JPH0147601B2 - - Google Patents

Info

Publication number
JPH0147601B2
JPH0147601B2 JP58047856A JP4785683A JPH0147601B2 JP H0147601 B2 JPH0147601 B2 JP H0147601B2 JP 58047856 A JP58047856 A JP 58047856A JP 4785683 A JP4785683 A JP 4785683A JP H0147601 B2 JPH0147601 B2 JP H0147601B2
Authority
JP
Japan
Prior art keywords
steam
hot water
phase flow
heat exchanger
boiling point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58047856A
Other languages
Japanese (ja)
Other versions
JPS59173508A (en
Inventor
Keijiro Yamaoka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Engineering and Shipbuilding Co Ltd
Original Assignee
Mitsui Engineering and Shipbuilding Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Engineering and Shipbuilding Co Ltd filed Critical Mitsui Engineering and Shipbuilding Co Ltd
Priority to JP58047856A priority Critical patent/JPS59173508A/en
Publication of JPS59173508A publication Critical patent/JPS59173508A/en
Publication of JPH0147601B2 publication Critical patent/JPH0147601B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G7/00Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for
    • F03G7/04Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for using pressure differences or thermal differences occurring in nature

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Description

【発明の詳細な説明】 本発明は地熱発電に主として適用できる二相流
発電装置の改良に関し、熱水に含まれる蒸気と熱
水とに分離する手段として回転分離式二相流ター
ビンを利用して蒸気と熱水とに分離し、熱水を昇
圧して直接熱交換器に供給し、低沸点媒体と直接
接触させて熱交換して低沸点媒体の蒸気を発生さ
せ、この蒸気によつてタービンを駆動して発電す
る、いわゆる直接接触式バイナリー発電装置に関
する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement of a two-phase flow power generation device mainly applicable to geothermal power generation, and uses a rotary separation type two-phase flow turbine as a means for separating hot water into steam and hot water contained in hot water. The hot water is pressurized and directly supplied to a heat exchanger, and brought into direct contact with a low-boiling point medium to exchange heat and generate low-boiling point medium vapor. This invention relates to a so-called direct contact binary power generation device that generates electricity by driving a turbine.

従来、地下の熱水の持つエネルギを利用して発
電する方法は、バイナリーサイクル地熱発電方法
として知られている。
Conventionally, a method of generating electricity using the energy contained in underground hot water is known as a binary cycle geothermal power generation method.

この地熱発電装置は、第1図に示すように地下
の二相流Hを蒸気Sと熱水Wとに分離するサイク
ロンセパレータ1と、前記分離された蒸気Sと低
沸点媒体Lとの間で熱交換する間接熱交換器2
と、低沸点媒体Lの蒸気L′で駆動される蒸気ター
ビン3と、この蒸気タービン3によつて駆動され
る発電機4と、、前記サイクロンセパレータ1で
分離された熱水Wと蒸気タービン3より排出され
た低沸点物の液体Lとの間で熱交換するための直
接熱交換器5と、前記サイクロンセパレータ1よ
り分離した熱水Wを加圧するポンプ6と、前記蒸
気タービン3より排出された低沸点媒体の蒸気L
を復水するためのコンデンサ7より成る一連の装
置を使用している。
As shown in FIG. 1, this geothermal power generation device has a cyclone separator 1 that separates an underground two-phase flow H into steam S and hot water W, and a cyclone separator 1 that separates the separated steam S and the low boiling point medium L. Indirect heat exchanger 2 for heat exchange
, a steam turbine 3 driven by steam L' of a low boiling point medium L, a generator 4 driven by this steam turbine 3, and a hot water W separated by the cyclone separator 1 and the steam turbine 3. a direct heat exchanger 5 for exchanging heat with the low boiling point liquid L discharged from the cyclone separator 1; a pump 6 for pressurizing the hot water W separated from the cyclone separator 1; Steam L of low boiling point medium
A series of devices consisting of a condenser 7 is used to condense the water.

