JPH0146232B2 - - Google Patents

Info

Publication number
JPH0146232B2
JPH0146232B2 JP59107528A JP10752884A JPH0146232B2 JP H0146232 B2 JPH0146232 B2 JP H0146232B2 JP 59107528 A JP59107528 A JP 59107528A JP 10752884 A JP10752884 A JP 10752884A JP H0146232 B2 JPH0146232 B2 JP H0146232B2
Authority
JP
Japan
Prior art keywords
lower electrode
welding
side seam
oxide film
predetermined section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP59107528A
Other languages
Japanese (ja)
Other versions
JPS6037278A (en
Inventor
Mineo Matsuzaki
Masaaki Nio
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Seikan Group Holdings Ltd
Original Assignee
Toyo Seikan Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Seikan Kaisha Ltd filed Critical Toyo Seikan Kaisha Ltd
Priority to JP10752884A priority Critical patent/JPS6037278A/en
Publication of JPS6037278A publication Critical patent/JPS6037278A/en
Publication of JPH0146232B2 publication Critical patent/JPH0146232B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/06Resistance welding; Severing by resistance heating using roller electrodes

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Rigid Containers With Two Or More Constituent Elements (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明は、金属容器の継目、特にスリーピース
缶の缶胴のサイドシームを接合形成するに当り、
移動する金属容器を電気抵抗溶接直後に吹付け滞
留する不活性ガス雰囲気に晒すことにより表面に
所定膜厚以上の酸化皮膜を生成しないサイドシー
ムを形成してなる金属容器のワイヤー電極溶接装
置に関する。 従来の技術 この種金属容器の継目を高速かつ連続的に電気
抵抗溶接する手段としては、電極ワイヤーを介し
て上下一対の電極ローラー間を通過せしめて行な
つているが継目に高温抵抗加熱を集中作用してラ
ツプ面を溶融する際、必然的に継目を取り巻く酸
素雰囲気との酸化反応を励起し継目表面に生成す
る膜厚度合によつて特有の色を呈する酸化皮膜を
被覆することが良く知られている。これは酸化皮
膜における反射光の干渉によつて生ずるものであ
り一般薄膜の光の干渉の原理に従う。第1表は金
属の酸化皮膜厚とその反射光である。
Industrial Application Field The present invention is applicable to forming joints of metal containers, particularly side seams of can bodies of three-piece cans.
This invention relates to a wire electrode welding device for a metal container, which forms a side seam on the surface of which an oxide film of a predetermined thickness or more is not formed by exposing the moving metal container to a sprayed and retained inert gas atmosphere immediately after electric resistance welding. PRIOR TECHNOLOGY As a means of electrical resistance welding the joints of metal containers of this kind at high speed and continuously, the method is to pass an electrode wire between a pair of upper and lower electrode rollers, and high-temperature resistance heating is concentrated on the joint. It is well known that when the lap surface is melted, an oxidation reaction with the oxygen atmosphere surrounding the seam is inevitably excited, and an oxide film is formed on the seam surface that takes on a unique color depending on the thickness of the film. It is being This is caused by the interference of reflected light in the oxide film, and follows the general principle of light interference in thin films. Table 1 shows the thickness of the metal oxide film and its reflected light.

