280° C. for 2 hours, it was quenched in water, left at room temperature for 3 days, and expanded to produce a 0.9 mm thick electrode plate substrate.
In addition, the ratio of the yield stress σ 0.2 obtained by conducting a tensile test at a tensile rate of 1.6×10 -3 S -1 on a sample made of a thin plate before expanding by the σ 0.2 of the Pb-0.6%Sn alloy is calculated. As shown in FIG. 1-A.

第1図―Aより明らかの如くTQ=200℃におい
ては急冷による時効硬化は認められないが、TQ
=250℃及び280℃においては急冷による時効硬化
が顕著に表われ、機械的強度が著しく向上した。
As is clear from Figure 1-A, age hardening due to rapid cooling is not observed at T Q = 200℃, but T Q
At =250°C and 280°C, age hardening due to rapid cooling was noticeable, and the mechanical strength was significantly improved.

又上記の薄板についてその平均生産速度をPb
―0.6%Snの平均生産速度で割つた比を示すと第
1図―Bの如くである。
Also, the average production speed of the above thin plate is Pb
- The ratio divided by the average production rate of 0.6% Sn is shown in Figure 1-B.

第1図―Bから明らかの如くAsの含有量の増
加に伴つて生産速度比の向上が見られ、Asの含
有量が0.5%以上ではその生産速度の勾配がゆる
やかになつた。
As is clear from Figure 1-B, the production rate ratio improved as the As content increased, and the gradient of the production rate became gentler when the As content was 0.5% or more.

実施例 2 Pb―0.35As―Sn合金においてSnの含有量を
種々変化せしめた合金について、連続鋳造圧延法
により厚さ0.9mmの薄板を作成し、TQ=200℃、
215℃及び290℃に2.5時間加熱し、そのまま水中
に入れて急冷した後室温にて5時間放置したもの
を実施例1と同様エキスパンド加工し基板を形成
した。またエキスパンド加工前の薄板から成る試
料について引張速度8.3×104S-1にて引張試験を
行つて求めた降伏応力σ0.2をPb―0.35As合金の
σ0.2で割つた比を示する第2図―Aの如くである。
Example 2 Pb-0.35As-Sn alloys with various Sn contents were made into thin plates with a thickness of 0.9 mm by continuous casting and rolling, and T Q = 200°C.
The material was heated to 215° C. and 290° C. for 2.5 hours, immersed in water, rapidly cooled, and then left at room temperature for 5 hours, and then expanded in the same manner as in Example 1 to form a substrate. In addition, a second graph showing the ratio of the yield stress σ 0.2 obtained by conducting a tensile test on a thin plate sample before expanding at a tensile rate of 8.3×10 4 S -1 by σ 0.2 of the Pb-0.35As alloy It is as shown in Figure A.

又上記の薄板についてその平均生産速度をPb
―0.35Asの平均生産速度で割つた比を示すと第
2図―Bの如くである。
Also, the average production speed of the above thin plate is Pb
The ratio divided by the average production rate of -0.35As is shown in Figure 2-B.

実施例 3 Pb―0.8%As―Sn合金においてSnの含有量を
種々変化せしめた合金について、連続鋳造法によ
り厚さ0.9mmの薄板を作成し、これをエキスパン
ド加工して厚さ0.8mmの基板を作成した。またエ
キスパンド加工前の薄板の腐食試験における腐食
による質量減を、Pb―0.8As合金条の腐食による
質量減で割つた比を示すと第3図の如くである。
Example 3 For Pb-0.8%As-Sn alloys with various Sn contents, a thin plate with a thickness of 0.9 mm was created by continuous casting method, and this was expanded to form a substrate with a thickness of 0.8 mm. It was created. Furthermore, the ratio of the mass loss due to corrosion in the corrosion test of the thin plate before expanding to the mass loss due to corrosion of the Pb-0.8As alloy strip is shown in Figure 3.

まず、腐食試験条件は比重1.260(20℃)の電解
液中に試料を浸漬して0.5A(A)で350Hr通電した
後、これを取出し腐食による質量減を測定したも
のである。
First, the corrosion test conditions were such that a sample was immersed in an electrolytic solution with a specific gravity of 1.260 (20°C) and then energized at 0.5A (A) for 350 hours, and then taken out and the mass loss due to corrosion was measured.

第3図より明らかの如くSn含有量が0.9〜1.0%
にて腐食量が最小となることが認められた。
As is clear from Figure 3, the Sn content is 0.9 to 1.0%.
It was observed that the amount of corrosion was minimized.

以上詳述した如く本発明方法によれば合金にお
いてSbを全く含有していないため自己放電は極
めて小さく、しかも機械的強度、腐食性が優れて
いると共に合金薄板の生産速度が著しく向上する
等顕著な効果を有する。
As detailed above, according to the method of the present invention, since the alloy does not contain any Sb, self-discharge is extremely small, and it also has excellent mechanical strength and corrosion resistance, and the production rate of alloy thin sheets is significantly increased. It has a great effect.