前記一連の発電装置に二相流Hを配管8を経由
してサイクロンセパレータ1に供給し、このサイ
クロンセパレータ1内で蒸気Sと熱水Wとに分離
し、前記蒸気Sを間接式熱交換器2に供給し、こ
の熱交換器2内において低沸点媒体Lと熱交換
し、低沸点媒体Lの高温高圧の蒸気L′とし、また
前記熱水Wはポンプ6によつて低沸点物Lの前記
温度に相当する圧力にまで昇圧して直接熱交換器
5に供給する。そしてタービン3より排出され、
コンデンサ7によつて液体となつた低沸点媒体L
と前記熱水Hとの間で熱交換させ低沸点媒体Lは
蒸気L′となつて再びタービン3に供給される。ま
た、熱交換器5内で熱交換した熱水Wは管10を
経由して系外に排出される。
A two-phase flow H is supplied to the series of power generation devices via piping 8 to a cyclone separator 1, separated into steam S and hot water W within the cyclone separator 1, and the steam S is transferred to an indirect heat exchanger. 2, and exchanges heat with the low-boiling point medium L in the heat exchanger 2 to turn the low-boiling point medium L into high-temperature, high-pressure steam L'. The pressure is increased to a pressure corresponding to the temperature and directly supplied to the heat exchanger 5. Then, it is discharged from turbine 3,
Low boiling point medium L turned into liquid by condenser 7
The low boiling point medium L undergoes heat exchange between the L and the hot water H, and is turned into steam L' and supplied to the turbine 3 again. Further, the hot water W that has undergone heat exchange within the heat exchanger 5 is discharged to the outside of the system via the pipe 10.

前記のように従来の直接接触式バイナリーサイ
クル地熱発電装置は大型のサイクロンセパレータ
1と熱水Wを昇圧する大型のポンプ6を必要とす
る。
As described above, the conventional direct contact type binary cycle geothermal power generation device requires a large cyclone separator 1 and a large pump 6 for pressurizing the hot water W.

例えば、2000トン・時の熱水を2気圧から15気
圧に昇圧するに要するポンプ動力は、約1000キロ
ワツト必要であり、これは熱水による全発電量の
約15%に相当する。
For example, the pump power required to raise the pressure of 2,000 tons/hour of hot water from 2 atm to 15 atm is approximately 1,000 kilowatts, which is equivalent to approximately 15% of the total power generation from hot water.

また、従来の熱水をサイクロンセパレータによ
つて蒸気と熱水とに分離する装置は、減圧による
エネルギーの損失が発生したり、このサイクロン
セパレータ内にスケールが付着したり蒸気タービ
ンにコロージヨンが発生する欠点がある。更に、
前記のようにサイクロンセパレータ等の装置を使
用すると一連の装置が全体的に大型となる欠点が
ある。
In addition, with conventional equipment that separates hot water into steam and hot water using a cyclone separator, energy loss occurs due to pressure reduction, scale builds up inside the cyclone separator, and corrosion occurs in the steam turbine. There are drawbacks. Furthermore,
As mentioned above, when a device such as a cyclone separator is used, there is a drawback that the entire series of devices becomes large in size.

本発明は、前記地熱の利用したバイナリー発電
装置の各種欠点を解消した装置を提供することを
目的とするものである。
An object of the present invention is to provide a device that eliminates various drawbacks of the binary power generation device using geothermal energy.

地熱は地下に生じた二相流を蒸気は熱水とに分
離して使用する必要があり、この関係から本発明
者等は、回転分離式二相流タービンについて研究
し、多くの発明と改善を成した。
For geothermal energy, it is necessary to separate the two-phase flow generated underground into steam and hot water before use, and based on this relationship, the present inventors have researched rotary separation type two-phase flow turbines and have made many inventions and improvements. accomplished.

この回転分離式二相流タービンの特徴は、熱水
を動力の主体として利用する関係上、構造が単純
である上に比較的出力が大きく、更に信頼性が高
く、スケールが付着せず、またコロージヨンも発
生し難いと言う利点がある。
This rotary separation type two-phase flow turbine uses hot water as the main power source, so it has a simple structure, relatively high output, high reliability, no scale buildup, and It has the advantage of being less likely to cause corrosion.

