JPH0147155B2 - - Google Patents

Info

Publication number
JPH0147155B2
JPH0147155B2 JP12054581A JP12054581A JPH0147155B2 JP H0147155 B2 JPH0147155 B2 JP H0147155B2 JP 12054581 A JP12054581 A JP 12054581A JP 12054581 A JP12054581 A JP 12054581A JP H0147155 B2 JPH0147155 B2 JP H0147155B2
Authority
JP
Japan
Prior art keywords
glutathione
bacterial cells
gsh
activity
cysteine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP12054581A
Other languages
Japanese (ja)
Other versions
JPS5820197A (en
Inventor
Hikari Kimura
Kosaku Murata
Joji Kato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP12054581A priority Critical patent/JPS5820197A/en
Priority to EP82304039A priority patent/EP0071485B1/en
Priority to ES514571A priority patent/ES8400771A1/en
Priority to CA000408484A priority patent/CA1187432A/en
Priority to DE8282304039T priority patent/DE3279950D1/en
Publication of JPS5820197A publication Critical patent/JPS5820197A/en
Priority to ES522801A priority patent/ES8500328A1/en
Priority to US06/670,675 priority patent/US4596775A/en
Publication of JPH0147155B2 publication Critical patent/JPH0147155B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Description

【発明の詳細な説明】 本発明はグルタチオンの製造法に関し、更に詳
しくはグルタチオンの合成酵素系の制御機構が解
除されたエシエリヒア属に属する微生物を用いて
グルタチオンを製造する方法に関する。 グルタチオンはL−グルタミン酸、L−システ
イン及びグルシンより成るトリペプチドであり、
肝疾患治療剤、解毒剤などして有用な物質であ
り、また生化学的試薬としても有用な物質であ
る。 従来、微生物を用いてグルタチオンを製造する
方法としては、酵母菌体よりグルタチオンを抽出
する方法、膜透過性のよい乾燥酵母にL−グルタ
ミン酸、L−システイン及びグリシンを含有する
基質溶液を接触させてグルタチオンを生成させる
方法、酵母や大腸菌の菌体に基質溶液を接触させ
てグルタチオンを生成させるに際しATP再生系
を共役させる方法などが知られている。しかしな
がら、工業的製法としてみた場合、これらの方法
はグルタチオンの生産量が必ずしも満足しうるも
のでなかつた。 本発明者らは、かかる状況に鑑み、微生物を用
いて工業的有利にグルタチオンを製造する方法を
見い出すべく種々研究を重ねた結果、エシエリヒ
ア属に属し、γ−グルタミルシステイン合成酵素
活性及びグルタチオン合成酵素活性を有しかつグ
ルタチオンによるγ−グルタミルシステイン合成
酵素への阻害が解除された微生物が、L−グルタ
ミン酸、L−システイン及びグリシンよりグルタ
チオンを製造する際の優れた酵素源となりうるこ
とを見い出し、本発明を完成するに至つた。 すなわち、本発明は上記微生物を培養し、かく
して得られた菌体もしくは該菌体の処理物をL−
グルタミン酸、L−システイン及びグリシンを含
有する基質溶液と接触させ、生成したグルタチオ
ンを採取することからなるグルタチオンの製造法
である。 本発明で使用する微生物は、エシエリヒア属に
属し、γ−グルタミルシステイン合成酵素(E.
C.6.3.2.2.、以下本酵素をGSH−と称する)活
性及びグルタチオン合成酵素(E.C.6.2.3.2.、以下
本酵素をGSH−と称する)活性を有し、かつ
グルタチオンによるGSH−への阻害が解除さ
れた微生物であればいずれも使用することがで
き、かかる微生物の代表的な例としてはGSH−
活性及びGSH−活性を有し、かつグルタチ
オンによるGSH−への阻害が解除されたエシ
エリヒア・コリが好適に挙げられる。 上記菌株は例えば次の如くして取得することが
できる。まず、GSH−活性及びGSH−活性
を有するエシエリヒア・コリの野性株(例えば、
エシエリヒア・コリB355)に変異を誘起せしめ
てシステイン要求株及びメチルグリオキサール耐
性株を取得する。変異の誘起は通常の変異誘起処
理により行なうことができ、例えばN−メチル−
N′−ニトロ−N−ニトロソグアニジンの如き変
異誘起剤で処理することにより実施することがで
きる。システイン要求株の取得は変異誘起処理し
て得られる菌株をシステイン2×10-5Mを含む最
少培地(例えば、K2HPO40.7%、KH2PO40.3%、
(NH42SO40.1%、グルコース0.5%の組成の培
地、以下DM培地と称する)で培養し、生じた小
コロニーを釣菌分離することにより取得すること
ができる。一方、メチルグリオキサール耐性株は
前記の変異誘起処理して得られる菌株をメチルグ
リオキサールを含むDM培地に培養し、生じた大
きなコロニーを釣菌分離することにより取得する
ことができる。次いで、上記で取得したシステイ
ン要求株を含む最小培地に上記メチルグリオキサ
ール耐性株を培養し、コロニーの周辺にハローを
作らないコロニーを釣菌分離してGSH−欠損
株(例えば、エシエリヒア・コリC912)を取得
する。次いで、このGSH−欠損株に前記と同
様の処理手段で変異を誘起せしめたのち、8−ハ
イドロキシキノリンを含むDM培地で培養し、生
ずるコロニーを釣菌分離することにより、GSH
−活性及びGSH−活性を有し、かつグルタ
チオンによるGSH−への阻害が解除された菌
株を取得することができる。かくして得られる菌
株の例としては、例えばエシエリヒアP・コリ
RC912(微工研条寄第47号)が挙げられる。 上記の如くして取得した本発明の微生物を培養
するに際して用いられる培地としては、炭素源、
窒素源、無機物などを程よく含有するものであれ
ば、合成培地または天然培地のいずれも使用でき
る。炭素源としては、例えばグルコース、シユー
クロース、フラクトース、でん粉、でん粉加水分
解物、糖密などの種々の炭化水素が使用でき、そ
の使用量は0.5〜5.0%程度が好ましい。また窒素
源としては、例えば硫酸アンモニウム、リン酸ア
ンモニウム、炭酸アンモニウム、酢酸アンモニウ
ムなどの各種の無機および有機アンモニウム類、
あるいはペプトン、酵母エキス、コーンスチープ
リカー、カゼイン加水分解物などの窒素性有機物
などが使用でき、その使用量は0.5〜2.0%程度が
好ましい。更に無機物としては、例えばリン酸第
1水素カリウム、リン酸第二水素カリウム、硫酸
マグネシウム、硫酸マンガンなどが使用でき、そ
の使用量は0.005〜0.5%程度が好ましい。 培養は振とう培養あるいは通気かく拌培養など
の好気的条件下に行なうのが好ましい。培養温度
は25〜37℃が好適であり、培養期間は通常16〜40
時間程度で充分である。 培養終了後、増殖した菌体を集め、該菌体もし
