JPH0147483B2 - - Google Patents

Info

Publication number
JPH0147483B2
JPH0147483B2 JP15619980A JP15619980A JPH0147483B2 JP H0147483 B2 JPH0147483 B2 JP H0147483B2 JP 15619980 A JP15619980 A JP 15619980A JP 15619980 A JP15619980 A JP 15619980A JP H0147483 B2 JPH0147483 B2 JP H0147483B2
Authority
JP
Japan
Prior art keywords
group
lower alkyl
pva
formula
alkyl groups
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP15619980A
Other languages
Japanese (ja)
Other versions
JPS5780401A (en
Inventor
Tohei Morya
Junnosuke Yamauchi
Makoto Shiraishi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP55156199A priority Critical patent/JPS5780401A/en
Publication of JPS5780401A publication Critical patent/JPS5780401A/en
Publication of JPH0147483B2 publication Critical patent/JPH0147483B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Polymerisation Methods In General (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、エチレン性不飽和単量体を水性媒体
中で懸濁重合するに際し、懸濁粒子の分散安定効
果に優れかつ優れた物性の重合体を与える分散安
定剤として分子内に特定のカチオン基を含有する
変性ポリビニルアルコールを使用することを特徴
とする懸濁重合方法に関する。特にこの懸濁重合
方法は塩化ビニルの重合においてその工業的価値
を最も高く発揮し得るものである。 従来より塩化ビニル単量体を水中で懸濁重合す
るに際して懸濁重合安定剤としてセルロース誘導
体、ポリビニルアルコール、ゼラチン、マレイン
酸共重合体などが用いられているが、とりわけポ
リビニルアルコール(以下PVAと略記する)は
その優れた分散安定効果により広く採用されるに
到つている。塩化ビニルの懸濁重合においては分
散安定効果に加えて生成した重合体の加工性に重
要な技術的関心が払われており、特に現在の懸濁
重合方法による重合体は可塑剤吸収性能が低く、
これが原因してしばしば成型加工品にフイツシユ
アイの欠点を生じ製品の外観が著しく損われる問
題が生じている。 かかる観点から、より優れた性能をPVAに付
与する目的で、重合度、ケン化度の調節に加えて
ケン化度分布の調節(特開昭54−90385)あるい
は酢酸基の配列分布の調節などがなされている。
更に、PVAを積極的に化学変性して改良する方
法として、疎水基を導入したPVA(特公昭51−
6546、特公昭44−6830、特公昭54−44314)ある
いはクロトン酸などを導入したPVA(特開昭54−
33580、特開昭54−46284)あるいはラクトン環を
導入したPVA(特開昭54−85288)などが提案さ
れているが、分散安定性、重合体の加工性、粒度
分布、作業性などの点でいずれも一長一短があり
性能のバランス上充分満足できるレベルにあると
はいえない。 本発明者らは、PVAの化学変性に関してより
広範囲に検討を行い、得られた多くの変性PVA
の懸濁重合用安定剤としての性能を評価した結
果、分子内に特定のカチオン基を含有する変性
PVAが、かかる目的に対して卓効を有すること
を見出すと共に一方で更に工業的に有利なPVA
のカチオン変性方法を確立することにより本発明
を完成したものである。従来より、デンプン、あ
るいはポリアクリルアミド等の水溶性高分子にカ
チオン変性する技術は知られており、工業的にも
製造されているが、カチオン基で変性したPVA
を懸濁重合における分散安定剤として使用する思
想は全く知られていない。これは、カチオン基を
付与する方法は従来も少数ながら提唱されている
が、いずれも変性方法に難点があり工業的に製造
することが困難であつたことが理由の一つとして
挙げられよう。 以下本発明を更に詳しく説明する。 本発明に使用される分散安定剤としての特定の
カチオン変性PVA中に含まれるカチオン基とは
水溶液中で解離して正電荷に帯電する化学構造単
位を意味しており、具体的には一級アミン、二級
アミン、三級アミン、四級アンモニウム塩、ピリ
ジン、ピリジニウム、イミダゾールおよびイミダ
ゾリニウムから選ばれる化学構造単位である。こ
れまで報告されているカチオン変性PVAの製造
法としてはビニルピリジンと酢酸ビニルを共重合
後ケン化する方法、N−ビニルフタルイミドある
いはN−ビニルコハクイミドと酢酸ビニルを共重
合後ケン化し、更にアルカリあるいはヒドラジン
でイミド基を分解する方法、PVAを酸触媒のも
とにアミノアセタール化あるいはアミノベンズア
セタール化する方法、PVAにアルコキシジメチ
ルアミン、グリシジルトリメチルアンモニウム塩
酸塩あるいは3−クロロ−2−ヒドロキシプロピ
ルトリメチルアンモニウム塩酸塩を反応させる方
法、PVAにアクリルアミドをマイケル付加した
後ホフマン分解によりアミノ基を導入せしめる方
法などが知られている。これらの方法で合成した
カチオン変性PVAも本発明の懸濁重合用分散安
定剤として使用し得るが、上述したカチオン変性
PVAの製造法は工業的に実施するにはカチオン
化する工程自体に種々の困難があるのに加えて、
これらのカチオン変性PVA単独では分散安定能
力がなお不充分である。すなわち、ビニルピリジ
ンと酢酸ビニルの共重合は実際に実施し得ない程
共重合速度が遅く、また、N−ビニルフタルイミ
ドあるいはN−ビニルコハクイミドの共重合体を
ケン化し更にアルカリあるいはヒドラジンでイミ
ド基を分解したものは完全ケン化物であるため分
散安定効果が著しく劣り、他の分散剤の併用を必
要とする。 これに対して、下記の一般式()、()、
()あるいは()で示される共重合単位を含
む変性ポリビニルアルコールはカチオン活性を示
すことは勿論、工業的にカチオン基の導入が可能
であり更に最良の分散剤性能を有するケン化度を
得る方法が共に安定かつ容易に実施可能である。 (ここで、R1、R2は水素原子または低級アルキ
ル基、Bは
The present invention uses a specific cation in the molecule as a dispersion stabilizer that has an excellent effect of stabilizing the dispersion of suspended particles and provides a polymer with excellent physical properties during suspension polymerization of ethylenically unsaturated monomers in an aqueous medium. The present invention relates to a suspension polymerization method characterized in that a modified polyvinyl alcohol containing groups is used. In particular, this suspension polymerization method can exhibit the highest industrial value in the polymerization of vinyl chloride. Conventionally, cellulose derivatives, polyvinyl alcohol, gelatin, maleic acid copolymers, etc. have been used as suspension polymerization stabilizers when vinyl chloride monomer is suspended in water. ) has become widely adopted due to its excellent dispersion stabilizing effect. In the suspension polymerization of vinyl chloride, important technical attention has been paid to the processability of the produced polymer in addition to the dispersion stabilizing effect, and in particular, the polymers produced by the current suspension polymerization method have poor plasticizer absorption performance. ,
