JPH0147299B2 - - Google Patents

Info

Publication number
JPH0147299B2
JPH0147299B2 JP55149460A JP14946080A JPH0147299B2 JP H0147299 B2 JPH0147299 B2 JP H0147299B2 JP 55149460 A JP55149460 A JP 55149460A JP 14946080 A JP14946080 A JP 14946080A JP H0147299 B2 JPH0147299 B2 JP H0147299B2
Authority
JP
Japan
Prior art keywords
weight
resin
laminate
cloth
prepreg
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55149460A
Other languages
Japanese (ja)
Other versions
JPS5774149A (en
Inventor
Yasuo Myadera
Atsushi Fujioka
Tetsuo Kumazawa
Hiroaki Doi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, Hitachi Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP55149460A priority Critical patent/JPS5774149A/en
Priority to DE8181108775T priority patent/DE3167873D1/en
Priority to US06/314,393 priority patent/US4446191A/en
Priority to EP19810108775 priority patent/EP0050855B1/en
Publication of JPS5774149A publication Critical patent/JPS5774149A/en
Publication of JPH0147299B2 publication Critical patent/JPH0147299B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Laminated Bodies (AREA)
  • Woven Fabrics (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は寸法安定性、層間接着力のすぐれた積
層板を提供するものである。 従来、紙基材、ガラス布基材に樹脂を含浸させ
これを積層成形してなる積層板がよく知られてい
るが、これらの積層板ではチツプを塔載する場合
の高密度化がむづかしい。 例えば、高密度実装方式の一つにリードレスの
チツプキヤリアを基板に塔載する方法があるが、
チツプと基板との熱膨脹係数が異なるためチツプ
と基板との接続部が劣化するという問題がある。 そこで最近、芳香族ポリアミドクロスを用いて
作つた積層板にチツプを塔載することが有利であ
るという報告がある(IEEE Transactions on
Componente,Hybride and Manufacturing
Technology vol.CHMT―2,No. 1,
P140March,1979)。 この方法では基板とチツプの熱膨脹係数を同じ
値にすることが可能であり、接続部の信頼性が高
いという利点がある。しかし、この基板の最大の
欠点は樹脂と芳香族ポリアミドとのなじみが悪い
ため、積層板にした場合接着力が弱く、層間剥離
を起しやすいことである。このため熱サイクル試
験に耐え難く実用性を困難にしていた。 そこで、本発明者らは上述の欠点に鑑み、鋭意
検討した結果、基材として芳香族ポリアミド繊維
とガラス繊維をより合せて複合糸を作り、これを
製織した複合クロスを使用すると積層板の層間接
着力が向上し、かつ面方向の寸法安定性にすぐれ
ていることを見出した。 本発明の積層板は上記複合クロスに樹脂を含浸
させて得られるプリプレグを所定枚数積層し場合
によつては銅などの金属箔を重ねて加熱加圧成形
してなり、複合クロスの芳香族ポリアミド繊維と
ガラス繊維との重量比は好ましくは30〜95%、後
者5〜70%である。芳香族ポリアミド繊維が30%
より少ないと(ガラス繊維が70%より多いと)、
寸法安定性の面で満足できないし、芳香族ポリア
ミド繊維が95%より多いと(ガラス繊維が5%よ
り少ないと)積層板の層間接着力が劣る。 芳香族ポリアミド繊維は次の一般式で示される
芳香族ポリアミドから紡糸されるものである。 (―Ar1―CONH―)o (―Ar1―CONH―Ar2―NHCO―)o ここで、Ar1,Ar2は芳香族残基を示し、Ar1
Ar2は同じであつても異なつていてもよい。 Ar1,Ar2としては
The present invention provides a laminate with excellent dimensional stability and interlayer adhesion. Hitherto, laminates made by impregnating a paper base material or a glass cloth base material with a resin and then laminating and molding the same have been well known, but it is difficult to increase the density of these laminates when mounting chips thereon. For example, one high-density mounting method is to mount a leadless chip carrier on the board.
Since the chip and the substrate have different thermal expansion coefficients, there is a problem in that the connection between the chip and the substrate deteriorates. Recently, there has been a report that it is advantageous to mount chips on a laminate made of aromatic polyamide cloth (IEEE Transactions on
Component, Hybrid and Manufacturing
Technology vol.CHMT―2, No. 1,
P140March, 1979). This method has the advantage that it is possible to make the thermal expansion coefficients of the substrate and the chip the same, and that the reliability of the connection is high. However, the biggest drawback of this substrate is that the resin and aromatic polyamide are not compatible, so when made into a laminate, the adhesive strength is weak and delamination is likely to occur. This made it difficult to withstand thermal cycle tests, making it difficult to put it into practical use. Therefore, in view of the above-mentioned drawbacks, the inventors of the present invention made extensive studies and found that if aromatic polyamide fibers and glass fibers are twisted together to create a composite yarn as a base material, and a composite cloth woven from this yarn is used, the layers of the laminate will be It was discovered that the adhesive strength between the two layers was improved and the dimensional stability in the plane direction was excellent. The laminate of the present invention is made by laminating a predetermined number of prepregs obtained by impregnating the above composite cloth with resin, and in some cases overlapping metal foil such as copper and forming the composite cloth under heat and pressure. The weight ratio of fiber to glass fiber is preferably 30-95%, the latter 5-70%. 30% aromatic polyamide fiber
Less (more than 70% glass fiber)
Dimensional stability is not satisfactory, and if the aromatic polyamide fiber content is more than 95% (if the glass fiber content is less than 5%), the interlayer adhesion of the laminate will be poor. Aromatic polyamide fiber is spun from aromatic polyamide represented by the following general formula. (-Ar 1 -CONH-) o (-Ar 1 -CONH-Ar 2 -NHCO- ) oHere, Ar 1 and Ar 2 represent aromatic residues, and Ar 1 ,
Ar 2 may be the same or different. As Ar 1 and Ar 2

