JPS6234700B2 - - Google Patents

Info

Publication number
JPS6234700B2
JPS6234700B2 JP13992180A JP13992180A JPS6234700B2 JP S6234700 B2 JPS6234700 B2 JP S6234700B2 JP 13992180 A JP13992180 A JP 13992180A JP 13992180 A JP13992180 A JP 13992180A JP S6234700 B2 JPS6234700 B2 JP S6234700B2
Authority
JP
Japan
Prior art keywords
flow rate
refractive index
optical fiber
index distribution
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP13992180A
Other languages
Japanese (ja)
Other versions
JPS5767041A (en
Inventor
Yasuji Oomori
Tetsuo Mya
Toshito Hosaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP13992180A priority Critical patent/JPS5767041A/en
Publication of JPS5767041A publication Critical patent/JPS5767041A/en
Publication of JPS6234700B2 publication Critical patent/JPS6234700B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/018Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD] by glass deposition on a glass substrate, e.g. by inside-, modified-, plasma-, or plasma modified- chemical vapour deposition [ICVD, MCVD, PCVD, PMCVD], i.e. by thin layer coating on the inside or outside of a glass tube or on a glass rod
    • C03B37/01807Reactant delivery systems, e.g. reactant deposition burners

Description

【発明の詳細な説明】 本発明は内付けCVD法により、任意の屈折率
分布を有する光フアイバ用母材を製造する方法に
関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing an optical fiber base material having an arbitrary refractive index distribution by an internal CVD method.

内付けCVD法は周知のように、原料気体と酸
素とを石英管中に流し、これを管の外側から加熱
して反応させ、できた石英系ガラス層を管の内壁
上に堆積させ、その後、高温加熱して管を中実化
する方法である。この種の方法において、所定の
屈折率分布を得る方法は「Appl.Opt.、vol.15、
no.7、1976年、pp.1803〜1807」に示されている
のに準じて、主成分用原料気体SiCl4、酸素気体
O2をそれぞれ一定流量流し、主添加剤用原料気
体GeCl4、POCl3、BBr3等の流量のみを変化させ
ることにより、石英管の内周面上にGeO2
P2O5、B2O3等の主添加剤である酸化物の含有量
が厚さ方向に変化していることで、屈折率が厚さ
方向に変化するものとしている。
As is well known, the internal CVD method involves flowing raw material gas and oxygen into a quartz tube, heating them from the outside of the tube to cause a reaction, and depositing the resulting quartz-based glass layer on the inner wall of the tube. This is a method of solidifying the tube by heating it to a high temperature. In this type of method, the method for obtaining a predetermined refractive index distribution is described in “Appl.Opt., vol.15,
No. 7, 1976, pp. 1803-1807, raw material gas SiCl 4 for the main component, oxygen gas
By flowing O 2 at a constant flow rate and changing only the flow rates of the main additive raw material gases GeCl 4 , POCl 3 , BBr 3 , etc., GeO 2 ,
It is assumed that the refractive index changes in the thickness direction because the content of oxides, which are the main additives such as P 2 O 5 and B 2 O 3 , changes in the thickness direction.

すなわち従来法では、特願昭54−125274「光フ
アイバ用母材の製造方法」に示すOH基の吸収損
失特性(波長0.95μm、1.24μm、1.39μmに吸
収損失ピークが存在する)に大きな影響を与える
酸素流量と、「Appl.Opt.、Vol.18、no.22、1979
年、pp.3758〜3763」に示されている帯域特性を
決めている一要因である年輪分布を定める主成分
用原料気体SiCl4流量とが一定流量であつた。
In other words, the conventional method has a large effect on the absorption loss characteristics of the OH group (absorption loss peaks exist at wavelengths of 0.95 μm, 1.24 μm, and 1.39 μm) as shown in Japanese Patent Application No. 125274/1974 “Method for manufacturing base material for optical fiber”. ``Appl.Opt., Vol.18, no.22, 1979
The flow rate of the main component raw material gas SiCl 4 , which determines the tree-ring distribution, which is one of the factors determining the band characteristics shown in 2010, pp. 3758-3763, was constant.