本発明は、前記回転分離式二相流タービンを従
来の地熱を利用したバイナリー発電装置に結合さ
せて二相流を蒸気と熱水とに分離する分離機と
し、また熱水を加圧するポンプとして利用する発
電装置を提供するものである。
The present invention combines the rotary separation type two-phase flow turbine with a conventional binary power generation device using geothermal heat to form a separator that separates the two-phase flow into steam and hot water, and also as a pump that pressurizes the hot water. It provides a power generation device for use.

前記目的を達成するための本発明の構成は、蒸
気と熱水との混合体から成る二相流を蒸気と熱水
とに分離し、この蒸気を間接熱交換器に供給して
低沸点媒体と熱交換してこの低沸点媒体の蒸気を
発生させ、前記分離された熱水を直接接触式熱交
換器に供給して低沸点媒体の蒸気によつて駆動さ
れるタービンより排出された低沸点媒体の液体と
直接接触させて低沸点媒体の蒸気を発生させ、前
記間接熱交換器と直接熱交換器とによつて発生し
た低沸点媒体の蒸気によつてタービンを駆動して
発電するように構成した装置において、回転分離
式二相流タービンによつて前記二相流を蒸気と熱
水とに分離し、且つこのタービンによつて分離さ
れ、昇圧された熱水を直接熱交換器に供給するよ
うに構成したことを特徴とする二相流タービンを
利用した発電装置である。
The configuration of the present invention to achieve the above object is to separate a two-phase flow consisting of a mixture of steam and hot water into steam and hot water, and supply this steam to an indirect heat exchanger to convert it into a low boiling point medium. The separated hot water is supplied to a direct contact heat exchanger to generate steam of the low boiling point medium, and the low boiling point water is discharged from the turbine driven by the steam of the low boiling point medium. The steam of the low boiling point medium is generated by direct contact with the liquid of the medium, and the steam of the low boiling point medium generated by the indirect heat exchanger and the direct heat exchanger drives a turbine to generate electricity. In the configured apparatus, the two-phase flow is separated into steam and hot water by a rotary separation type two-phase flow turbine, and the separated and pressurized hot water is directly supplied to the heat exchanger. This is a power generation device using a two-phase flow turbine, characterized in that it is configured to.

次に図面を参照して本発明の実施例を説明す
る。
Next, embodiments of the present invention will be described with reference to the drawings.

第2図は本発明に係るバイナリー発電装置の概
略図で、配管20によつて地熱二相流Hを二相流
タービン21に供給してこの二相流タービン21
を駆動することによつて蒸気Sと熱水Wとに分離
し、蒸気Sは配管24を通じて間接熱交換器22
に供給して熱交換素子26を加熱する。そして、
熱水Wは配管25を通じて直接熱交換器23に供
給して、低沸点媒体Lとの間で熱交換してこれを
加熱して低沸点媒体Lの蒸気L′とする。
FIG. 2 is a schematic diagram of a binary power generation device according to the present invention, in which a geothermal two-phase flow H is supplied to a two-phase flow turbine 21 through a pipe 20, and the two-phase flow turbine 21 is
is separated into steam S and hot water W, and the steam S is passed through the pipe 24 to the indirect heat exchanger 22.
is supplied to heat the heat exchange element 26. and,
The hot water W is directly supplied to the heat exchanger 23 through the piping 25, and is heated by exchanging heat with the low boiling point medium L to become vapor L' of the low boiling point medium L.

間接熱交換器22内の熱交換素子27は低沸点
媒体Lの経路であり、前記蒸気Sの熱によつて低
沸点媒体Lの蒸気L′となり、この蒸気L′と前記直
接熱交換器23内で発生した低沸点媒体の蒸気
L′と共に配管28を経由してタービン29に供給
され、これを駆動して発電機30によつて発電す
る。
The heat exchange element 27 in the indirect heat exchanger 22 is a path for the low boiling point medium L, and the heat of the steam S turns the low boiling point medium L into steam L', and this steam L' and the direct heat exchanger 23 Vapor of low boiling point medium generated in
It is supplied together with L' to a turbine 29 via a pipe 28, which is driven to generate electricity by a generator 30.