【式】【formula】

【式】【formula】

【式】【formula】

【式】(ここでXはO,CH2, S,SO2,COなどから選ばれる基である)から
選ばれるものであり、単独あるいは2種以上、そ
れぞれ組合せて使用してもよい。さらに30モル%
以下ならば
[Formula] (where X is a group selected from O, CH 2 , S, SO 2 , CO, etc.), and may be used alone or in combination of two or more. An additional 30 mol%
If less than

【式】【formula】

【式】【formula】

【式】 を配合してポリマーの溶解度を向上させることも
できる。さらに、これらの芳香族基にハロゲン、
アルキル基、ニトロ基などの不活性基が置換され
ていても差しつかえない。 樹脂としては有機材料、例えばフエノール樹
脂、エポキシ樹脂、不飽和ポリエステル樹脂、ポ
リイミド系樹脂、トリアジン系樹脂、メラミン樹
脂、ビスジエンポリマーなどの熱硬化性樹脂やポ
リエチレン、ポリスルホン、ポリアミドイミド、
ポリイミドなどの線状ポリマー、シリコーン樹
脂、ポリホスフアーゼンなどの無機材料があり、
上記樹脂の混合物や共重合体が使用可能である。
また、金属箔としては銅箔、アルミニウム箔など
が使用される。 以下本発明について実施例を示し、具体的に説
明する。 実施例 1 臭素化ビスフエノールA型エポキシ樹脂(エポ
キシ当量480g/eq)90重量部、クレゾールノボ
ラツク型エポキシ樹脂(エポキシ当量220g/
ep)10重量部、ジシアンジアミド4重量部、ベ
ンジルジメチルアミン0.2重量部に溶媒としてメ
チルエチルケトンとメチルセロソルブを加え、濃
度37%のワニスを作つた。一方、22.5texのガラ
ス繊維と21.7texのポリ―p―フエニレンテレフ
タルアミド繊維を1本づつより合せて複合糸を作
り、これを製織して織密度37本×37本/25mm幅の
複合クロスを作つた。 上記ワニスの中に、この複合クロスを浸漬し、
160℃で5分間乾燥しプリプレグを得た。このプ
リプレグ中の樹脂分は29.5重量%(約3容量%)
であつた。 次に、このプリプレグ8枚と2枚の銅箔(厚さ
35μ)を上下に置き、170℃で60分プレスし、厚
さ1.03mmの銅張積層板を得た。 この銅張積層板の面方向の線膨脹係数は5.8×
10-6-1であつた。測定は真空理工(株)製熱機械試
験機TM―1500L/RHを用い荷重2gをかけ、
昇温速度5℃/minで測定した。また、銅箔引き
はがし強さは1.7Kg/cmであり、層間接着力は1
Kg/cm以上であつた。銅箔引きはがし強さおよび
層間接着剤力はJIS C6481の引きはがし試験法に
準拠して測定した。 実施例 2 21.7texのポリ―P―フエニレンテレフタルア
ミド繊維2本と22.5texのガラス繊維1本をより
合せた複合糸を製織して37×37本/25mm幅の織密
度をもつ複合クロスを得、このクロスをγ―グリ
シドキシプロピルトリメトキシシランで処理し
た。 例1で用いたワニス(ただし、ワニス濃度は35
%)と上記ワニスを温度162℃、塗工速度1.6m/
minの条件で塗工し、レジン含量29重量%(約33
容量%)のプリプレグを作つた。このプリプレグ
を6枚と35μの厚さの銅箔を2枚重ね、170℃、
1時間、80Kg/cm2の圧力でプレスし、厚さ1.06mm
の銅張積層板を得た。この積層板の面方向の線膨
脹係数は6.5×10-6-1であり、層間接着力は1
Kg/cm以上であつた。 実施例 3 ポリアミノビスマレイミドのN―メチル―2―
ピロリドン溶液を実施例1で用いた複合クロスに
含浸させプリプレグを得た。このプリプレグのレ
ジン含有率は43重量%であつた。このプリプレグ
を8枚と35μの厚さの銅箔を2枚重ねて190℃、
2時間、80Kg/cm2の圧力でプレスし、積層板を作
り、これをさらに240℃で8時間、後硬化させた。
この積層板の面方向の線膨脹係数は6.5×10-6
-1であり、層間接着力は1Kg/cm2以上であつた。 比較例 1 実施例1と同様のワニスを用いてガラスクロス
に含浸させ、プリプレグを作り、こプリプレグ8
枚と銅箔2枚から170℃、1時間、80Kg/cm2の圧
力でプレスして熱銅張積層板を得た。この積層板
の層間接着力は1Kg/cm2以上であつたが、面方向
の線膨脹係数は2.9×10-5-1であつた。 比較例 2 フエノールノボラツク型エポキシ樹脂(エポキ
シ当量180g/eq)40重量部、臭素化フエノール
ノボラツク型エポキシ樹脂(エポキシ当量285
g/eq)60重量部、ジシアンジアミド6.4重量部、
ベンジルジメチルアミン0.1部にメチルエチルケ
トンとメチルセロソルブを加えて濃度37.5重量%
のワニスを作つた。このワニスにポリ―P―フエ
ニレンテレフタルアミド繊維からなるクロスを含
浸させ、温度162℃、塗工速度1.5m/minの条件
で塗工布を得た。 このプリプレグを10枚と35μの厚さの銅箔を2
枚重ねて170℃、1時間、80Kg/cm2の圧力でプレ
スして厚さ0.8mmの銅張積層板を得た。この積層
板の面方向の線膨脹係数は5.5×10-6-1であつ
たが、層間接着力は0.7Kg/cmであつた。 以上の実施例および比較例からわかるように、
比較例1では線膨脹係数が大きく、比較例2では
層間接着力が弱く、それぞれ実用性の面で致命的
な欠陥があるが、実施例では線膨脹係数が6×
10-6-1付近にあり、セラミツクの線膨脹係数と
同等であり、かつ層間接着力も大きく実用的に使
用可能であることがわかる。
It is also possible to improve the solubility of the polymer by incorporating the formula: Furthermore, halogen,