As a result, molded products often suffer from fish-eye defects, which significantly impairs the appearance of the product. From this point of view, in order to impart better performance to PVA, in addition to adjusting the degree of polymerization and saponification, it is necessary to adjust the saponification degree distribution (Japanese Patent Application Laid-Open No. 54-90385) or the arrangement distribution of acetic acid groups. is being done.
Furthermore, as a method of actively chemically modifying PVA to improve it, PVA with hydrophobic groups introduced (PTK
6546, JP 44-6830, JP 54-44314) or PVA containing crotonic acid, etc.
33580, JP-A-54-46284) or PVA with a lactone ring introduced (JP-A-54-85288) have been proposed, but they have problems in terms of dispersion stability, polymer processability, particle size distribution, workability, etc. All of them have their advantages and disadvantages, and it cannot be said that they are at a fully satisfactory level in terms of performance balance. The present inventors conducted a more extensive study on chemical modification of PVA, and obtained many modified PVA.
As a result of evaluating the performance as a stabilizer for suspension polymerization, we found that
PVA has been found to be extremely effective for such purposes, and on the other hand, PVA is also industrially advantageous.
The present invention was completed by establishing a cation modification method. The technology of cationically modifying water-soluble polymers such as starch or polyacrylamide has been known and is also produced industrially, but PVA modified with cationic groups
The idea of using it as a dispersion stabilizer in suspension polymerization is completely unknown. One of the reasons for this may be that although a small number of methods have been proposed for imparting cationic groups, they all have drawbacks in their modification methods, making it difficult to produce them industrially. The present invention will be explained in more detail below. The cationic group contained in the specific cation-modified PVA as a dispersion stabilizer used in the present invention refers to a chemical structural unit that dissociates in an aqueous solution and becomes positively charged, and specifically refers to a primary amine. , secondary amines, tertiary amines, quaternary ammonium salts, pyridine, pyridinium, imidazole and imidazolinium. The methods for producing cation-modified PVA that have been reported so far include a method in which vinyl pyridine and vinyl acetate are copolymerized and then saponified, N-vinylphthalimide or N-vinyl succinimide and vinyl acetate are copolymerized and then saponified, and then alkali Alternatively, a method of decomposing the imide group with hydrazine, a method of converting PVA into aminoacetal or aminobenzacetal under an acid catalyst, a method of converting PVA to alkoxydimethylamine, glycidyltrimethylammonium hydrochloride or 3-chloro-2-hydroxypropyltrimethyl Known methods include reacting ammonium hydrochloride, and adding Michael acrylamide to PVA and then introducing an amino group by Hofmann decomposition. Cation-modified PVA synthesized by these methods can also be used as a dispersion stabilizer for suspension polymerization of the present invention, but the above-mentioned cation-modified PVA
In addition to various difficulties in the cationization process itself, the PVA manufacturing method is difficult to implement industrially.
These cation-modified PVA alone still have insufficient dispersion stabilization ability. That is, the copolymerization rate of vinylpyridine and vinyl acetate is so slow that it cannot be practically carried out, and the copolymerization rate of N-vinylphthalimide or N-vinylsuccinimide is saponified and then the imide group is added with an alkali or hydrazine. Since the decomposed product is a completely saponified product, its dispersion stabilizing effect is significantly inferior, and it is necessary to use other dispersants in combination. In contrast, the following general formulas (), (),
Modified polyvinyl alcohol containing the copolymerized unit shown by () or () not only exhibits cationic activity, but also allows industrial introduction of cationic groups, and is a method for obtaining a degree of saponification with the best dispersant performance. Both are stable and easily implementable. (Here, R 1 and R 2 are hydrogen atoms or lower alkyl groups, and B is