そのため従来法では、低OH吸収損失特性と広
帯域な特性との両方をかねそなえた2乗型屈折率
分布を有するグレーデツド型光フアイバ、または
4GHz・Km以上の超広帯域特性を有するのに必要
な年輪分布(従来法では年輪間隔はコア断面上に
r2分布でコア中心ほど年輪間隔は大きい)を有す
るグレーデツド型光フアイバを作製するのが困難
という欠点があつた。
Therefore, in the conventional method, a graded optical fiber with a square-law refractive index distribution, which has both low OH absorption loss characteristics and broadband characteristics, or
The tree ring distribution necessary to have ultra-wideband characteristics of 4GHz/Km or more (in the conventional method, the tree ring spacing is
The drawback was that it was difficult to fabricate a graded optical fiber with an r2 distribution (the distance between annual rings is larger toward the center of the core).

また従来法では、作製系へのH2O、炭化水素化
合物(CH4、C2H6、……)の混入を完全に防止
する必要があるので、経済性が悪いという欠点も
あつた。
In addition, the conventional method had the disadvantage of being uneconomical because it was necessary to completely prevent H 2 O and hydrocarbon compounds (CH 4 , C 2 H 6 , . . . ) from entering the production system.

さらに従来法では一つの原料の流量のみしか変
えられないので、光フアイバを作製するための設
計の自由度が少ないという欠点もあつた。
Furthermore, in the conventional method, only the flow rate of one raw material can be changed, so there is a drawback that there is little freedom in designing the optical fiber.

本発明は前述の欠点を除去するため、主添加剤
用原料気体以外の一つの気体の流量を変えるか、
または二つの気体の流量を変えることにより、形
成するガラス膜の屈折率を変化させるようにした
ものである。以下図面により本発明を詳細に説明
する。
In order to eliminate the above-mentioned drawbacks, the present invention either changes the flow rate of one gas other than the raw material gas for the main additive, or
Alternatively, the refractive index of the glass film to be formed is changed by changing the flow rates of the two gases. The present invention will be explained in detail below with reference to the drawings.

本発明は内付けCVD法で形成したGeO2−P2O5
−SiO2ガラス膜(P2O5の添加量は1モル%以
下)の特性と反応用酸素流量との相関から、内付
けCVD法の反応機構を調べる研究から生まれた
もので、GeO2を主添加剤とする石英系ガラス膜
を内付けCVD法により形成する際、以下の反応
機構が生じていることを実験的に確認した。
The present invention relates to GeO 2 −P 2 O 5 formed by internal CVD method.
-This was born out of research investigating the reaction mechanism of the internal CVD method based on the correlation between the characteristics of the SiO 2 glass film (the amount of P 2 O 5 added is 1 mol% or less) and the reaction oxygen flow rate. It was experimentally confirmed that the following reaction mechanism occurred when forming a quartz-based glass film as the main additive by the internal CVD method.

(1) 原料気体SiCl4がSiO2ガラスになる反応効率
は、酸素分圧に依存せず一定である。
(1) The reaction efficiency of turning raw material gas SiCl 4 into SiO 2 glass is constant regardless of oxygen partial pressure.

(2) 原料気体GeCl4がGeO2ガラスになる反応効率
は、酸素分圧に大きく依存する。
(2) The reaction efficiency of turning raw material gas GeCl 4 into GeO 2 glass largely depends on the oxygen partial pressure.

従つてGeO2を主添加剤とする石英系ガラス膜
の屈折率は、GeCl4流量とともにO2流量、SiCl4
流量にも依存する。
Therefore, the refractive index of a silica-based glass film containing GeO 2 as the main additive depends on the GeCl 4 flow rate, O 2 flow rate, SiCl 4
It also depends on the flow rate.