It may be substituted with an inert group such as an alkyl group or a nitro group. As the resin, organic materials such as thermosetting resins such as phenol resin, epoxy resin, unsaturated polyester resin, polyimide resin, triazine resin, melamine resin, bis-diene polymer, polyethylene, polysulfone, polyamideimide,
There are linear polymers such as polyimide, silicone resins, and inorganic materials such as polyphosphazenes.
Mixtures and copolymers of the above resins can be used.
Further, as the metal foil, copper foil, aluminum foil, etc. are used. EXAMPLES The present invention will be specifically explained below by showing examples. Example 1 Brominated bisphenol A type epoxy resin (epoxy equivalent: 480 g/eq) 90 parts by weight, cresol novolac type epoxy resin (epoxy equivalent: 220 g/eq)
Methyl ethyl ketone and methyl cellosolve were added as solvents to 10 parts by weight of ep), 4 parts by weight of dicyandiamide, and 0.2 parts by weight of benzyldimethylamine to prepare a varnish with a concentration of 37%. On the other hand, 22.5 tex glass fibers and 21.7 tex poly-p-phenylene terephthalamide fibers are twisted one by one to make a composite yarn, and this is woven into a composite cloth with a weaving density of 37 fibers x 37 fibers/25 mm width. I made it. Dip this composite cloth into the above varnish,
A prepreg was obtained by drying at 160°C for 5 minutes. The resin content in this prepreg is 29.5% by weight (approximately 3% by volume)
It was hot. Next, 8 sheets of this prepreg and 2 sheets of copper foil (thickness
35μ) were placed on top of each other and pressed at 170°C for 60 minutes to obtain a copper-clad laminate with a thickness of 1.03mm. The coefficient of linear expansion in the plane direction of this copper-clad laminate is 5.8×
It was 10 -6-1 . The measurement was carried out using a thermomechanical testing machine TM-1500L/RH manufactured by Shinku Riko Co., Ltd., and a load of 2 g was applied.
Measurement was performed at a heating rate of 5°C/min. In addition, the copper foil peel strength is 1.7Kg/cm, and the interlayer adhesion strength is 1.
It was over Kg/cm. Copper foil peel strength and interlayer adhesive strength were measured in accordance with JIS C6481 peel test method. Example 2 A composite cloth with a weaving density of 37 x 37 fibers/25 mm width was made by weaving a composite yarn made by twisting two 21.7 tex poly-P-phenylene terephthalamide fibers and one 22.5 tex glass fiber. This cloth was treated with γ-glycidoxypropyltrimethoxysilane. The varnish used in Example 1 (however, the varnish concentration was 35
%) and the above varnish at a temperature of 162℃ and a coating speed of 1.6m/
The resin content was 29% by weight (approximately 33% by weight).
A prepreg with a volume of %) was made. Layer 6 sheets of this prepreg and 2 sheets of 35μ thick copper foil, heat at 170℃,