くは該菌体の処理物を酵素源とする。ここに菌体
の処理物としては、例えば乾燥菌体、超音波処理
などにより得られる無細胞抽出液、該抽出液より
精製された酵素等のほか、菌体あるいは精製酵素
を例えばポリアクリルアミドゲル包括法、カラギ
ーナンゲル包括法等の方法によつて固定化して得
られる固定化菌体、固定化酵素なども好適に挙げ
られる。 上記の如き酵素源をL−グルタミン酸、L−シ
ステイン及びグリシンを含む基質溶液と接触させ
て酵素反応させることによりグルタチオンを生成
させることができる。基質溶液中のL−グルタミ
ン酸の濃度は5〜50mM、L−システインの濃度
は5〜50mM、グリシンの濃度は50〜100mM程
度が好ましい。本酵素反応はPH7〜8.5で行なう
のが好ましく、反応温度は20〜50℃、とりわけ30
〜37℃が好適である。尚、本酵素反応を効率よく
実施するために、本酵素反応をアデノジン−5′−
リン酸(ATP)再生系と共役させるのが好まし
い。ATP再生系としては、本発明の微生物が有
するアセトキナーゼ、解糖系酵素、カルバミルリ
ン酸キナーゼ、ピルビン酸キナーゼなどによる反
応を利用することができ、例えばアセトキナーゼ
による反応を利用する場合には、基質溶液中にマ
グネシウムイオンをマグネシウム塩(例えば硫酸
マグネシウム、塩化マグネシウム)として5〜
20mM、アデノシン−5′−三リン酸(ATP)を2
〜5mM、及びアセチルリン酸を5〜10mM程度
存在させておくのが好ましい。 かくして反応終了液中にグルタチオンが生成蓄
積するが、生成したグルタチオンはイオン交換樹
脂処理の如き公知の方法で単離精製することがで
きる。例えば、反応終了液を硫酸でPH3とした
後、カチオン交換樹脂(例えばDiaion PK−
228H+)に導通する。吸着したグルタチオンを
0.5M水酸化アンモニウムで溶出し、溶出液を硫
酸でPH4.5とした後、アニオン交換樹脂(例えば
Duolite A2 CH3COO-型)に導通する。吸着し
たグルタチオンを0.5M硫酸で溶出し、溶出液に
50%エタノールを加え、折出した結晶を単離する
ことにより、グルタチオンを取得することができ
る。 以下、本発明の実施例を示す。 実施例 1 下記第1表に示す菌株をグルコース0.5%、リ
ン酸第一水素カリウム0.3%、リン酸第二水素カ
リウム0.7%、硫酸マグネシウム・7水和物0.01
%、硫酸アンモニウム0.1%の組成の培地(PH
7.0)に接種し、37℃で16時間振とう培養した。
培養終了後、遠心分離により菌体を集め、超音波
処理により無細胞抽出液を調製した。この無細胞
抽出液0.05mlを、L−グルタミン酸25mM、L−
システイン25mM、グリシ50mM、塩化マグネシ
ウム10mM、アセチルリン酸10mM及び
ATP5mMを含む50mMトリス緩衝液9.95mlに加
え、37℃で1時間酵素反応させた。反応終了後、
反応液中のグルタチオン量を定量し、菌体蛋白1
mg当りのグルタチオン生成量を算出した。その結
果は下記第1表の通りであつた。 【表】
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing glutathione, and more particularly to a method for producing glutathione using a microorganism belonging to the genus Escherichia in which the control mechanism of the glutathione synthase system has been released. Glutathione is a tripeptide consisting of L-glutamic acid, L-cysteine and glucine.
It is a substance useful as a treatment for liver diseases, an antidote, etc. It is also a substance useful as a biochemical reagent. Conventionally, methods for producing glutathione using microorganisms include a method of extracting glutathione from yeast cells, and a method of contacting dry yeast with good membrane permeability with a substrate solution containing L-glutamic acid, L-cysteine, and glycine. Known methods include methods for producing glutathione, and methods for conjugating an ATP regeneration system when producing glutathione by contacting yeast or Escherichia coli cells with a substrate solution. However, when viewed as an industrial production method, these methods do not necessarily produce a satisfactory amount of glutathione. In view of this situation, the present inventors have conducted various studies to find a method for industrially advantageous production of glutathione using microorganisms, and have found that glutathione belongs to the genus Escherichia. We have discovered that microorganisms that have glutathione activity and have released the inhibition of γ-glutamylcysteine synthetase can serve as an excellent enzyme source for producing glutathione from L-glutamic acid, L-cysteine, and glycine. The invention was completed. That is, the present invention involves culturing the above-mentioned microorganisms, and using the thus obtained microorganisms or the processed product of the microorganisms as L-
This is a method for producing glutathione, which comprises contacting with a substrate solution containing glutamic acid, L-cysteine, and glycine and collecting the produced glutathione. The microorganism used in the present invention belongs to the genus Escherichia and has γ-glutamylcysteine synthase (E.
