JPH0146842B2 - - Google Patents

Info

Publication number
JPH0146842B2
JPH0146842B2 JP54155850A JP15585079A JPH0146842B2 JP H0146842 B2 JPH0146842 B2 JP H0146842B2 JP 54155850 A JP54155850 A JP 54155850A JP 15585079 A JP15585079 A JP 15585079A JP H0146842 B2 JPH0146842 B2 JP H0146842B2
Authority
JP
Japan
Prior art keywords
layer
glass
deposited
core
quartz tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54155850A
Other languages
Japanese (ja)
Other versions
JPS5678804A (en
Inventor
Shigeki Hamashima
Koji Okamura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP15585079A priority Critical patent/JPS5678804A/en
Publication of JPS5678804A publication Critical patent/JPS5678804A/en
Publication of JPH0146842B2 publication Critical patent/JPH0146842B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は集束型光フアイバの製造方法に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of manufacturing a focusing optical fiber.

広帯域化を目的とする集束型光フアイバは、コ
アとクラツドの界面よりコアの中心に向かつて所
定の凾数に合致した形でなだらかな上昇をする屈
折率分布形状を有するものである。
A focusing optical fiber intended for widening the band has a refractive index distribution shape that gradually increases from the interface between the core and the cladding toward the center of the core in accordance with a predetermined function number.

即ち上記集束型光フアイバのコア中心より半径
方向の距離rにおける屈折率n(r)は一般に次
の第(1)式で示される。
That is, the refractive index n(r) at a distance r in the radial direction from the core center of the focusing optical fiber is generally expressed by the following equation (1).

n(r)=n0{1−2Δ(r/a)〓}1/2 ……(1) この(1)式でaはコアの半径を示し、αは屈折率
分布形状を示す凾数で、n0はコアの中心の最大屈
折率値を示す。またクラツド層の屈折率をn1とす
れば Δ=n2 0−n2 1/2n2 0 である。
n(r)=n 0 {1-2Δ(r/a)} 1/2 ...(1) In equation (1), a represents the radius of the core, and α is a function that represents the shape of the refractive index distribution. where n 0 indicates the maximum refractive index value at the center of the core. Further, if the refractive index of the cladding layer is n1 , then Δ = n20n21 / 2n20 .

一般にこのような集束型光フアイバを形成する
方法としては、石英管内にガラス形成用化合物の
主成分となる四塩化硅素(SiCl4)にコアとして
の所定の屈折率を付与するためのドーパントの四
塩化ゲルマニウム(GeCl4)を添加し、上記SiCl4
とGeCl4との混合ガスと酸素(O2)ガスを所定の
流量で導入し、上記石英管の外壁を加熱するバー
ナを所定の温度にしてかつ所定の速度で管軸方向
に沿つて移動させ、上記SiCl4の原料ガスとGeCl4
ドーパントとの混合ガスを気相化学反応によつて
酸化させ、ガラス形成層を順次石英管内に堆積し
たのち中実化し、その後加熱延伸して光フアイバ
を形成している。ここで上記コアガラスの半径方
向の屈折率分布を所定の分布形状に従うようにす
るため、ガラス形成層を一層形成する都度、上記
GeCl4のガス量を所定の値に変化させて光フアイ
バ用のガラス材料を形成していた。
Generally, the method for forming such a focusing optical fiber is to add a dopant to silicon tetrachloride (SiCl 4 ), which is the main component of the glass-forming compound, as a core to give it a predetermined refractive index in a quartz tube. Add germanium chloride (GeCl 4 ) to the above SiCl 4
A mixed gas of GeCl 4 and oxygen (O 2 ) gas is introduced at a predetermined flow rate, and a burner that heats the outer wall of the quartz tube is brought to a predetermined temperature and moved along the tube axis direction at a predetermined speed. , the above raw material gas of SiCl 4 and GeCl 4
A mixed gas with a dopant is oxidized by a gas phase chemical reaction, and a glass forming layer is sequentially deposited in a quartz tube, solidified, and then heated and drawn to form an optical fiber. Here, in order to make the refractive index distribution in the radial direction of the core glass follow a predetermined distribution shape, each time the glass forming layer is formed,
Glass materials for optical fibers were formed by changing the amount of GeCl 4 gas to a predetermined value.