Pressed at a pressure of 80Kg/ cm2 for 1 hour to a thickness of 1.06mm.
A copper-clad laminate was obtained. The coefficient of linear expansion in the plane direction of this laminate is 6.5×10 -6 °C -1 , and the interlayer adhesive strength is 1
It was over Kg/cm. Example 3 N-methyl-2- of polyamino bismaleimide
The composite cloth used in Example 1 was impregnated with a pyrrolidone solution to obtain a prepreg. The resin content of this prepreg was 43% by weight. 8 sheets of this prepreg and 2 sheets of 35μ thick copper foil were stacked at 190℃.
A laminate was produced by pressing at a pressure of 80 kg/cm 2 for 2 hours, which was further post-cured at 240° C. for 8 hours.
The coefficient of linear expansion in the plane direction of this laminate is 6.5×10 -6
-1 , and the interlayer adhesive strength was 1 Kg/cm 2 or more. Comparative Example 1 A glass cloth was impregnated with the same varnish as in Example 1 to make a prepreg.
A hot copper-clad laminate was obtained by pressing the sheet and two sheets of copper foil at 170° C. for 1 hour at a pressure of 80 kg/cm 2 . The interlayer adhesive strength of this laminate was 1 Kg/cm 2 or more, and the coefficient of linear expansion in the plane direction was 2.9×10 −5 ° C. −1 . Comparative Example 2 40 parts by weight of phenol novolac type epoxy resin (epoxy equivalent: 180 g/eq), brominated phenol novolac type epoxy resin (epoxy equivalent: 285
g/eq) 60 parts by weight, dicyandiamide 6.4 parts by weight,
Add methyl ethyl ketone and methyl cellosolve to 0.1 part of benzyldimethylamine to make a concentration of 37.5% by weight.
I made a varnish. A cloth made of poly-P-phenylene terephthalamide fibers was impregnated into this varnish to obtain a coated cloth at a temperature of 162° C. and a coating speed of 1.5 m/min. 10 sheets of this prepreg and 2 sheets of 35μ thick copper foil
The sheets were stacked and pressed at 170° C. for 1 hour at a pressure of 80 kg/cm 2 to obtain a copper-clad laminate with a thickness of 0.8 mm. The coefficient of linear expansion in the plane direction of this laminate was 5.5×10 −6 ° C. −1 , and the interlayer adhesive strength was 0.7 Kg/cm. As can be seen from the above examples and comparative examples,
Comparative Example 1 has a large coefficient of linear expansion, and Comparative Example 2 has weak interlayer adhesion, both of which have fatal flaws in terms of practicality. However, in the example, the coefficient of linear expansion is 6×
It is found that the coefficient of linear expansion is around 10 -6 °C -1 , which is equivalent to the coefficient of linear expansion of ceramics, and the interlayer adhesive strength is also large, making it usable for practical use.