C.6.3.2.2., hereinafter referred to as GSH-) activity and glutathione synthase (EC6.2.3.2., hereinafter referred to as GSH-) activity, and has glutathione-induced GSH- Any microorganism that has been released from inhibition can be used, and a typical example of such a microorganism is GSH-
Suitable examples include Escherichia coli which has GSH-activity and GSH-activity and whose GSH-activity is released from inhibition by glutathione. The above bacterial strain can be obtained, for example, as follows. First, GSH-activity and a wild strain of E. coli with GSH-activity (e.g.
A cysteine-requiring strain and a methylglyoxal-resistant strain are obtained by inducing mutations in Escherichia coli B355). Mutations can be induced by conventional mutagenesis treatments, such as N-methyl-
This can be carried out by treatment with a mutagenic agent such as N'-nitro-N-nitrosoguanidine. To obtain a cysteine auxotroph, the resulting strain is subjected to mutagenesis in a minimal medium containing 2×10 -5 M cysteine (e.g., K 2 HPO 4 0.7%, KH 2 PO 4 0.3%,
It can be obtained by culturing in a medium containing 0.1% (NH 4 ) 2 SO 4 and 0.5% glucose (hereinafter referred to as DM medium) and separating the resulting small colonies. On the other hand, a methylglyoxal-resistant strain can be obtained by culturing the strain obtained by the above mutagenesis treatment in a DM medium containing methylglyoxal, and separating the resulting large colonies by fishing. Next, the above-mentioned methylglyoxal-resistant strain is cultured in a minimal medium containing the cysteine-requiring strain obtained above, and colonies that do not form a halo around the colony are isolated to obtain a GSH-deficient strain (e.g., Escherichia coli C912). get. Next, mutations were induced in this GSH-deficient strain using the same treatment methods as described above, followed by culturing it in a DM medium containing 8-hydroxyquinoline, and the resulting colonies were isolated by fishing to induce GSH-deficient strains.
It is possible to obtain a strain that has GSH-activity and GSH-activity, and in which the inhibition of GSH- by glutathione is released. Examples of strains obtained in this way include, for example, Escherichia P. coli.
An example is RC912 (Feikoken Jokyo No. 47). The medium used for culturing the microorganism of the present invention obtained as described above includes a carbon source,
Either a synthetic medium or a natural medium can be used as long as it contains a suitable amount of nitrogen sources, inorganic substances, etc. As the carbon source, various hydrocarbons such as glucose, sucrose, fructose, starch, starch hydrolyzate, and molasses can be used, and the amount used is preferably about 0.5 to 5.0%. Examples of nitrogen sources include various inorganic and organic ammoniums such as ammonium sulfate, ammonium phosphate, ammonium carbonate, and ammonium acetate;
Alternatively, nitrogenous organic substances such as peptone, yeast extract, corn steep liquor, and casein hydrolyzate can be used, and the amount used is preferably about 0.5 to 2.0%. Further, as the inorganic substance, for example, potassium monohydrogen phosphate, potassium dihydrogen phosphate, magnesium sulfate, manganese sulfate, etc. can be used, and the amount used is preferably about 0.005 to 0.5%. The culture is preferably carried out under aerobic conditions such as shaking culture or aeration agitation culture. The suitable culture temperature is 25-37℃, and the culture period is usually 16-40℃.