【表】 膜厚の生成因子である金属の酸化作用は常温で
は錆の原因となるけれどその酸化速度はさほどで
はないが、抵抗溶接熱による550度C以上の高温
では酸化反応が烈しく起り、継目は易く上表のよ
うな変色を当然に惹起する。 所が当該変色した溶接継目は表面金属表材固有
の色艶を有する他部と違和感を呈し、美観を損ね
需要者の購買意欲を衰退し実用品としての普及に
最大のネツクとなつている。 また継目表面に生成被覆する酸化皮膜の膜厚値
が、特に前表に示す特有の色を呈し出し厚くなれ
ばなる程次後工程で継目に補正塗装を施すに当
り、透明塗料液の乗りが悪くしかもその後の工程
作業(フランジヤー、ネツカー、シーマー等によ
る)で酸化皮膜が補正塗膜ともども剥離脱落して
地金を露呈することが多く地金の溶出や溶器腐蝕
の要因を誘起するばかりか、とりも直さず酸化皮
膜は見た目も悪く品質低下を招来ることが判つ
た。 従つて当該溶接金属容器の実用化普及の最大の
克服すべき技術的困難性の課題は、溶接時如何に
して必然的に生成する酸化皮膜の膜厚を表面金属
素材自体の固有の色艶を阻害せずしかも補正塗膜
の加工密着性を落さない程度に制御抑制するかに
かかつている。 発明が解決しようとする問題点 本発明は前記従来の欠点に鑑み継目表面に生成
する酸化皮膜を一定以下に抑制するため電気抵抗
直後に不活性ガス雰囲気に晒すワイヤー電極溶接
装置を提供せんとするものである。 問題点を解決するための手段 しかして金属缶に適用する本発明装置の第一実
施例を第1図乃至第3図について説明する。 本発明の製造装置Aは、吊下ブラケツト1下端
の二股端1a,1b相互に亘り回転自在に貫通支
承する駆動ローラー軸2の二股端1a,1b間に
固着した上電極ローラー3と、胴曲されサイドシ
ームαをラツプ保持された缶胴βを外挿案内する
ガイドロツド4終端の二股端4a,4b相互に亘
り貫通固定した固定軸5に空転自在に取付ける下
電極ローラー6と、当該上下電極ローラー3,6
外周に折り返し掛巻した上下電極ワイヤーW1
W2間の溶接点Pをサイドシームαが通過直後か
ら所定区間に亘り、サイドシームαのフイードラ
インLを中に挾んで上下に一列に対向配列した不
活性ガス吹出ノズル7,8群とを備えてなる。 図中9は駆動ローラー軸2端に固着し無端チエ
ーン又は無端ベルト10を折り返し掛巻してトル
ク伝達をする駆動輪、4cは下電極ワイヤーW2
上行の通し溝である。 前記上下吹出ノズル7,8群は、始端の二股端
11a,11bを上電極ローラー3の一側を跨い
で吊下ブラケツト1の二股端1a,1b下部前側
にボルト12,13にて固定して吊下ブラケツト
1に対し直角水平に所定区間全長に亘り片持延架
した上ガス分配箱11下面と、始端のT字端14
aをガイドロツド4の二股端4a,4b先端に跨
りボルト15,16にて固定して上ガス分配箱1
1に並行に所定区間全長に亘り片持延架した下ガ
ス分配箱14上面とにそれぞれ、所定区間の始端
に近いほど上下電極ワイヤーW1,W2間の溶接点
Pに対する指向度を大きくとりかつ、千鳥状に相
互に食違つて対向配列してなる。 また上ガス分配箱11の終端面上部には鉛直に
垂下しかつ内部ガス室11cと連通する供給パイ
プ17の直角折曲端を取付けナツト18にて接続
するとともに、下ガス分配箱14の終端面下部に
はガイドロツド4および下ガス分配箱14の下側
に沿つて延架しかつ内部ガス室14cと連通する
供給パイプ19の折返し端を取付けナツト20に
て接続してなる。 なお本発明の実施例では上下吹出しノズル7,
8群は突出型であるが上下ガス分配箱11,14
の対向面側を肉厚としてじかに又は厚板を取り付
けてそれに上下吹出しノズル孔群を貫通しても良
い。 作 用 本発明は前記のように構成するから、溶接作業
に先立つて予め図示しない不活性ガス源から途中
供給パイプ17,19を介して上下ガス分配箱1
1,14のガス室11c,14c内に不活性ガス
を供給貯溜と同時に移動する金属容器の出口側に
ある上下吹出ノズル7,8群又は吹出口37,3
8群からサイドシームαのフイードラインLに向
けて一斉に0.1〜20m3/時の設定圧で噴出して上
下電極ワイヤーW1,W2間溶接点Pの直後フイー
ドラインLの所定区間にかけて不活性ガスを停滞
浮遊せしめて安定した不活性ガス雰囲気を現出し
て置く。 このような環境条件の下に胴曲してサイドシー
ムαをラツプ保持した缶胴βをガイドロツド4に
巻付けて矢印方向に約7m/分以上、例えば約10
m/分前後に亘る搬送速度で送給し、上下電極ロ
ーラー3,6間を通過する際、サイドシームαを
介して上下電極ワイヤーW1,W2は電通状態とな
るため高温抵抗熱が発生してラツプ面を軟化圧接
するが、その際外気との接触を断つ不活性ガス雰
囲気中にサイドシームα始端は侵入を開始し、上
下電極ローラー3,6間通過後のフイードライン
Lに沿う所定区間、上下吹出ノズル7,8群から
サイドシームαの内外面に不活性ガスを吹付け酸
化皮膜の生成を活性助長しない温度まで強制急冷
しつつ不活性ガス雰囲気中を通過せしめ、その後
サイドシームαの塗膜補正工程へと送出する。 効 果 ここで不活性ガス雰囲気中でラツプシーム溶接
した本発明の場合と、大気中でラツプシーム溶接
した従来例の場合との各種実験比較につき述べ
る。 (1) 本発明の場合 本発明とはリフローブリキ(板厚さ0.23mm、
メツキ量#25…外面側FreeSn量2.12g/m2
合金Sn量0.60g/m2)、クロム処理鋼板(クロ
ム酸化物15mg/m2、メタルクロム100mg/m2
およびブラツクプレート(クロム処理鋼板の表
面クロム層を剥離したもの)を使用し、N2ガ
ス気流中で下記溶接条件においてシーム溶接
し、その後溶接部の酸化膜厚外観(反射光)、
溶着性、加工密着性、耐薬品性を測定した。 なお測定方法は次の方法によつた。 酸化膜厚 EXCA(X線光電子分光器)を使用し、Ar
ガスで表面をエツチングしながらSn、O、
Feの元素濃度比により酸化膜厚を測定する。 外観 視覚にて酸化膜厚を観察する。 密着性 塗料としてナイロンパウダーを溶接部に塗
布し300〜320℃、15〜20sec焼付け、厚さ約
80〜100μの塗膜を形成しサンプルとする。
この塗膜を強制的に板材から剥し、酸化膜の
塗膜側への移行を視覚観察し密着性を見る。 加工密着性 塗料としてエポキシパウダーとエポキシユ
リア系の溶剤型塗料の2種を使用し、エポキ
シパウダーは前記と同様の方法条件で厚さ
約40μの塗膜を形成する。又エポキシユリア
系の溶剤型塗料はハケ塗りにて塗布280℃、
10secで焼付け厚さ約13〜15μの塗膜を形成し
サンプルとする。それぞれのサンプルをU字
形に折り曲げ、顕微鏡にて加工部の塗膜に発
生するマイクロラツクを観察し加工密着性を
見る。 耐薬品性 塗料としてエポキシパウダーを用いた前記
と同じ方法、条件のサンプルを、エアーゾ