Claims (1)

【特許請求の範囲】[Claims] 1 芳香族ポリアミド繊維30〜95重量%とガラス
繊維5〜70重量%を撚り合わせた複合糸を製織し
てなる複合クロスに、樹脂を含浸させて得られる
プリプレグを所定枚数積層するとともにその両面
に銅箔を配置し加熱加圧成形してなる銅張積層
板。
1 A predetermined number of prepregs obtained by impregnating a composite cloth with a resin are laminated on a composite cloth made by weaving a composite yarn made by twisting 30 to 95% by weight of aromatic polyamide fibers and 5 to 70% by weight of glass fibers, and then laminating a predetermined number of prepregs on both sides. A copper-clad laminate made by placing copper foil and forming it under heat and pressure.
JP55149460A 1980-10-27 1980-10-27 Laminated board Granted JPS5774149A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP55149460A JPS5774149A (en) 1980-10-27 1980-10-27 Laminated board
DE8181108775T DE3167873D1 (en) 1980-10-27 1981-10-23 Laminates
US06/314,393 US4446191A (en) 1980-10-27 1981-10-23 Laminates comprising prepregs metal clad
EP19810108775 EP0050855B1 (en) 1980-10-27 1981-10-23 Laminates

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55149460A JPS5774149A (en) 1980-10-27 1980-10-27 Laminated board

Publications (2)

Publication Number Publication Date
JPS5774149A JPS5774149A (en) 1982-05-10
JPH0147299B2 true JPH0147299B2 (en) 1989-10-13

Family

ID=15475600

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55149460A Granted JPS5774149A (en) 1980-10-27 1980-10-27 Laminated board

Country Status (1)

Country Link
JP (1) JPS5774149A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4680220A (en) * 1985-02-26 1987-07-14 W. L. Gore & Associates, Inc. Dielectric materials
EP0330960A3 (en) * 1988-03-04 1990-07-11 General Electric Company Method of forming a fiber-reinforced thermoplastic article

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56148549A (en) * 1980-04-18 1981-11-18 Matsushita Electric Works Ltd Cloth base material laminated board

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS586443Y2 (en) * 1978-12-18 1983-02-03 株式会社河合楽器製作所 Elastic base material for sports jumping boards

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56148549A (en) * 1980-04-18 1981-11-18 Matsushita Electric Works Ltd Cloth base material laminated board

Also Published As

Publication number Publication date
JPS5774149A (en) 1982-05-10

Similar Documents

Publication Publication Date Title
US4446191A (en) Laminates comprising prepregs metal clad
JP2004176046A (en) Low-temperature polyimide adhesive composition and relating method thereto
KR101278342B1 (en) Material for plating and use thereof
US5319244A (en) Triazine thin film adhesives
US5206074A (en) Adhesives on polymide films and methods of preparing them
JPH0147299B2 (en)
JP4159902B2 (en) Resin composition, prepreg and laminate
JP5417714B2 (en) Circuit board resin composition, prepreg and laminate
US5250347A (en) Mechanically enhanced, high impact strength triazine resins, and method of preparing same
JP2004018615A (en) Resin composition, prepreg and laminate
JPH0229012B2 (en) SEKISOBAN
JPS6052937B2 (en) Manufacturing method for copper clad laminates
JPS647863B2 (en)
JP2004031931A (en) Tape with adhesive agent for semiconductor device and copper-clad laminate using the same, substrate for semiconductor connection and semiconductor device
JP2004224817A (en) Resin composition and prepreg and laminated sheet using the same
JPH08283436A (en) Prepreg and copper-clad laminate board
JPS63105038A (en) Surface treatment composition for glass fiber and coating of glass fiber with said composition
JP2001152108A (en) Insulating adhesive film multi-layer printed-wiring board using the same and its manufacturing method
JP2003128765A (en) Heat-resistant resin composition, prepreg using the same and laminate
JP2003221457A (en) Resin composition, prepreg and laminate
JP5245809B2 (en) Circuit board resin composition, prepreg and laminate
JPH08259668A (en) Resin composition for printed circuit board
JPS5939546A (en) Copper lined laminated board
JPH04189131A (en) Manufacture of copper plated laminate sheet
JP5169975B2 (en) Circuit board resin composition, prepreg and laminate