About an hour is enough. After the cultivation is completed, the grown bacterial cells are collected, and the bacterial cells or a processed product of the bacterial cells are used as an enzyme source. Examples of processed products of bacterial cells include, for example, dried bacterial cells, cell-free extracts obtained by ultrasonication, enzymes purified from the extracts, etc., as well as bacterial cells or purified enzymes that are encased in polyacrylamide gels. Preferred examples include immobilized bacterial cells and immobilized enzymes obtained by immobilization by a method such as a carrageenan gel entrapment method or the like. Glutathione can be produced by bringing the enzyme source as described above into contact with a substrate solution containing L-glutamic acid, L-cysteine, and glycine to cause an enzymatic reaction. The concentration of L-glutamic acid in the substrate solution is preferably about 5 to 50 mM, the concentration of L-cysteine is about 5 to 50 mM, and the concentration of glycine is about 50 to 100 mM. This enzymatic reaction is preferably carried out at a pH of 7 to 8.5, and the reaction temperature is 20 to 50°C, especially 30°C.
~37°C is preferred. In addition, in order to carry out this enzymatic reaction efficiently, this enzymatic reaction is carried out using adenosine-5'-
It is preferable to conjugate it with a phosphoric acid (ATP) regeneration system. As the ATP regeneration system, reactions by acetokinase, glycolytic enzymes, carbamyl phosphate kinase, pyruvate kinase, etc. possessed by the microorganism of the present invention can be used. For example, when using the reaction by acetokinase, the substrate Magnesium ions are added to the solution as magnesium salts (e.g. magnesium sulfate, magnesium chloride).
20mM adenosine-5'-triphosphate (ATP)
It is preferable that about 5 to 10 mM of acetyl phosphate be present. Glutathione is thus produced and accumulated in the reaction solution, but the produced glutathione can be isolated and purified by a known method such as treatment with an ion exchange resin. For example, after adjusting the reaction completion solution to pH 3 with sulfuric acid, a cation exchange resin (e.g. Diaion PK-
228H + ) conducts. The adsorbed glutathione
Elute with 0.5M ammonium hydroxide, adjust the eluate to pH 4.5 with sulfuric acid, and then add anion exchange resin (e.g.
Duolite A2 CH 3 COO - type) conducts. Elute the adsorbed glutathione with 0.5M sulfuric acid and add it to the eluate.
Glutathione can be obtained by adding 50% ethanol and isolating the precipitated crystals. Examples of the present invention will be shown below. Example 1 The strains shown in Table 1 below were mixed with 0.5% glucose, 0.3% potassium hydrogen phosphate, 0.7% potassium dihydrogen phosphate, and 0.01% magnesium sulfate heptahydrate.
%, ammonium sulfate 0.1% (PH
7.0) and cultured with shaking at 37°C for 16 hours.
After the culture was completed, the bacterial cells were collected by centrifugation, and a cell-free extract was prepared by sonication. Add 0.05ml of this cell-free extract to 25mM of L-glutamic acid,
Cysteine 25mM, glycine 50mM, magnesium chloride 10mM, acetyl phosphate 10mM and
The mixture was added to 9.95ml of 50mM Tris buffer containing 5mM of ATP, and enzymatic reaction was performed at 37°C for 1 hour. After the reaction is complete,
Quantify the amount of glutathione in the reaction solution, and
The amount of glutathione produced per mg was calculated. The results were as shown in Table 1 below. 【table】