内付けCVD法により作製するGeO2を主添加剤
とする石英系ガラス膜の屈折率nは、実験的に次
式で与えることができる。
The refractive index n of a silica-based glass film containing GeO 2 as a main additive produced by the internal CVD method can be experimentally given by the following equation.

n−nsip2/nsip2=β(y1−y2)〓y
/y(1) 上式で、nsip2は石英の屈折率、y1は酸素流
量、y2はSiCl4流量、Y3はGeCl4流量、βは比例定
数、γは作製系、主にバーナの設置状態に依存す
るパラメータであつて、本発明の実施例で使用し
た作業系では、γ=0.56である。
n−n sip2 /n sip2 = β(y 1y 2 ) 〓y
3 /y 2 (1) In the above formula, n sip2 is the refractive index of quartz, y 1 is the oxygen flow rate, y 2 is the SiCl 4 flow rate, Y 3 is the GeCl 4 flow rate, β is the proportionality constant, γ is the fabrication system, and the main This is a parameter that depends on the installation state of the burner, and in the working system used in the embodiment of the present invention, γ=0.56.

(1)式を使うことで主添加剤用原料気体以外の気
体の流量を制御することにより、任意の屈折率分
布を有する光フアイバ用母材を作製することがで
きる。
By using equation (1) and controlling the flow rate of gases other than the raw material gas for the main additive, it is possible to produce an optical fiber base material having an arbitrary refractive index distribution.

以下実施例にもとづいて特に2乗型屈折率分布
を有するグレーデツド型光フアイバ用母材の作製
法について詳しく述べる。
Hereinafter, a method for producing a graded optical fiber base material having a squared refractive index distribution will be described in detail based on Examples.

実施例 (1)式と内付けCVD法により形成するガラス膜
の堆積量は、SiCl4流量と比例するので、屈折率
分布係数α{このαは「Bell Syst.Tech.J.、
vol.15、no.9、pp.1563〜1578 1973年」に示され
ているGlogeの屈折率分布係数で光フアイバの屈
折率分布を分類するパラメータである}を有する
グレーデツド型光フアイバ用母材を作製するため
の流量式は次式で与えられる。
Example Since the amount of glass film deposited using equation (1) and the internal CVD method is proportional to the SiCl 4 flow rate, the refractive index distribution coefficient α {this α is “Bell Syst.Tech.J.
vol. 15, no. 9, pp. 1563-1578 1973, which is a parameter for classifying the refractive index distribution of optical fibers using Gloge's refractive index distribution coefficient, which is a parameter for classifying the refractive index distribution of optical fibers. The flow rate equation for producing is given by the following equation.

上式でiはバーナ送り回数(ただしバーナ送り
回数はコア中心から数えている)、y1(i)、y2(i)、
y3(i)はバーナ送り回数iでの各気体の流量、y〓
(o)、y2(o)、y3(o)はコア中心での各気体
の流量、itは全バーナ送り回数である。
In the above formula, i is the number of burner feeds (however, the number of burner feeds is counted from the center of the core), y 1 (i), y 2 (i),
y 3 (i) is the flow rate of each gas at the number of burner feeds i, y〓
(o), y 2 (o), and y 3 (o) are the flow rates of each gas at the center of the core, and it is the total number of burner feeds.