タービン29を駆動した低沸点媒体の蒸気L′は
凝縮器32によつて凝縮して低沸点媒体の液体L
となり、復水ポンプ33、配管34を経由して直
接熱交換器23に還流する。低沸点媒体Lの一部
は復水ポンプ33より後流側において分流して配
管35を経由して間接熱交換器22内に導入され
て前記のように間接熱交換機22によつて蒸気
L′となる。
The low boiling point medium vapor L' that drove the turbine 29 is condensed by the condenser 32 and becomes the low boiling point medium liquid L.
The water then flows back directly to the heat exchanger 23 via the condensate pump 33 and piping 34. A part of the low boiling point medium L is branched on the downstream side from the condensate pump 33 and introduced into the indirect heat exchanger 22 via the pipe 35, where it is converted into steam by the indirect heat exchanger 22 as described above.
It becomes L′.

第1図と第2図とを比較して分るように、本発
明に係る装置においてはサイクロンセパレータ1
と熱水Wを昇圧するポンプ6が省略しその代りに
回転分離式二相流タービン21が使用されている
点に特徴がある。
As can be seen by comparing FIG. 1 and FIG. 2, in the apparatus according to the present invention, the cyclone separator 1
The pump 6 for boosting the pressure of the hot water W is omitted, and a rotary separation type two-phase flow turbine 21 is used instead.

本発明において使用する回転分離式二相流ター
ビン21は各種の構造のものを適用できるが、例
えば本出願人が先に出願した特願昭57−230219号
等に記載した二相流タービンを使用することが可
能である。また、低沸点媒体としてはイソブタ
ン、ブタン等の親水性のない特性を有する低沸点
媒体が使用される。
The rotary separation type two-phase flow turbine 21 used in the present invention can have various structures, but for example, the two-phase flow turbine described in Japanese Patent Application No. 57-230219 previously filed by the present applicant is used. It is possible to do so. Further, as the low boiling point medium, a low boiling point medium having non-hydrophilic properties such as isobutane or butane is used.

次に第2図に示した本発明に係る地熱利用のバ
イナリー発電装置のモデルより算出した各種のデ
ータについて説明する。
Next, various data calculated from the model of the geothermal binary power generation device according to the present invention shown in FIG. 2 will be explained.

蒸気比10%で温度127℃、圧力2.5Kg/cm2の二相
流Hを二相流ノズルで圧力2.0Kg/cm2に迄減圧する
ことにより、二相流タービンは高速回転を行な
い、蒸気と熱水を分離すると共に、熱水を約20
Kg/cm2程度とに昇圧することができる。
By reducing the pressure of the two-phase flow H at a temperature of 127°C and a pressure of 2.5 Kg/cm 2 to a pressure of 2.0 Kg/cm 2 with a two-phase flow nozzle at a steam ratio of 10%, the two-phase flow turbine rotates at high speed and generates steam. At the same time as separating hot water from
The pressure can be increased to about Kg/ cm2 .

即ち、サイクロンセパレータは仕事をせずに減
圧するのみであるが、本発明に係る装置は仕事を
しながら減圧することに特徴がある。
That is, while a cyclone separator only reduces pressure without doing any work, the device according to the present invention is characterized in that it reduces pressure while doing work.

以上説明したように、本発明に係る装置は地熱
二相流Hを二相流タービン21によつて蒸気Sと
熱水Wとに分離すると共に、このタービン21の
高速回転に伴なつて熱水を昇圧するポンピング作
用とを利用しているので、次の作用効果を奏する
ことが可能である。
As explained above, the device according to the present invention separates geothermal two-phase flow H into steam S and hot water W by the two-phase flow turbine 21, and also separates the hot water into steam S and hot water W as the turbine 21 rotates at high speed. Since it utilizes a pumping action that increases the pressure of the pump, it is possible to achieve the following effects.

(イ) 二相流タービン自体は、地熱二相流Hによつ
て駆動されて蒸気Sと熱水Wとを分離する作用
と、熱水Wを昇圧する作用とを行うので、従来
の地熱二相流発電装置において必要としていた
サイクロンセパレータ1と熱水Wを昇圧するポ
ンプ6が不要となる。
(a) The two-phase flow turbine itself is driven by the geothermal two-phase flow H to separate steam S and hot water W, and to pressurize the hot water W, so it is different from the conventional geothermal turbine. The cyclone separator 1 and the pump 6 for boosting the pressure of the hot water W, which were required in the phase-flow power generation device, are no longer necessary.