Claims (1)

【特許請求の範囲】 1 エシエリヒア属に属し、γ−グルタミルシス
テイン合成酵素活性及びグルタチオン合成酵素活
性を有しかつグルタチオンによるγ−グルタミル
システイン合成酵素への阻害が解除された微生物
を培養し、かくして得られた菌体もしくは該菌体
の処理物をL−グルタミン酸、L−システイン及
びグリシンを含む基質溶液と接触させ、生成した
グルタチオンを採取することを特徴とするグルタ
チオンの製造法。 2 微生物がγ−グルタミルシステイン合成酵素
活性及びグルタチオン合成酵素活性を有しかつグ
ルタチオンによるγ−グルタミルシステイン合成
酵素への阻害が解除されたエシエリヒア・コリで
ある特許請求の範囲第1項記載の製造法。 3 マグネシウムイオン、アデノシン−5′−三リ
ン酸及びアセチルリン酸の存在下に、菌体もしく
は該菌体の処理物を基質溶液と接触させる特許請
求の範囲第1項又は第2項記載の製造法。
[Scope of Claims] 1. A microorganism belonging to the genus Escherichia that has γ-glutamylcysteine synthetase activity and glutathione synthetase activity and in which inhibition of γ-glutamylcysteine synthetase by glutathione has been released is cultured, A method for producing glutathione, which comprises contacting the bacterial cells or a processed product of the bacterial cells with a substrate solution containing L-glutamic acid, L-cysteine and glycine, and collecting the produced glutathione. 2. The production method according to claim 1, wherein the microorganism is Escherichia coli which has γ-glutamylcysteine synthetase activity and glutathione synthetase activity and in which inhibition of γ-glutamylcysteine synthetase by glutathione has been released. . 3. The production according to claim 1 or 2, in which bacterial cells or a processed product of the bacterial cells are brought into contact with a substrate solution in the presence of magnesium ions, adenosine-5'-triphosphate, and acetyl phosphate. Law.
JP12054581A 1981-07-30 1981-07-30 Preparation of glutathione Granted JPS5820197A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP12054581A JPS5820197A (en) 1981-07-30 1981-07-30 Preparation of glutathione
EP82304039A EP0071485B1 (en) 1981-07-30 1982-07-30 Novel microorganisms derived from microorganisms of the genus escherichia by mutation and their use in the preparation of glutathione
ES514571A ES8400771A1 (en) 1981-07-30 1982-07-30 Novel microorganisms derived from microorganisms of the genus Escherichia by mutation and their use in the preparation of glutathione.
CA000408484A CA1187432A (en) 1981-07-30 1982-07-30 Microorganism and its use for the preparation of glutathione
DE8282304039T DE3279950D1 (en) 1981-07-30 1982-07-30 Novel microorganisms derived from microorganisms of the genus escherichia by mutation and their use in the preparation of glutathione
ES522801A ES8500328A1 (en) 1981-07-30 1983-05-30 Novel microorganisms derived from microorganisms of the genus Escherichia by mutation and their use in the preparation of glutathione.
US06/670,675 US4596775A (en) 1981-07-30 1984-11-13 Microorganism and its use for the preparation of glutathione