(2)式から特別な場合として酸素流量のみが変化
するときと、SiCl4流量のみが変化するときを求
めると、それぞれ(3)、(4)式になる。
From equation (2), special cases when only the oxygen flow rate changes and when only the SiCl 4 flow rate changes are obtained as equations (3) and (4), respectively.

y1(i)−y2 ={y1(o)−y2}{1−(i/i)〓/21/〓(3
) 第1図および第2図は(3)、(4)式からコア中心と
クラツドとの比屈折率差Δが1%、コア・外径比
が0.4になるように、それぞれy1(o)=90c.c./
min、y2(o)=27.3c.c./min、it=100〔(3)式の
場合〕、y1=600c.c./min、y2(o)=10c.c./min、
t=100〔(4)式の場合〕として、各αを有するグ
レーデツド型光フアイバ用母材を与える流量式を
示す。
y 1 (i)−y 2 = {y 1 (o)−y 2 }{1−(i/i t )〓 /2 } 1/ 〓(3
) In Figures 1 and 2, y 1 (o) is calculated from equations (3) and (4) so that the relative refractive index difference Δ between the core center and the cladding is 1% and the core/outer diameter ratio is 0.4 . =90c.c./
min, y 2 (o) = 27.3 cc/min, i t = 100 [in the case of formula (3)], y 1 = 600 c.c./min, y 2 (o) = 10 c.c./min,
Assuming that it = 100 [in the case of equation (4)], a flow rate equation that provides a graded optical fiber base material having each α is shown.

ただしこの場合、作製条件に合うようにバーナ
送り回数iはクラツドとコアとの境界からコア中
心に向つて合成するガラス層に対応して数えるよ
うにしてある。
However, in this case, in order to meet the manufacturing conditions, the number of burner feeds i is counted in correspondence to the glass layer synthesized from the boundary between the cladding and the core toward the center of the core.

第1図に示すα=2の場合の酸素流量値を使つ
て外径20mmφ、内径17mmφ、長さ1000mmの石英管
内壁面にGeO2−P2O5−SiO2ガラス膜(GeCl4
量41c.c./min、POCl3流量1.4c.c./min、SiCl4流量
27.3c.c./min)を、バーナ送り速度100mm/min
で、100回堆積させた後、中実化を行い光フアイ
バ用母材を得た。
Using the oxygen flow rate value for α=2 shown in Figure 1, a GeO 2 −P 2 O 5 −SiO 2 glass film (GeCl 4 flow rate of 41c) was applied to the inner wall of a quartz tube with an outer diameter of 20 mmφ, an inner diameter of 17 mmφ, and a length of 1000 mm. c./min, POCl 3 flow rate 1.4cc/min, SiCl 4 flow rate
27.3cc/min), burner feed speed 100mm/min
After 100 depositions, solidification was performed to obtain an optical fiber base material.

得られた光フアイバ用母材の断面の屈折率分布
を第3図に示す。設計どうり広帯域な特性を有す
る2乗型分布が得られている。
The refractive index distribution of the cross section of the obtained optical fiber base material is shown in FIG. A square-law distribution with broadband characteristics as designed was obtained.

次に損失特性を第4図に実線で示す。比較のた
め従来法による損失特性も点線で付記してある。
OH基による吸収損失ピークが現われる波長1.24
μm、1.39μmでの損失値が従来法より大幅に低
減している。
Next, the loss characteristics are shown by the solid line in FIG. For comparison, the loss characteristics of the conventional method are also shown with dotted lines.
Wavelength 1.24 where absorption loss peak due to OH group appears
The loss value at 1.39 μm is significantly lower than that of the conventional method.

第2図に示すα=2の場合のSiCl4の流量値を
使つてO2流量変化の場合と同様に光フアイバ用
母材を得た。(GeCl4流量18.7c.c./min、POCl3
量1.4c.c./min、O2流量60c.c./min) 得られた光フアイバ用母材の断面の屈折率分布
は第3図と同じであつた。年輪間隔はほぼ一様で
あり、従来法と比較して、コア中心の年輪間隔が
狭い年輪分布を得た。
Using the flow rate value of SiCl 4 in the case of α=2 shown in FIG. 2, a base material for an optical fiber was obtained in the same manner as in the case of changing the O 2 flow rate. (GeCl 4 flow rate 18.7 cc/min, POCl 3 flow rate 1.4 cc/min, O 2 flow rate 60 c.c./min) The refractive index distribution of the cross section of the obtained optical fiber base material was the same as that shown in Figure 3. . The tree ring spacing was almost uniform, and compared to the conventional method, a tree ring distribution with a narrower tree ring spacing at the center of the core was obtained.