ここで上記のように石英管内にコアガラス層を
堆積して形成したガラス材料を中実化する場合、
コアガラス層の最終堆積量のm層の中心部より第
i層目の堆積ガラス層までの距離r(i)と、第i層
目の堆積ガラス層のガラス堆積量s(i)との間に
は、変数xを介して第(2)式と第(3)式に示すような
関係がある。
Here, when solidifying the glass material formed by depositing the core glass layer inside the quartz tube as described above,
Between the distance r(i) from the center of the m layer of the final deposited amount of the core glass layer to the i-th deposited glass layer and the glass deposited amount s(i) of the i-th deposited glass layer There is a relationship as shown in equations (2) and (3) through the variable x.

s(i)=K(1/m)2/x{(m−i+1)2/x −(m−i)2/x} ……(2) r(i)=a(m−i/m)1/x ……(3) ここでKはSiCl4のガス量、または加熱バーナ
の温度、または加熱バーナの移動速度などによつ
て決まる定数であるが、主にガラスの堆積量に最
も関係の深い主成分のSiCl4ガス量によつて決定
する。
s(i)=K(1/m) 2/x {(m-i+1) 2/x −(m-i) 2/x } ...(2) r(i)=a(m-i/m ) 1/x ...(3) Here, K is a constant determined by the amount of SiCl 4 gas, the temperature of the heating burner, the moving speed of the heating burner, etc., but it is mainly related to the amount of glass deposited. Determined by the amount of deep main component SiCl 4 gas.

またmはコアガラス層の堆積回数でaはコアガ
ラス層の半径である。ここで上記の方法で石英管
内にコアガラス層を堆積する場合、できるだけ薄
くガラス層を形成しかつ堆積回数をできるだけ多
くすることが上記したコアガラス層の屈折率分布
をなだらかに形成する上において必要であるが、
そのようにするとガラス層を堆積する時間がかか
りすぎるので通例50層程度ガラス層を堆積してい
た。
Further, m is the number of times the core glass layer is deposited, and a is the radius of the core glass layer. When depositing a core glass layer inside a quartz tube using the above method, it is necessary to form the glass layer as thinly as possible and to repeat the deposition as many times as possible in order to form the above-mentioned smooth refractive index distribution of the core glass layer. In Although,
In this case, it takes too much time to deposit the glass layers, so typically about 50 glass layers are deposited.

従来上記のようにして石英管内にガラス層を堆
積する場合、前記した(2)式と(3)式とでx=2とな
る条件、すなわち(2)式でs(i)=K(1/m)の定数と なつてガラスの堆積量が各堆積層ごとにほぼ等し
い条件で石英管内にコアガラス層を形成してい
た。つまり上記した条件に合致するような方法と
しては、上記堆積量に最も影響を及ぼす主成分の
SiCl4ガス量を各堆積量を形成するごとに200c.c./
分の値の一定値にして、一定の堆積量でガラス堆
積層を順次形成する方法がとられていた。
Conventionally, when depositing a glass layer in a quartz tube as described above, the condition that x=2 in equations (2) and (3), that is, s(i)=K(1 The core glass layer was formed in the quartz tube under the condition that the amount of glass deposited was almost the same for each deposited layer, with a constant value of /m). In other words, as a method that meets the above conditions, the main component that has the greatest effect on the amount of deposition is
SiCl 4 gas amount is 200c.c./each for forming each deposition amount.
A method has been used in which glass deposited layers are sequentially formed with a constant amount of deposited at a constant value.

このようにして石英管内に順次ガラス層を堆積
して形成したガラス材料を中実化した場合の長手
方向の断面図を第1図Aに、径方向の断面図を第
1図Bに示す。
FIG. 1A is a longitudinal cross-sectional view of a solid glass material formed by sequentially depositing glass layers inside a quartz tube, and FIG. 1B is a radial cross-sectional view thereof.

図において10は石英管より形成されるクラツ
ド部分で、11は上記石英管内に堆積された第1
層のコアガラス層で、12,13,…i…mは、
それぞれ第2、第3、第4…第i…第m層の堆積
せるコアガラス層である。第m層は最終堆積層
で、この場合50層である。また図示していない
が、第3層と第i層、第i層と第m(50)層との
間には勿論堆積せるコアガラス層が形成されてい
る。
In the figure, 10 is a clad part formed from a quartz tube, and 11 is a first layer deposited in the quartz tube.
In the core glass layer of the layer, 12, 13,...i...m are:
These are the second, third, fourth...i-th...m-th layers to be deposited, respectively. The mth layer is the final deposited layer, which in this case is the 50th layer. Although not shown, a core glass layer is of course formed between the third layer and the i-th layer, and between the i-th layer and the m(50)-th layer.