【式】または[expression] or

【式】 R3、R4、R5は水素原子または低級アルキル基
(置換基を含んでもよい)、Xはアニオン、AはB
中の窒素原子とアミド基の窒素原子を連結する基
をそれぞれ意味している。) (ここで、R6、R7、R8は水素原子、低級アルキ
ル基またはフエニル基、R9は低級アルキル基、
Xはアニオン、をそれぞれ意味している。) (ここで、Bは
[Formula] R 3 , R 4 , R 5 are hydrogen atoms or lower alkyl groups (may contain substituents), X is an anion, A is B
It means a group that connects the nitrogen atom in the amide group with the nitrogen atom in the amide group. ) (Here, R 6 , R 7 , R 8 are hydrogen atoms, lower alkyl groups or phenyl groups, R 9 is lower alkyl groups,
Each X represents an anion. ) (Here, B is

【式】または[expression] or

【式】R3、R4、R5は水素原子また は低級アルキル基(置換基を含んでもよい)、X
はアニオン、DはB中の窒素原子と酸素原子を連
結する脂肪族の基、をそれぞれ意味している。) 上記一般式()〜()で示された共重合単
位を含む変性PVAの製造はビニルエステル、と
りわけ酢酸ビニルと次式(イ)〜(ニ) (ここで、R1、R2、R6〜R9、X、A、B、Dの
意味は前記と同一である。)で示される重合性単
量体とをラジカル重合開始剤の存在下に共重合さ
せ、しかる後に該共重合体のアルコール溶液にア
ルカリあるいは酸触媒を作用させて、共重合体中
のビニルエステル単位を目的に応じて部分的にあ
るいは高度にケン化せしめてビニルアルコール単
位とすることにより有効かつ簡便に製造される。 一般式(イ)で示される単量体においてR1は水素
原子または低級アルキル基であるが、通常水素原
子またはメチル基が好ましく、更に酢酸ビニルと
の共重合反応における重合速度が大である点で水
素原子であることが好ましい。R2もまた水素原
子また低級アルキル基であるが通常水素原子また
はメチル基が好ましい。Bはアミノ基 −N<R3 R4 または4級アンモニウム塩
[Formula] R 3 , R 4 , R 5 are hydrogen atoms or lower alkyl groups (which may contain substituents),
represents an anion, and D represents an aliphatic group connecting the nitrogen atom and oxygen atom in B, respectively. ) Modified PVA containing copolymerized units represented by the above general formulas () to () can be produced by combining vinyl esters, especially vinyl acetate, and the following formulas (a) to (d). (Here, the meanings of R 1 , R 2 , R 6 to R 9 , X, A, B, and D are the same as above.) in the presence of a radical polymerization initiator. After that, the alcohol solution of the copolymer is treated with an alkali or acid catalyst to partially or highly saponify the vinyl ester units in the copolymer depending on the purpose, resulting in vinyl alcohol units. It can be produced effectively and easily by In the monomer represented by general formula (a), R 1 is a hydrogen atom or a lower alkyl group, but a hydrogen atom or a methyl group is usually preferred, and furthermore, the polymerization rate in the copolymerization reaction with vinyl acetate is high. and is preferably a hydrogen atom. R 2 is also a hydrogen atom or a lower alkyl group, but usually a hydrogen atom or a methyl group is preferred. B is an amino group -N<R 3 R 4 or a quaternary ammonium salt