一つの気体の流量のみを変化させる場合につい
て、実施例に基づいて詳述したが、二つの気体
(O2とSiCl4)の流量を同時に変化させる場合につ
いても、(2)式から一つの気体の場合と同様に導く
ことができ、本発明で任意の特に広帯域な特性を
有する2乗型屈折率分布を有する光フアイバ用母
材を作製できることは明らかである。
The case where only the flow rate of one gas is changed has been described in detail based on the example, but also when the flow rate of two gases (O 2 and SiCl 4 ) is changed simultaneously, from equation (2), one gas It is clear that the present invention can produce a preform for an optical fiber having a square-law type refractive index distribution having any particularly broadband characteristics.

以上説明したように、本発明の光フアイバ用母
材の屈折率分布の形成法によれば、OH基による
吸収損失を容易に低減でき、年輪間隔が一様な年
輪分布を有する2乗型屈折率分布をもつ光フアイ
バ用母材を作製できる利点がある。また本発明と
従来法を組み合わせることにより、三つの気体
(SiCl4、O2、GeCl4)の流量を変えることができ
るので、比屈折率差Δやコア・外径比等の光フア
イバの構造に依存した条件のほかに、バーナ送り
速度石英管の種類等の作業条件も2乗型屈折率分
布を与える流量式の中のパラメータに多く入れら
れるという利点もある。
As explained above, according to the method for forming the refractive index distribution of the optical fiber base material of the present invention, the absorption loss due to OH groups can be easily reduced, and the square-law refraction has a tree-ring distribution with uniform tree-ring spacing. This method has the advantage of being able to produce an optical fiber base material with a modulus distribution. Furthermore, by combining the present invention and the conventional method, it is possible to change the flow rates of the three gases (SiCl 4 , O 2 , GeCl 4 ), so the structure of the optical fiber, such as the relative refractive index difference Δ and the core/outer diameter ratio, can be changed. In addition to the conditions depending on , there is also the advantage that working conditions such as burner feed rate and type of quartz tube can be included in many parameters in the flow rate equation that provides the square-shaped refractive index distribution.

その結果、光フアイバ用母材の作製装置が簡便
になり、光フアイバのコストダウンにも役立つ利
点がある。
As a result, the manufacturing apparatus for the optical fiber base material becomes simpler, which has the advantage of helping to reduce the cost of optical fibers.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による酸素流量のみを変化させ
てα乗屈折率分布を形成する酸素流量と、バーナ
送り回数iとの関係を示す図、第2図は本発明に
よるSiCl4流量のみを変化させてα乗屈折率分布
を形成するSiCl4流量と、バーナ送り回数iとの
関係を示す図、第3図は本発明の方法によるグレ
ーデツド型光フアイバの屈折率分布を示す図、第
4図は本発明の方法および従来法によるグレーデ
ツド型光フアイバの損失特性図である。
Figure 1 is a diagram showing the relationship between the oxygen flow rate and the number of burner feeds i to form an α-th power refractive index distribution by changing only the oxygen flow rate according to the present invention, and Figure 2 is a diagram showing the relationship between only the SiCl 4 flow rate and the number of burner feeds according to the present invention. 3 is a diagram showing the refractive index distribution of a graded optical fiber according to the method of the present invention, and FIG. 1 is a loss characteristic diagram of a graded optical fiber according to the method of the present invention and a conventional method.