第1図A,Bに示すように各コアガラスの堆積
層11,12,13,…i…mは1層堆積するご
とに順次その上にガラス形成層を堆積するので、
各堆積層によつて中実化したコアガラス層は年輪
に類似した構造を有するようになり、これ等の年
輪構造11A,12A,13A,…を通常リツプ
ルと称している。このようにして形成した光フア
イバのガラス材料の屈折率分布形状の模式図を第
2図に示す。図でn0はコアガラス層の中心部の屈
折率値を示し、oはコアガラス層の中心を示す。
aはコアガラス層の半径を示し、r1,r2,r3……
riはコアガラス層の中心部より第1層、第2層、
第3層……第i層までの堆積層の距離、l1は第一
層と第2層の間のリツプル間隔、l2は第2層と第
3層の、l3は第3層と第4層のガラス層間のリツ
プル間隔を示す。
As shown in FIGS. 1A and 1B, each core glass deposited layer 11, 12, 13,...i...m is sequentially deposited with a glass forming layer thereon each time one layer is deposited.
The core glass layer solidified by each deposited layer has a structure similar to tree rings, and these tree ring structures 11A, 12A, 13A, . . . are usually called ripples. FIG. 2 shows a schematic diagram of the refractive index distribution shape of the glass material of the optical fiber thus formed. In the figure, n 0 indicates the refractive index value at the center of the core glass layer, and o indicates the center of the core glass layer.
a indicates the radius of the core glass layer, r 1 , r 2 , r 3 ...
r i is the first layer, second layer,
Third layer...the distance of the deposited layer to the i-th layer, l1 is the ripple interval between the first and second layer, l2 is the distance between the second and third layer, l3 is the distance between the third layer and The ripple spacing between the glass layers of the fourth layer is shown.

図で解るごとく上記のようにして形成した光フ
アイバ形成用ガラス材料は主成分SiCl4のガス流
量を一定としているため各層に形成される堆積ガ
ラス量はほぼ一定となり、したがつて石英管の内
壁に最初に形成される第一層目の堆積ガラス層は
極めて薄いがこれが順次堆積されて第m層に到る
ほど堆積ガラス層の厚さは厚くなり、このように
してガラス層を堆積したのち中実化すれば更にリ
ツプル間隔がl1,l2,l3のように順次大きくなる。
このようなガラス材料を用いてコア径が50μmと
なる光フアイバを形成した場合、第m層(50層)
と第m−1層(49)との間に形成されるリツプル
は約3.5μmとなり、このようにして形成した集束
型光フアイバは、1.5GHz・Km以下の狭い帯域幅
のものしか得られなかつた。
As can be seen in the figure, since the glass material for forming the optical fiber formed as described above has a constant gas flow rate of the main component SiCl 4 , the amount of deposited glass formed in each layer is almost constant, and therefore the inner wall of the quartz tube The first deposited glass layer that is first formed is extremely thin, but as it is successively deposited, the thickness of the deposited glass layer becomes thicker as it reaches the mth layer. If it is solidified, the ripple intervals will become larger sequentially such as l 1 , l 2 , and l 3 .
When an optical fiber with a core diameter of 50 μm is formed using such a glass material, the mth layer (50th layer)
The ripple formed between the and Ta.

ここで一般の集束型光フアイバにおいては、上
記リツプル間隔を伝送光の波長オーバにしないと
屈折率分布が所望の理論値に近づかずしたがつて
広帯域化が図れないとされている。
In general focusing optical fibers, it is said that unless the ripple interval is set to exceed the wavelength of the transmitted light, the refractive index distribution will not approach the desired theoretical value, and therefore a wide band cannot be achieved.

そこで本発明者等は第(2)式と第(3)式において変
数x=1となる条件、すなわち(3)式においてr(i)
=a(m−i/m)となつてリツプル間隔が一定とな るような条件でコアガラス層を堆積することを試
みた。
Therefore, the present inventors set the condition that the variable x=1 in equations (2) and (3), that is, r(i) in equation (3).
An attempt was made to deposit the core glass layer under conditions such that =a(m-i/m) and the ripple interval was constant.