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12054581A JPS5820197A (en) 1981-07-30 1981-07-30 Preparation of glutathione

Publications (2)

Publication Number Publication Date
JPS5820197A JPS5820197A (en) 1983-02-05
JPH0147155B2 true JPH0147155B2 (en) 1989-10-12

Family

ID=14788947

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12054581A Granted JPS5820197A (en) 1981-07-30 1981-07-30 Preparation of glutathione

Country Status (1)

Country Link
JP (1) JPS5820197A (en)

Also Published As

Publication number Publication date
JPS5820197A (en) 1983-02-05

Similar Documents

Publication Publication Date Title
EP0122794B1 (en) Method for producing l-carnitine
FR2463184A1 (en) PROCESS FOR THE PRODUCTION OF L-GLUTAMIC ACID BY FERMENTATION
JPH02117392A (en) Production of l-2-amino-4-(hydroxymethylphosphinyl) butyric acid
US5098835A (en) Process for producing l-threonine by fermentation
CA1187432A (en) Microorganism and its use for the preparation of glutathione
JPS5922516B2 (en) Method for producing L-phenylalanine
JPH0147155B2 (en)
Shimizu et al. A new process for the production of coenzyme A and its intermediates with a microorganism
JPS6328596B2 (en)
KR0146493B1 (en) Process for producing l-alanine by fermentation
EP0295622B1 (en) Process for producing l-tryptophan
US3725201A (en) Manufacture of uridine-5-diphosphoglucuronic acid
EP0323068A2 (en) Enzymatic carbon-carbon bond formation
JPH0669387B2 (en) Process for producing S-adenosylmethionine
JPH0355116B2 (en)
EP0289796B1 (en) Method of treating microorganism cells containing tryptophanase or treated product thereof
JPH0147154B2 (en)
JPH0254077B2 (en)
JPS60105499A (en) Production of glutathione
JPS5852638B2 (en) Method of racemization of serine
JPS6057833B2 (en) Method for producing L-tryptophan
JPS6117475B2 (en)
JPH0157959B2 (en)
US5256551A (en) Method of treating microorganism cells containing tryptophanase or treated product thereof
JPS5852637B2 (en) How to racemize serine