ール品としては最も腐蝕性の強い部類のグラ
スターゾルに浸漬し、50℃にて1ケ月間保管
し、塗膜下に発生する気泡を経時観察し耐薬
品性を見る。 但し溶接条件は 電 極 :Cu線 ラツプ幅 :0.4mm 溶接速度 :35m/分 電極加圧力:40Kg 一次側電圧:200V (2) 従来例の場合 従来例とは本発明と同一材料、同一溶接条件
であるが、N2ガスを使用せず大気中でシーム
溶接し、同一方法条件で酸化膜厚、外観、密着
性、加工密着性、耐薬品性を測定した。結果は
第2表のとうりである。
[Table] The oxidation of metals, which is a factor in the formation of film thickness, causes rust at room temperature, but the oxidation rate is not that great. However, at high temperatures of 550 degrees C or higher caused by resistance welding heat, the oxidation reaction occurs violently, causing the seams to deteriorate. naturally causes discoloration as shown in the table above. However, the discolored weld seam looks out of place with the other parts, which have the unique color and luster of the surface metal surface material, and this impairs the aesthetic appearance and weakens the consumer's desire to purchase, which is the biggest obstacle to its widespread use as a practical product. In addition, the thickness of the oxide film that forms on the seam surface exhibits the characteristic color shown in the table above, and the thicker it becomes, the more difficult it is for the transparent paint to coat the seam in the subsequent process. To make matters worse, during subsequent process operations (using flangiers, netscars, seamers, etc.), the oxide film often peels off along with the correction coating, exposing the bare metal, which only leads to elution of the bare metal and corrosion of the melt. However, it has been found that the oxide film looks bad and causes quality deterioration. Therefore, the biggest technical difficulty to be overcome for the widespread practical use of welded metal containers is how to reduce the thickness of the oxide film that is inevitably produced during welding, and how to maintain the unique color and luster of the surface metal material itself. It depends on whether the control is suppressed to the extent that it does not inhibit the process and also does not deteriorate the processing adhesion of the correction coating. Problems to be Solved by the Invention In view of the above-mentioned conventional drawbacks, the present invention seeks to provide a wire electrode welding device that is exposed to an inert gas atmosphere immediately after electrical resistance in order to suppress the oxide film formed on the joint surface to below a certain level. It is something. Means for Solving the Problems A first embodiment of the apparatus of the present invention applied to metal cans will be described with reference to FIGS. 1 to 3. The manufacturing apparatus A of the present invention includes an upper electrode roller 3 fixed between the bifurcated ends 1a and 1b of a drive roller shaft 2, which is rotatably supported through the bifurcated ends 1a and 1b of the lower end of the hanging bracket 1; A lower electrode roller 6 is rotatably attached to a fixed shaft 5 that is fixed through the bifurcated ends 4a and 4b at the end of the guide rod 4, which guides the can body β, which is held by wrapping the side seam α, and the upper and lower electrode rollers. 3,6