ここで第3図は上記したようなリツプル間隔を
一定にするために、石英管内に第1層、第2層、
第3層…のガラス層を順次堆積する場合における
主成分たるSiCl4のガス流量の変化を示すグラフ
である。
Here, in FIG. 3, in order to make the ripple interval constant as described above, the first layer, second layer,
It is a graph showing the change in the gas flow rate of SiCl 4 , which is the main component, when the third glass layers are sequentially deposited.

図で横軸はガラス層の堆積回路を示し縦軸は
SiCl4のガス流量を示す。図示するようにこの堆
積条件においては、第一層のガラス層を堆積する
場合には約400c.c./分のSiCl4のガス流量を必要と
し、最終層の50層目のガラス層を堆積する場合に
は、約0.1c.c./分の流量を必要とする。
In the figure, the horizontal axis shows the deposition circuit of the glass layer, and the vertical axis shows the deposition circuit of the glass layer.
Shows the gas flow rate of SiCl 4 . As shown in the figure, under these deposition conditions, a SiCl 4 gas flow rate of approximately 400 c.c./min is required to deposit the first glass layer, and the final 50th glass layer is deposited. In this case, a flow rate of approximately 0.1 cc/min is required.

しかし上記した400c.c./分の流量ではガス流量
が多いので気相化学反応が充分行われず、そのた
めガラス化が困難であり、また0.1c.c./分の流量
ではガス流量が微少なため、流量を正確に制御で
きないといつた難点があるため、上記の方法では
所望のガラス材料が得られなかつた。
However, at the above-mentioned flow rate of 400 c.c./min, the gas flow rate is so high that the gas phase chemical reaction does not take place sufficiently, which makes vitrification difficult, and at the flow rate of 0.1 cc/min, the gas flow rate is so small that Due to the drawback that the glass material cannot be precisely controlled, the desired glass material could not be obtained using the above method.

そこで本発明者等は上記ガラスの堆積条件を決
定する(2)式と(3)式において、変数xの範囲を1<
x<2となるような条件でSiCl4ガス流量を設定
し、ガラス層を一層堆積するたびに原料ガスの
SiCl4のガス流量を所定の割合で減少させ、各層
ごとにガラスの堆積量が減少しているガラス材料
を得た。
Therefore, in equations (2) and (3) for determining the glass deposition conditions, the inventors set the range of the variable x to 1<
The SiCl 4 gas flow rate was set under conditions such that x<2, and the raw material gas was increased each time a glass layer was deposited.
By reducing the SiCl 4 gas flow rate at a predetermined rate, a glass material was obtained in which the amount of glass deposited in each layer was reduced.

第4図は上記したように石英管内に堆積ガラス
層を一層堆積するたびにガラスの堆積量を所定の
割合で減少させたガラス材料を形成する場合にお
いて第1層、第2層、第3層…第m(50)層のガ
ラス層をそれぞれ形成する場合の原料ガスSiCl4
のガス流量の変化量を示すグラフである。
FIG. 4 shows the first, second, and third layers in the case of forming a glass material in which the amount of glass deposited is reduced by a predetermined ratio each time a glass layer is deposited in a quartz tube as described above. ...Raw material gas SiCl 4 when forming the m(50)th glass layer
3 is a graph showing the amount of change in gas flow rate.

ここで横軸は堆積ガラス層の積層回数を示し、
縦軸は原料ガスSiCl4のガスの流量を示す。本実
施例においては図示するように第1層のガラス層
を形成する場合には原料ガスSiCl4のガス流量は
300c.c./分とし、第50層目のガラス層を形成する
場合には原料ガスSiCl4のガス流量は1c.c./分と
する。そして第1層と第50層の間のガラス層を堆
積させる場合は図示するように所定の割合で原料
ガスSiCl4のガス流量を減少させる。
Here, the horizontal axis indicates the number of times the deposited glass layer is stacked,
The vertical axis indicates the flow rate of the raw material gas SiCl 4 . In this example, as shown in the figure, when forming the first glass layer, the gas flow rate of the raw material gas SiCl 4 is
300 c.c./min, and when forming the 50th glass layer, the gas flow rate of the raw material gas SiCl 4 is 1 c.c./min. When depositing a glass layer between the first layer and the 50th layer, the gas flow rate of the raw material gas SiCl 4 is decreased at a predetermined rate as shown in the figure.