【式】であ りR3、R4、R5は水素原子、または置換基を含ん
でもより低級アルキル基を、Xはアニオンを示し
ている。R3、R4、R5は通常の目的ではすべてメ
チル基が好ましいが、エチル基、プロピル基等の
低級アルキル基メチロール基、あるいはカチオン
基の密度を向上させる目的でアミノアルキル基な
どの置換基を含有した低級アルキル基も用いられ
る。Xとしては塩素、シユウ素、ヨウ素などのハ
ロゲン原子またはCH3OSO3あるいは
CH3C6H4SO3が好ましいが、とりわけ塩素原子
が、経済上、安全上、あるいは変性PVAの物性
上好ましい。Bは四級アンモニウム塩の形である
場合、変性PVAの製造の取扱い易さにおいて好
ましいが一級〜三級アミンでも本発明の効果を発
現させ得る。Aは安定な結合を含む基であれば何
れも用いられるが、通常直鎖状または分岐した脂
肪族の基が用いられる。 上記一般式(イ)で示される単量体のうち三級アミ
ンの形のものの具体例として次のものが挙げられ
る。N−(2−ジメチルアミノエチル)アクリル
アミド、N−(2−ジメチルアミノエチル)メタ
クリルアミド、N−(3−ジメチルアミノプロピ
ル)アクリルアミド、N−(3−ジエチルアミノ
プロピル)アクリルアミド、N−(3−ジメチル
アミノプロピル)メタクリルアミド、N−(3−
ジエチルアミノプロピル)メタクリルアミド、N
−(1,1−ジメチル−3−ジメチルアミノプロ
ピル)アクリルアミド、N−(1,1−ジメチル
−3−ジメチルアミノプロピル)メタクリルアミ
ド、N−(1,1−ジエチル−3−ジメチルアミ
ノブチル)アクリルアミド、N−(1−メチル−
1,3−ジフエニル−3−ジエチルアミノプロピ
ル)メタクリルアミド、N−(3−ジメチルアミ
ノヘキシル)アクリルアミド、N−(3−メチル
エチルアミノプロピル)メタクリルアミド、N−
メチル−N−(3−ジメチルアミノプロピル)ア
クリルアミド。 上記一般式(イ)で示される単量体のうち四級アン
モニウムの形のものは上述した三級アミン型単量
体を次のような四級化剤で四級化することにより
容易に得ることができる。硫酸ジアルキル、例え
ばジメチル硫酸、ジエチル硫酸、ジプロピル硫
酸、アルキルまたはアリールスルホン酸のC1
C4−エステル、例えばメタンスルホン酸、ベン
ゼンスルホン酸またはトルエンスルホン酸などの
メチル−、エチル−、プロピル−またはブチルエ
ステル、ハロゲン化ベンジル、例えば塩化ベンジ
ルまたは臭化ベンジル、ハロゲン化アルキル、例
えば塩化メチル、臭化メチル、ヨウ化メチル、塩
化エチル、臭化エチルまたはヨウ化エチルなどで
ある。 上記一般式(イ)で示される単量体として上述した
各種の例のうち次の4種類の単量体。 N−(1,1−ジメチル−3−ジメチルアミノ
プロピル)アクリルアミド トリメチル−(3−アクリルアミド−3,3−
ジメチルプロピル)アンモニウムクロリド N−(3−ジメチルアミノプロピル)メタクリ
ルアミド トリメチル−(3−メタクリルアミド−プロピ
ル)アンモニウムクロリド が本発明に従う変性PVAを製造する上で、重合
速度アミド基の安定性、単量体製造時の経済性の
観点から優れている。 また、上記(ロ)で示される単量体をしては例えば
次のものが挙げられる。1−ビニルイミダゾー
ル、1−ビニル−2−メチルイミダゾール、1−
ビニル−2−エチルイミダゾール、1−ビニル−
2−フエニルイミダゾール、1−ビニル−2,
4,5−トリメチルイミダゾール。また上記一般
式(ハ)で示される単量体は上記一般式(ロ)で示される
単量体に、前述した四級化剤で四級化することに
より容易に得ることができる。 また上記一般式(ニ)で示される単量体としては例
えばジメチルアミノエチルビニルエーテル、ジメ
チルアミノプロピルビニルエーテルあるいはこれ
らの四級化物あるいはビニロキシエチルアミン等
が挙げられる。 本発明において使用するカチオン変性PVA中
のカチオン基の量、ケン化度あるいは重合度は目
的に応じて適宜選択され特に制限は無いが、分散
安定性能を発揮させる上でこれらの三要素を上手
に組合わせることが重要である。カチオン基は少
量でも効果が発揮されることが明かとなつており
通常0.001〜10モル%の範囲から選ばれることが
好ましい。ケン化度は、一般的にいつて完全ケン
化では懸濁安定能が小さく、部分ケン化とするこ
とが好ましい。多くの場合、水溶液の曇点が10〜
90℃の範囲となるようにケン化度を調節すること
が好ましく、通常20〜86モル%の範囲から選択さ
れる。また、変性PVA中の酢酸基が分子鎖に沿
つてブロツク状に配列するようにしたり、あるい
はケン化度分布が狭い範囲になるようなケン化方
法を採用してもよい。重合度は通常200〜3000の
範囲から選ばれる。 本発明において、カチオン変性PVAを塩化ビ
ニルの懸濁重合に使用すると、重合は安定に実施
され、重合温度、分散剤濃度の変動に対する許容
量が大であり、かつ重合係の発泡が少ない点作業
性に優れており、更に生成した重合体の粒度分布
が狭い範囲にそろつている上、可塑剤吸収性が高
く、フイツシユ・アイの発生が極めて少ない点加
工性が優れている。かように優れた効果が得られ
る理由は充分解明されている訳ではないが、次の
機構が推定される。 (1) カチオン変性PVAの水溶液の曇点以上で、
通常の懸濁重合が実施されるが、カチオン変性
PVA水溶液の懸濁状態は従来知られている
PVAと比較し、温度、撹拌力あるいは濃度の
僅かな変動に対して必要以上に鋭敏でなく、良
好な分散安定能を維持すること。 (2) 重合初期において微少な液滴を安定に分散さ
せ、重合の経過に伴つてこれらの合一が順調に
進展する結果、微粉や粗粒が発生せず、多孔性
に優れた粒子が形成される。この理想的な重合
経過は変性PVA中のカチオン基が塩化ビニル
単量体および重合体と静電気的な相互作用をお
よぼし合つて発現されるものと推定される。 本発明を実施するにあたつては一般に行われて
いる懸濁重合方法が何れにも適用できる。重合開
始剤としては、アゾビスイソブチロニトリル、ジ
アルキルパーオキシカーボネート、ラウロイルパ
ーオキシド、スルホニルペルオキシド等を用いる
ことができる。また、カチオン変性PVAに加え
て従来より知られているPVA、変性PVA、セル
ロース誘導体などの分散安定剤や、目的に応じて
少量の連鎖移動剤あるいは界面活性剤を併用する
こともできる。以上は、塩化ビニルの懸濁重合を
中心に説明したが、スチレン、メタクリル酸エス
テル、酢酸ビニル等のエチレン性不飽和単量体の
単独あるいは共重合を実施する方法としても有用
である。 次に実施例により本発明を更に詳しく説明す
る。 実施例1及び比較例1〜3 トリメチル−(3−アクリルアミド−3,3−
ジメチルプロピル)アンモニウムクロリドと酢酸
ビニルとの共重合体をケン化して、トリメチル−
(3−アクリルアミド−3,3−ジメチルプロピ
ル)アンモニウムクロリド単位を2モル%含有
し、酢酸ビニル単位のケン化度が71モル%、4%
水溶液の20℃における粘度(ブルツクフイールド
型粘度計による。以下同様)が48cP(センチポイ
ズ)で、同水溶液の曇点が52℃であるカチオン基
変性PVAを合成した。 次に、ステンレス製のオートクレーブ中に脱イ
オン水200Kgと合成した上記のカチオン基変性
PVA53gおよびジセチルパーオキシカーボネー
ト25g、1%硫酸20mlを仕込み、オートクレーブ
を排気した後に塩化ビニル単量体を67Kg導入し、
撹拌下に56℃で8時間重合した。未反応塩化ビニ
ル単量体を系外に放出後、ポリ塩化ビニルスラリ
ーを遠心分離機で脱水し乾燥した。得られたポリ