【図面の簡単な説明】[Brief explanation of drawings]

第1図乃至第3図は本発明方法における合金薄
板の特性を示すものであり、第1図AはAs含有
量と時効硬化比との関係曲線図、第1図BはAs
含有量と生産速度比との関係曲線図、第2図Aは
Sn含有量と時効硬化比との関係曲線図、第2図
BはSn含有量と生産速度比との関係曲線図、第
3図はSn含有量と質量減比との関係曲線図、第
4図は本発明方法の工程フロー図、第5図は本発
明における鉛合金板の組成範囲を示す三元図であ
る。
Figures 1 to 3 show the characteristics of the alloy thin plate obtained by the method of the present invention, Figure 1A is a relationship curve between As content and age hardening ratio, and Figure 1B is a graph showing the relationship between As content and age hardening ratio.
The relationship curve diagram between content and production rate ratio, Figure 2A is
Figure 2B is a relationship curve between Sn content and age hardening ratio. Figure 3 is a relationship curve between Sn content and mass reduction ratio. Figure 4 is a relationship curve between Sn content and mass reduction ratio. The figure is a process flow diagram of the method of the present invention, and FIG. 5 is a ternary diagram showing the composition range of the lead alloy plate in the present invention.

Claims (1)

【特許請求の範囲】 1 0.04〜1.0重量%の砒素と、0.04〜1.5重量%
の錫と、残部鉛とからなる鉛合金板を205〜300℃
に加熱し、 ついで急冷し、 ついで常温にて放置し、 ついで機械加工により極板用基板をうる ことを特徴とする鉛合金蓄電池極板用基板の製造
方法。
[Claims] 1 0.04-1.0% by weight of arsenic and 0.04-1.5% by weight
A lead alloy plate consisting of tin and the balance lead is heated at 205 to 300℃.
1. A method for manufacturing a lead alloy storage battery electrode plate substrate, which comprises heating the electrode material to a temperature of 100 mL, then rapidly cooling it, leaving it at room temperature, and then machining it to obtain an electrode plate substrate.
JP57038996A 1982-03-12 1982-03-12 Manufacture of substrate for lead-acid battery Granted JPS58157054A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57038996A JPS58157054A (en) 1982-03-12 1982-03-12 Manufacture of substrate for lead-acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57038996A JPS58157054A (en) 1982-03-12 1982-03-12 Manufacture of substrate for lead-acid battery

Publications (2)

Publication Number Publication Date
JPS58157054A JPS58157054A (en) 1983-09-19
JPH0147862B2 true JPH0147862B2 (en) 1989-10-17

Family

ID=12540738

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57038996A Granted JPS58157054A (en) 1982-03-12 1982-03-12 Manufacture of substrate for lead-acid battery

Country Status (1)

Country Link
JP (1) JPS58157054A (en)

Also Published As

Publication number Publication date
JPS58157054A (en) 1983-09-19

Similar Documents

Publication Publication Date Title
JP3555877B2 (en) Alloy for battery grid
CN101675175B (en) Lead-tin-silver-bismuth containing alloy for positive grid of lead acid batteries
US20050221191A1 (en) Lead alloy and lead storage battery using it
JP2003520293A (en) Alloys for thin positive grids for lead-acid batteries and methods of manufacturing this grid
KR100305423B1 (en) Expanded Grid For Electrode Plate of Lead-Acid Battery
US3993480A (en) Lead-antimony alloy
JP4160856B2 (en) Lead-based alloy for lead-acid battery and lead-acid battery using the same
US5024908A (en) Lead storage battery
US20050227149A1 (en) Electrode
US5401278A (en) Method of making battery plates for lead acid storage batteries
JPS581039A (en) Lead alloy for lead-acid storage battery
US4207097A (en) Lead alloy for lead-acid batteries and process for producing the alloy
JP2000077076A (en) Lead base alloy for storage battery
JPH0212385B2 (en)
JPH1197032A (en) Current collector made of aluminum foil for secondary cell
JPH0212386B2 (en)
JPH0147862B2 (en)
Prengaman Current-collectors for lead–acid batteries
JP2000315519A (en) Lead acid storage battery
JPH0326905B2 (en)
JPS6127066A (en) Grid for lead-acid battery and its manufacture
US4169192A (en) Lead-acid storage battery having Pb-Cd-Zn-Sn plate straps
US3144356A (en) Battery grid alloy
JP4423837B2 (en) Rolled lead alloy for storage battery and lead storage battery using the same
JPH0629021A (en) Lead-based alloy containing calcium, tin and silver, electrode grid made of avobe alloy and lead-acid battery