このようにすれば原料ガスSiCl4のガス流量が
最も多い300c.c./分の場合でもガラス化は充分可
能で、また原料ガスSiCl4のガス流量が最も少な
い1c.c./分の場合においても流量制御は充分可能
となる。
In this way, vitrification is possible even when the raw material gas SiCl 4 gas flow rate is the highest, 300 c.c./min, and when the raw material gas SiCl 4 gas flow rate is the lowest, 1 c.c./min. It is also possible to fully control the flow rate.

上記のようにして石英管内に堆積ガラス層を1
層形成するたびに順次主成分たるSiCl4のガス流
量を所定の割合で減少するようにして導入し、か
つガラス層を1層形成するたびに、所定の屈折率
分布をガラス層が得るように、前記したGeCl4
ガスを導入しガラス材料を形成して、上記ガラス
材料を中実化しその後紡糸して光フアイバを形成
する。ここで上記のようにして例えば50μmのコ
アガラス層を有する光フアイバを形成すれば、第
m層(50層)と第m−1層(49層)との間に形成
されるリツプル間隔は1.2μmとなりこのようにし
て形成した光フアイバは3.0GHz・Kmの広帯域の
光フアイバが得られるといつた効果を生じる。
One glass layer is deposited in the quartz tube as described above.
Each time a layer is formed, the gas flow rate of SiCl 4 , which is the main component, is gradually reduced at a predetermined rate, and each time a glass layer is formed, the glass layer is made to have a predetermined refractive index distribution. , the aforementioned GeCl 4 gas is introduced to form a glass material, the glass material is solidified, and then spun to form an optical fiber. If an optical fiber having a core glass layer of, for example, 50 μm is formed as described above, the ripple interval formed between the m-th layer (50th layer) and the m-1th layer (49th layer) is 1.2 The optical fiber formed in this way has the effect that a broadband optical fiber of 3.0 GHz/Km can be obtained.

以上述べたように本発明の方法によれば、コア
ガラス層の中心部に到るほど、堆積ガラス量の減
少した光フアイバ用ガラス材料が得られる。
As described above, according to the method of the present invention, it is possible to obtain a glass material for an optical fiber in which the amount of deposited glass decreases toward the center of the core glass layer.

このようなガラス材料から光フアイバを形成す
れば、上記光フアイバもコアガラス層の中心部に
至るほど、堆積ガラス量の減少した光フアイバが
得られ、そのため形成される光フアイバのリツプ
ル間隔も、ほぼ均一となつて広帯域の集束型光フ
アイバが得られるといつた利点を生じる。
If an optical fiber is formed from such a glass material, an optical fiber can be obtained in which the amount of deposited glass decreases as it reaches the center of the core glass layer, and therefore the ripple interval of the formed optical fiber also decreases. The advantage is that a substantially uniform, broadband focusing optical fiber can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の方法で形成した光フアイバ形成
用ガラス材料の断面図で、第2図は上記ガラス材
料の屈折率分布を示す図で、第3図はガラス形成
原料の主成分となるSiCl4ガスの変化量を示すグ
ラフで、第4図は本発明の方法によるSiCl4ガス
の変化量を示すグラフである。 10:クラツド層、11,12,13,…i…
m:第1、第2、第3…第i…第m層のコアガラ
ス層、11A,12A,13A,:リツプル、
a:コア半径、o:コア中心、n0:コア中心の最
大屈折率値、l1,l2,l3…,ln…:リツプル間隔、
r1,r2,r3…ri:コア中心と各堆積層間の距離。
Figure 1 is a cross-sectional view of a glass material for forming an optical fiber formed by a conventional method, Figure 2 is a diagram showing the refractive index distribution of the glass material, and Figure 3 is a diagram showing SiCl, which is the main component of the glass forming raw material. FIG . 4 is a graph showing the amount of change in SiCl 4 gas according to the method of the present invention. 10: Clad layer, 11, 12, 13,...i...
m: 1st, 2nd, 3rd... i-th... m-th core glass layer, 11A, 12A, 13A,: ripple,
a: core radius, o: core center, n 0 : maximum refractive index value at core center, l 1 , l 2 , l 3 ..., l n ...: ripple interval,
r 1 , r 2 , r 3 ... r i : Distance between core center and each sediment layer.