塩化ビニルの物性評価をした結果を第1表に示し
た。 比較のために、実施例1においてカチオン基変
性PVAに代えて、ケン化度73モル%、4%水溶
液の20℃における粘度が38cPで同水溶液の曇点
が23℃であるPVA(比較例1)、ケン化度76モル
%、4%水溶液の20℃における粘度が28cPで同
水溶液の曇点が53℃のPVA(比較例2)、あるい
はマレイン酸モノメチルを0.1モル%共重合変性
し、ケン化度73モル%、4%水溶液の20℃におけ
る粘度が23cPで同水溶液の曇点が28℃である
PVA(比較例3)、を使用した他は実施例1と同
様にしてポリ塩化ビニルの懸濁重合を実施した結
果を第1表に合わせて示す。 本発明のカチオン基変性PVAの存在下で重合
した塩化ビニルは可塑剤吸収率が良好でフイツシ
ユアイが見られず優れた物性を示した。また、こ
の塩化ビニル粒子はかさ密度が高いにもかかわら
ず高いポロシテイーを有しており、優れた可塑剤
吸収性はこの事実と関係していると考えられる。
また、粗大粒子や微粒子の含有量が少なく粒度が
狭い範囲にそろつており好ましい結果である。こ
れに対し、比較例は本発明と比較してポロシテイ
ー、可塑剤吸収性が低く、フイツシユアイが多く
また粒度分布が広い。
[Formula] where R 3 , R 4 and R 5 represent a hydrogen atom or a lower alkyl group even if it contains a substituent, and X represents an anion. R 3 , R 4 , and R 5 are all preferably methyl groups for normal purposes, but substituents such as lower alkyl groups such as ethyl groups and propyl groups, methylol groups, or aminoalkyl groups for the purpose of improving the density of cationic groups. A lower alkyl group containing may also be used. X is a halogen atom such as chlorine, silium, iodine, CH 3 OSO 3 or
CH 3 C 6 H 4 SO 3 is preferred, and chlorine atoms are particularly preferred from the economic, safety, and physical properties of modified PVA. When B is in the form of a quaternary ammonium salt, the effects of the present invention can be exhibited even with primary to tertiary amines, which are preferable for ease of handling in the production of modified PVA. Any group containing a stable bond can be used as A, but a linear or branched aliphatic group is usually used. Among the monomers represented by the above general formula (A), the following are specific examples of monomers in the form of tertiary amines. N-(2-dimethylaminoethyl)acrylamide, N-(2-dimethylaminoethyl)methacrylamide, N-(3-dimethylaminopropyl)acrylamide, N-(3-diethylaminopropyl)acrylamide, N-(3-dimethyl aminopropyl) methacrylamide, N-(3-
diethylaminopropyl) methacrylamide, N
-(1,1-dimethyl-3-dimethylaminopropyl)acrylamide, N-(1,1-dimethyl-3-dimethylaminopropyl)methacrylamide, N-(1,1-diethyl-3-dimethylaminobutyl)acrylamide , N-(1-methyl-
1,3-diphenyl-3-diethylaminopropyl)methacrylamide, N-(3-dimethylaminohexyl)acrylamide, N-(3-methylethylaminopropyl)methacrylamide, N-
Methyl-N-(3-dimethylaminopropyl)acrylamide. Among the monomers represented by the above general formula (a), those in the form of quaternary ammonium can be easily obtained by quaternizing the above-mentioned tertiary amine type monomer with the following quaternizing agent. be able to. Dialkyl sulfate, e.g. dimethyl sulfate, diethyl sulfate, dipropyl sulfate, alkyl or aryl sulfonic acid C 1 ~
C 4 -esters, e.g. methyl-, ethyl-, propyl- or butyl esters, such as methanesulfonic acid, benzenesulfonic acid or toluenesulfonic acid, benzyl halides, e.g. benzyl chloride or benzyl bromide, alkyl halides, e.g. methyl chloride. , methyl bromide, methyl iodide, ethyl chloride, ethyl bromide or ethyl iodide. The following four types of monomers among the various examples mentioned above as monomers represented by the above general formula (A). N-(1,1-dimethyl-3-dimethylaminopropyl)acrylamide trimethyl-(3-acrylamide-3,3-