(ロ) 前記ポンプ6は一般には多段のタービンポン
プであつて、それを駆動するのに多量の電力を
必要としていたが、本発明に係る装置はこの電
力は不必要であり、地熱二相流より得られたエ
ネルギを無駄に消耗することがなく、このポン
プ6を駆動するための所内動力が不要となる。
(b) The pump 6 is generally a multi-stage turbine pump and requires a large amount of electric power to drive it, but the device according to the present invention does not require this electric power and uses geothermal two-phase flow. The energy obtained is not wasted, and internal power for driving the pump 6 is not required.

(ハ) 二相流タービンは高効率分離機能を有してい
るので、間接熱交換器22へ良質の蒸気Sを供
給することができる。従つてこの間接熱交換器
22内へスケールを付着させることがなく、ま
たコロージヨンを防止することができる。
(c) Since the two-phase flow turbine has a highly efficient separation function, it can supply high quality steam S to the indirect heat exchanger 22. Therefore, scale does not adhere to the interior of the indirect heat exchanger 22, and corrosion can be prevented.

(ニ) 二相流タービン21は構造が単純である関係
上、小型であり、しかも従来のサイクロンセパ
レータ1や昇圧ポプ6を省略することができる
ので地熱二相流を利用した発電設備を小型化す
ることが可能である。
(d) The two-phase flow turbine 21 is small due to its simple structure, and the conventional cyclone separator 1 and booster popup 6 can be omitted, making power generation equipment using geothermal two-phase flow more compact. It is possible to do so.

(ホ) 直接熱交換器は高圧であるため、熱水を昇圧
させて供給する必要があるが、本発明では回転
分離式二相流タービンを使用したために、わざ
わざセパレータや高圧ポンプを使用しなくてよ
く、経済的であると同時に設置スペースの縮少
に大いに役立つことができる。また蒸気と熱水
との混合体からなる二相流、例えば地熱水は各
種の溶解物や固型物を含有しており、そのため
にスケールの発生や固型物の混入等の問題が生
ずるが、これを本発明の発電装置では回転分離
式二相流タービンを特に用いたことによりかか
る問題を解決することが可能である。
(e) Since the direct heat exchanger is at high pressure, it is necessary to pressurize and supply the hot water, but since the present invention uses a rotary separation type two-phase flow turbine, there is no need to use a separator or a high-pressure pump. It is economical and can greatly help reduce installation space. In addition, two-phase flows consisting of a mixture of steam and hot water, such as geothermal water, contain various dissolved substances and solid substances, which can cause problems such as scale generation and the contamination of solid substances. However, in the power generating apparatus of the present invention, it is possible to solve this problem by specifically using a rotationally separated two-phase flow turbine.

(ヘ) 直接熱交換器と間接熱交換器との組合せ構成
の有効活用により熱効率のよい発電装置を得る
ことができる。
(F) A power generation device with high thermal efficiency can be obtained by effectively utilizing a combination configuration of a direct heat exchanger and an indirect heat exchanger.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の地熱二相流を使用した発電装置
の概略図、第2図は本発明に係る発電装置の概略
図である。 21…二相流タービン、22…間接熱交換器、
23…直接熱交換器、29…低沸点媒体駆動の蒸
気タービン、30…発電機、32…コンデンサ、
33…ポンプ。
FIG. 1 is a schematic diagram of a conventional power generating device using geothermal two-phase flow, and FIG. 2 is a schematic diagram of a power generating device according to the present invention. 21... Two-phase flow turbine, 22... Indirect heat exchanger,
23... Direct heat exchanger, 29... Steam turbine driven by low boiling point medium, 30... Generator, 32... Condenser,
33...Pump.