Claims (1)

【特許請求の範囲】[Claims] 1 石英管内に屈折率制御用のドーパントを含む
主成分ガラス原料の蒸気を導入し、上記石英管の
外壁を加熱して、管内で気相化学反応を行わせ、
上記ドーパント量の変化に依存して屈折率の異な
る複数のコアガラス層を順次堆積させたのち、該
石英管を中実化してその後加熱延伸して集束型光
フアイバを形成する方法において、前記コアガラ
ス層を1層ずつ堆積するたびに前記主成分ガラス
原料の蒸気を所定量減少させて、中実化した場合
の各ガラス層の厚さがほぼ同一となるように1層
ごとのガラス堆積量を減少させることを特徴とす
る集束型光フアイバの製造方法。
1. Introducing the vapor of the main component glass raw material containing a dopant for controlling the refractive index into the quartz tube, heating the outer wall of the quartz tube to cause a gas phase chemical reaction within the tube,
In the method of forming a focusing optical fiber by sequentially depositing a plurality of core glass layers having different refractive indexes depending on the change in the amount of dopant, solidifying the quartz tube and then heating and stretching the quartz tube, the core Each time the glass layer is deposited one by one, the vapor of the main component glass raw material is reduced by a predetermined amount, and the amount of glass deposited for each layer is adjusted so that the thickness of each glass layer when solidified is approximately the same. 1. A method of manufacturing a converging optical fiber, characterized in that:
JP15585079A 1979-11-30 1979-11-30 Focusing optical fiber and its production Granted JPS5678804A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15585079A JPS5678804A (en) 1979-11-30 1979-11-30 Focusing optical fiber and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15585079A JPS5678804A (en) 1979-11-30 1979-11-30 Focusing optical fiber and its production

Publications (2)

Publication Number Publication Date
JPS5678804A JPS5678804A (en) 1981-06-29
JPH0146842B2 true JPH0146842B2 (en) 1989-10-11

Family

ID=15614860

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15585079A Granted JPS5678804A (en) 1979-11-30 1979-11-30 Focusing optical fiber and its production

Country Status (1)

Country Link
JP (1) JPS5678804A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1157146B (en) * 1982-12-16 1987-02-11 Cselt Centro Studi Lab Telecom METHOD FOR COMPENSATING THE REFERENCE INDEX PROFILE OF FIBER OPTICS
JP4226497B2 (en) * 2004-03-08 2009-02-18 富士フイルム株式会社 Multi-step index optical fiber

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4910056A (en) * 1972-03-30 1974-01-29
JPS5317349A (en) * 1976-07-30 1978-02-17 Western Electric Co Optical fiber

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4910056A (en) * 1972-03-30 1974-01-29
JPS5317349A (en) * 1976-07-30 1978-02-17 Western Electric Co Optical fiber

Also Published As

Publication number Publication date
JPS5678804A (en) 1981-06-29

Similar Documents

Publication Publication Date Title
US4230396A (en) High bandwidth optical waveguides and method of fabrication
US4229070A (en) High bandwidth optical waveguide having B2 O3 free core and method of fabrication
US4339174A (en) High bandwidth optical waveguide
US4217027A (en) Optical fiber fabrication and resulting product
US4249925A (en) Method of manufacturing an optical fiber
JPS5843336B2 (en) Manufacturing method of clad type optical glass fiber
US4283213A (en) Method of fabrication of single mode optical fibers or waveguides
US9382149B2 (en) Methods for producing a semifinished part for the manufacture of an optical fiber which is optimized in terms of bending
US4206968A (en) Optical fiber and method for producing the same
US4087266A (en) Optical fibre manufacture
US5761366A (en) Optical fiber with smooth core refractive index profile and method of fabrication
US4932990A (en) Methods of making optical fiber and products produced thereby
US4243299A (en) Optical fibers for communication transmission having high stability to nuclear radiation
US6405567B1 (en) Reduced dispersion optical waveguide and methods for fabricating the same
JPH0146842B2 (en)
US4140505A (en) Method of manufacturing a limited mode optical fiber
CN1494516A (en) Method for mfg. optical fibre suitable for high transmission rates
EP0055822B1 (en) Optical transmission line and its method of manufacture
JPS6291B2 (en)
JP3100291B2 (en) Dispersion shifted optical fiber and method of manufacturing the same
JPS591222B2 (en) Optical fiber manufacturing method
JPS6234700B2 (en)
EP0301797A1 (en) Methods of making optical fiber and products produced thereby
US20060185397A1 (en) Multimode optical fiber and method for manufacturing same
JPH0656454A (en) Production of optical fiber preform