dimethylpropyl) ammonium chloride N-(3-dimethylaminopropyl)methacrylamide Trimethyl-(3-methacrylamidopropyl)ammonium chloride is superior in producing the modified PVA according to the present invention from the viewpoint of polymerization rate, stability of the amide group, and economical efficiency during monomer production. Furthermore, examples of the monomer shown in (b) above include the following. 1-vinylimidazole, 1-vinyl-2-methylimidazole, 1-
Vinyl-2-ethylimidazole, 1-vinyl-
2-phenylimidazole, 1-vinyl-2,
4,5-trimethylimidazole. Further, the monomer represented by the above general formula (c) can be easily obtained by quaternizing the monomer represented by the above general formula (b) with the above-mentioned quaternizing agent. Examples of the monomer represented by the above general formula (2) include dimethylaminoethyl vinyl ether, dimethylaminopropyl vinyl ether, quaternized products thereof, and vinyloxyethylamine. The amount of cationic groups, degree of saponification, or degree of polymerization in the cationically modified PVA used in the present invention is appropriately selected depending on the purpose and is not particularly limited. It is important to combine them. It has become clear that even a small amount of the cationic group is effective, and it is usually preferable to select the cationic group from the range of 0.001 to 10 mol%. Regarding the degree of saponification, in general, complete saponification has a low suspension stability ability, so partial saponification is preferable. In many cases, the cloud point of the aqueous solution is 10~
It is preferable to adjust the saponification degree so that it is in the range of 90°C, and is usually selected from the range of 20 to 86 mol%. Further, a saponification method may be adopted in which the acetate groups in the modified PVA are arranged in a block shape along the molecular chain, or the saponification degree distribution is within a narrow range. The degree of polymerization is usually selected from the range of 200 to 3000. In the present invention, when cation-modified PVA is used for suspension polymerization of vinyl chloride, the polymerization is carried out stably, has a large tolerance to fluctuations in polymerization temperature and dispersant concentration, and has low foaming during polymerization. Furthermore, the resulting polymer has a narrow particle size distribution, has high plasticizer absorption, and has excellent processability with extremely low occurrence of fish eyes. The reason why such excellent effects are obtained is not fully elucidated, but the following mechanism is presumed. (1) Above the cloud point of an aqueous solution of cation-modified PVA,
Normal suspension polymerization is carried out, but cationic modification
The suspension state of PVA aqueous solution is conventionally known.
Compared to PVA, it is less sensitive to small changes in temperature, stirring force, or concentration and maintains good dispersion stability. (2) Fine droplets are stably dispersed in the early stage of polymerization, and as the polymerization progresses, their coalescence progresses smoothly, resulting in the formation of particles with excellent porosity without the generation of fine powder or coarse particles. be done. This ideal polymerization process is presumed to occur through electrostatic interactions between the cationic groups in the modified PVA and the vinyl chloride monomer and polymer. In carrying out the present