Claims (1)

【特許請求の範囲】[Claims] 1 蒸気と熱水との混合体から成る二相流を蒸気
と熱水とに分離し、この蒸気を間接熱交換器に供
給して低沸点媒体と熱交換してこの低沸点媒体の
蒸気を発生させ、前記分離された熱水を直接接触
式熱交換器に供給して低沸点媒体の蒸気によつて
駆動されるタービンより排出された低沸点媒体の
液体と直接接触させて低沸点媒体の蒸気を発生さ
せ、前記間接熱交換器と直接熱交換器とによつて
発生した低沸点媒体の蒸気によつてタービンを駆
動して発電するようにし、回転分離式二相流ター
ビンによつて前記二相流を蒸気と熱水とに分離
し、且つこのタービンによつて分離され、昇圧さ
れた熱水を直接熱交換器に供給するように構成し
たことを特徴とする二相流タービンを利用した発
電装置。
1 A two-phase flow consisting of a mixture of steam and hot water is separated into steam and hot water, and this steam is supplied to an indirect heat exchanger to exchange heat with a low boiling point medium to convert the steam of this low boiling point medium. The separated hot water is supplied to a direct contact heat exchanger to bring it into direct contact with the liquid of the low boiling medium discharged from a turbine driven by the steam of the low boiling point medium. Steam is generated, and the steam of the low boiling point medium generated by the indirect heat exchanger and the direct heat exchanger drives a turbine to generate electricity, and the rotary separation type two-phase flow turbine generates electricity. Utilizes a two-phase flow turbine characterized in that it is configured to separate a two-phase flow into steam and hot water, and to directly supply the separated and pressurized hot water to a heat exchanger. power generation equipment.
JP58047856A 1983-03-24 1983-03-24 Electric power generation unit by use of two-phase flow turbine Granted JPS59173508A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58047856A JPS59173508A (en) 1983-03-24 1983-03-24 Electric power generation unit by use of two-phase flow turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58047856A JPS59173508A (en) 1983-03-24 1983-03-24 Electric power generation unit by use of two-phase flow turbine

Publications (2)

Publication Number Publication Date
JPS59173508A JPS59173508A (en) 1984-10-01
JPH0147601B2 true JPH0147601B2 (en) 1989-10-16

Family

ID=12787008

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58047856A Granted JPS59173508A (en) 1983-03-24 1983-03-24 Electric power generation unit by use of two-phase flow turbine

Country Status (1)

Country Link
JP (1) JPS59173508A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50133358A (en) * 1974-04-13 1975-10-22
JPS57163105A (en) * 1981-04-02 1982-10-07 Kobe Steel Ltd Power recovery method from low temperature heat source

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50133358A (en) * 1974-04-13 1975-10-22
JPS57163105A (en) * 1981-04-02 1982-10-07 Kobe Steel Ltd Power recovery method from low temperature heat source

Also Published As

Publication number Publication date
JPS59173508A (en) 1984-10-01

Similar Documents

Publication Publication Date Title
US4932204A (en) Efficiency combined cycle power plant
US4063417A (en) Power generating system employing geothermally heated fluid
KR101317222B1 (en) High efficiency feedwater heater
CN110593977A (en) Dual-working-medium Rankine cycle waste heat power generation method and system and generator
US4896496A (en) Single pressure steam bottoming cycle for gas turbines combined cycle
CN101638998A (en) Front-end double pressure heat absorbing and heat returning circulating thermal system for thermal generator set
JP5463313B2 (en) Thermal power plant
JPH0147601B2 (en)
JPH09209714A (en) Composite power generating device with reactor coolant heating steam generator
CN210948820U (en) Dual-working-medium Rankine cycle waste heat power generation system and generator
JPH0440524B2 (en)
JPS58140409A (en) Circulation system of steam
US4236968A (en) Device for removing heat of decomposition in a steam power plant heated by nuclear energy
JPH0985059A (en) Seawater desalting apparatus by reverse osmosis membrane
JPS6365807B2 (en)
SU1125393A1 (en) Method of starting cold and non-cooled electric power station power unit
JPS61126309A (en) Steam power plant
JPS62197606A (en) Heat recovery device
JPS5823211A (en) Waste heat recovery power plant
JPS62298668A (en) Geothermal power system
CN214088684U (en) Device for preparing methane from nuclear power surplus electricity
CN217400982U (en) Thermodynamic system for improving heat consumption rate of secondary reheating unit
JPS63170507A (en) Geothermal power generating plant
JPH0233845B2 (en) JOKITAABIN PURANTONONTENHOHO
JP2003161115A (en) Exhaust heat recovery system by gas turbine