Claims (1)

【特許請求の範囲】[Claims] 1 内付けCVD法により、中空ガラス管の内側
表面に、所定の屈折率分布を有するGeO2を主添
加剤とする石英系ガラス膜を形成する方法におい
て、主添加剤用原料気体GeCl4の流量は一定にし
て、主添加剤用原料気体以外の酸素O2と四塩化
硅素SiCl4の少なくともいずれかの気体の流量を
変化させて、形成するガラス膜の屈折率を変える
ことを特徴とする光フアイバ用母材の屈折率分布
の形成法。
1 In a method of forming a quartz-based glass film containing GeO 2 as the main additive with a predetermined refractive index distribution on the inner surface of a hollow glass tube by internal CVD method, the flow rate of the main additive raw material gas GeCl 4 is constant and the flow rate of at least one of oxygen O 2 and silicon tetrachloride SiCl 4 other than the main additive raw material gas is changed to change the refractive index of the glass film to be formed. Method for forming refractive index distribution of fiber base material.
JP13992180A 1980-10-08 1980-10-08 Formation of refractive index distribution of base material for optical fiber Granted JPS5767041A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13992180A JPS5767041A (en) 1980-10-08 1980-10-08 Formation of refractive index distribution of base material for optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13992180A JPS5767041A (en) 1980-10-08 1980-10-08 Formation of refractive index distribution of base material for optical fiber

Publications (2)

Publication Number Publication Date
JPS5767041A JPS5767041A (en) 1982-04-23
JPS6234700B2 true JPS6234700B2 (en) 1987-07-28

Family

ID=15256749

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13992180A Granted JPS5767041A (en) 1980-10-08 1980-10-08 Formation of refractive index distribution of base material for optical fiber

Country Status (1)

Country Link
JP (1) JPS5767041A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2751955B1 (en) * 1996-07-31 1998-09-04 Alcatel Fibres Optiques OPTICAL FIBER AND ITS MANUFACTURING METHOD
KR100408230B1 (en) * 2001-05-02 2003-12-03 엘지전선 주식회사 Method of manufacturing free form of optical fiber
KR100666254B1 (en) 2004-04-30 2007-01-09 엘에스전선 주식회사 Method for fabricating multimode optical fiber for gigabit class transmission system

Also Published As

Publication number Publication date
JPS5767041A (en) 1982-04-23

Similar Documents

Publication Publication Date Title
US4339174A (en) High bandwidth optical waveguide
CA1050833A (en) Optical fiber fabrication involving homogeneous reaction within a moving hot zone
US4802733A (en) Fluorine-doped optical fibre and method of manufacturing such fibre
KR20120061785A (en) Multimode optical fibre having a refractive index profile, optical communication system using same and method for manufacturing such a fibre
JPH0648775A (en) Sio2 optical fiber doped with alkali
KR970028622A (en) Single-Mode Optical Waveguide Fibers and Manufacturing Method Thereof
GB1570767A (en) Single mode optical transmission line
US4206968A (en) Optical fiber and method for producing the same
JP5697065B2 (en) Manufacturing method of glass base material
JPS59174541A (en) Optical fiber maintaining plane of polarization
GB2062611A (en) Single mode optical fibre
US6760526B2 (en) Chalcogenide doping of oxide glasses
GB2062610A (en) Single mode optical fibres
KR20000051960A (en) Optical fiber preform having OH barrier and method of fabricating the same
US4932990A (en) Methods of making optical fiber and products produced thereby
CN1232462C (en) Method for mfg. optical fibre suitable for high transmission rates
JPS6234700B2 (en)
WO2000068718A1 (en) Chalcogenide doping of oxide glasses
Payne et al. A borosilicate-cladded phosphosilicate-core optical fibre
JPS6234699B2 (en)
EP0127227A2 (en) Method of manufacturing optical wave guides
EP0135126A1 (en) Preparation of glass for optical fibers
EP0185975A1 (en) Process for fabricating a glass preform
JPS591222B2 (en) Optical fiber manufacturing method
JPH085685B2 (en) Method for manufacturing base material for dispersion-shifted optical fiber