invention, any commonly used suspension polymerization method can be applied. As the polymerization initiator, azobisisobutyronitrile, dialkyl peroxy carbonate, lauroyl peroxide, sulfonyl peroxide, etc. can be used. In addition to cation-modified PVA, conventionally known dispersion stabilizers such as PVA, modified PVA, and cellulose derivatives, and small amounts of chain transfer agents or surfactants can also be used depending on the purpose. Although the above description has focused on suspension polymerization of vinyl chloride, it is also useful as a method for carrying out the sole or copolymerization of ethylenically unsaturated monomers such as styrene, methacrylate, and vinyl acetate. Next, the present invention will be explained in more detail with reference to Examples. Example 1 and Comparative Examples 1 to 3 Trimethyl-(3-acrylamide-3,3-
A copolymer of dimethylpropyl) ammonium chloride and vinyl acetate is saponified to form trimethyl-
Contains 2 mol% (3-acrylamido-3,3-dimethylpropyl)ammonium chloride units, and the degree of saponification of vinyl acetate units is 71 mol% and 4%.
We synthesized a cationic group-modified PVA whose aqueous solution had a viscosity of 48 cP (centipoise) at 20°C (as measured by a Bruckfield viscometer, hereinafter the same) and a cloud point of 52°C. Next, the above cationic group modification was synthesized with 200Kg of deionized water in a stainless steel autoclave.
After charging 53 g of PVA, 25 g of dicetyl peroxycarbonate, and 20 ml of 1% sulfuric acid, and evacuating the autoclave, 67 kg of vinyl chloride monomer was introduced.
Polymerization was carried out at 56° C. for 8 hours while stirring. After releasing the unreacted vinyl chloride monomer to the outside of the system, the polyvinyl chloride slurry was dehydrated using a centrifuge and dried. Table 1 shows the results of evaluating the physical properties of the obtained polyvinyl chloride. For comparison, in place of the cationic group-modified PVA in Example 1, PVA (Comparative Example 1 ), PVA with a saponification degree of 76 mol%, a viscosity of a 4% aqueous solution at 20°C of 28 cP, and a cloud point of the same aqueous solution of 53°C (Comparative Example 2), or 0.1 mol% monomethyl maleate copolymerized and modified, The viscosity at 20°C of a 4% aqueous solution with a degree of 73 mol% is 23 cP, and the cloud point of the same aqueous solution is 28°C.
Table 1 shows the results of suspension polymerization of polyvinyl chloride carried out in the same manner as in Example 1 except that PVA (Comparative Example 3) was used. Vinyl chloride polymerized in the presence of the cationic group-modified PVA of the present invention had a good plasticizer absorption rate and no stickiness was observed, showing excellent physical properties. Furthermore, the vinyl chloride particles have high porosity despite their high bulk density, and the excellent plasticizer absorption is thought to be related to this fact.
Further, the content of coarse particles and fine particles is small, and the particle size is uniform within a narrow range, which is a favorable result. On the other hand, compared to the present invention, the comparative examples have lower porosity and plasticizer absorption, more fissures, and a wider particle size distribution.

【表】 実施例 2〜7 実施例1でのカチオン基変性PVAに代えて、
第2表に示すカチオン基変性PVAを使用した他
は実施例1と同様にしてポリ塩化ビニルを重合し
て物性評価を実施した。結果を第3表に示した。
いずれの実施例においても高いポロシテイーと良
好な可塑剤吸収性を示している。
[Table] Examples 2 to 7 In place of the cationic group-modified PVA in Example 1,
Polyvinyl chloride was polymerized and physical properties were evaluated in the same manner as in Example 1, except that the cationic group-modified PVA shown in Table 2 was used. The results are shown in Table 3.
All examples show high porosity and good plasticizer absorption.

【表】【table】

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】 1 分子内に一級アミン、二級アミン、三級アミ
ン、四級アンモニウム塩、ピリジン、ピリジニウ
ム、イミダゾールおよびイミダゾリニウムから選
ばれるカチオン基を含有する変性ポリビニルアル
コールの存在下でエチレン性不飽和単量体を懸濁
重合する方法。 2 カチオン基が下記一般式()で示される共
重合単位である特許請求の範囲第1項に記載の方
法。 (ここで、R1、R2は水素原子または低級アルキ
ル基、Bは【式】または【式】 R3、R4、R5は水素原子または低級アルキル基
(置換基を含んでもよい)、Xはアニオン、AはB
中の窒素原子とアミド基の窒素原子を連結する基
をそれぞれ意味している。) 3 カチオン基が下記一般式()または()
で示される共重合単位である特許請求の範囲第1
項に記載の方法。 (ここで、R6、R7、R8は水素原子、低級アルキ
ル基またはフエニル基、R9は低級アルキル基、
Xはアニオンをそれぞれ意味している。) 4 カチオン基が下記一般式()で示される共
重合単位である特許請求の範囲第1項に記載の方
法。 (ここで、Bは【式】または 【式】R3、R4、R5は水素原子また は低級アルキル基(置換基を含んでもよい)、X
はアニオン、DはB中の窒素原子と酸素原子を連
結する脂肪族の基、をそれぞれ意味している。)
[Scope of Claims] 1. In the presence of modified polyvinyl alcohol containing a cationic group selected from primary amine, secondary amine, tertiary amine, quaternary ammonium salt, pyridine, pyridinium, imidazole and imidazolinium in the molecule. A method for suspension polymerization of ethylenically unsaturated monomers. 2. The method according to claim 1, wherein the cationic group is a copolymerized unit represented by the following general formula (). (Here, R 1 and R 2 are hydrogen atoms or lower alkyl groups, B is [Formula] or [Formula] R 3 , R 4 , and R 5 are hydrogen atoms or lower alkyl groups (which may contain substituents), X is an anion, A is B
It means a group that connects the nitrogen atom in the amide group with the nitrogen atom in the amide group. ) 3 The cationic group has the following general formula () or ()
Claim 1, which is a copolymerized unit represented by
The method described in section. (Here, R 6 , R 7 , R 8 are hydrogen atoms, lower alkyl groups or phenyl groups, R 9 is lower alkyl groups,
Each X represents an anion. ) 4 The method according to claim 1, wherein the cationic group is a copolymerized unit represented by the following general formula (). (Here, B is [Formula] or [Formula] R 3 , R 4 , R 5 is a hydrogen atom or a lower alkyl group (which may contain a substituent),
represents an anion, and D represents an aliphatic group connecting the nitrogen atom and oxygen atom in B, respectively. )
JP55156199A 1980-11-05 1980-11-05 Suspension polymerization Granted JPS5780401A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP55156199A JPS5780401A (en) 1980-11-05 1980-11-05 Suspension polymerization

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55156199A JPS5780401A (en) 1980-11-05 1980-11-05 Suspension polymerization

Publications (2)

Publication Number Publication Date
JPS5780401A JPS5780401A (en) 1982-05-20
JPH0147483B2 true JPH0147483B2 (en) 1989-10-13

Family

ID=15622527

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55156199A Granted JPS5780401A (en) 1980-11-05 1980-11-05 Suspension polymerization

Country Status (1)

Country Link
JP (1) JPS5780401A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991015518A1 (en) * 1990-04-05 1991-10-17 Kuraray Co., Ltd. Suspension polymerization of vinylic compound

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61157505A (en) * 1984-12-28 1986-07-17 Kao Corp Dispersion stabilizer for oily suspension polymerization

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991015518A1 (en) * 1990-04-05 1991-10-17 Kuraray Co., Ltd. Suspension polymerization of vinylic compound

Also Published As

Publication number Publication date
JPS5780401A (en) 1982-05-20

Similar Documents

Publication Publication Date Title
JP4319177B2 (en) Modified polyvinyl alcohol and dispersant using the same
JP3640415B2 (en) Polytetrafluoroethylene micropowder and methods for producing and using them
JPS6024122B2 (en) Method for producing bead-like polymer
JPH05310822A (en) Preparation of chemical agent containing organic polyelectrolyte for use in cosmetic formulation
JP3474304B2 (en) Dispersion stabilizer for suspension polymerization of vinyl compounds
US3759982A (en) Anionic complexes of monomeric emulsion stabilizers
JPS62273960A (en) Manufacture of 3-methyl-1-vinyl-imidazolium chloride
JPH0147483B2 (en)
JPS61115903A (en) Coated polymerization reactor and polymerization therein
JPS6213963B2 (en)
JPH0195103A (en) Dispersion stabilizer for suspension polymerization of vinyl compound
JPS6221361B2 (en)
JP3558440B2 (en) Dispersion aid for suspension polymerization of vinyl compounds
JPH05247883A (en) Production of paper
JPS62207304A (en) Production of copolymer having surface activity
WO1998030600A1 (en) Process for the production of acrylamide polymer dispersion
JPH03134003A (en) Dispersion assistant and dispersion stabilizer for suspension polymerization of vinyl compound
JPS59136301A (en) Stabilizer for suspension polymerization
EP0385627B1 (en) Polymer emulsion
JPH0195104A (en) Dispersion stabilizer for suspension polymerization of vinyl compound
KR100989538B1 (en) Paper quality improver
JPS63225608A (en) Manufacture of water-soluble copolymer
JP3945067B2 (en) Aqueous dispersion and method for producing the same
JPH0210785B2 (en)
JPS6124047B2 (en)