Upper and lower electrode wires W 1 wrapped around the outer circumference,
Immediately after the side seam α passes the welding point P between W 2 and over a predetermined section, inert gas blowing nozzles 7 and 8 are arranged facing each other in a vertical line with the feed line L of the side seam α sandwiched therebetween. It becomes. In the figure, 9 is a drive wheel that is fixed to the drive roller shaft 2 end and transmits torque by wrapping an endless chain or endless belt 10 around it, and 4c is a lower electrode wire W 2
This is an ascending through groove. The upper and lower blow-off nozzle groups 7 and 8 have their starting bifurcated ends 11a and 11b straddled over one side of the upper electrode roller 3 and fixed to the front side of the lower part of the bifurcated ends 1a and 1b of the hanging bracket 1 with bolts 12 and 13. The lower surface of the upper gas distribution box 11, which is cantilevered over the entire length of a predetermined section at right angles and horizontally to the hanging bracket 1, and the T-shaped end 14 at the starting end.
straddle the fork ends 4a and 4b of the guide rod 4 and fix it with bolts 15 and 16 to complete the upper gas distribution box 1.
1 and the upper surface of the lower gas distribution box 14 cantilevered over the entire length of a predetermined section in parallel to the upper electrode wires W 1 and W 2 . Moreover, they are arranged opposite to each other in a staggered manner. In addition, the right-angled bent end of a supply pipe 17 that hangs vertically and communicates with the internal gas chamber 11c is connected to the upper part of the terminal surface of the upper gas distribution box 11 with a nut 18, and is connected to the terminal surface of the lower gas distribution box 14. A bent end of a supply pipe 19 extending along the lower side of the guide rod 4 and the lower gas distribution box 14 and communicating with the internal gas chamber 14c is connected to the lower part with a mounting nut 20. In the embodiment of the present invention, the upper and lower blowout nozzles 7,
The 8th group is a protruding type, but the upper and lower gas distribution boxes 11, 14
It is also possible to make the opposing surface side thicker directly or to attach a thick plate and pass the upper and lower blow-out nozzle hole groups therethrough. Function Since the present invention is constructed as described above, prior to welding work, an inert gas source (not shown) is supplied to the upper and lower gas distribution boxes 1 through intermediate supply pipes 17 and 19.
Inert gas is supplied into the gas chambers 11c and 14c of gas chambers 1 and 14. Upper and lower blow-off nozzles 7 and 8 groups or blow-off ports 37 and 3 are located on the outlet side of the metal container that moves at the same time as storage.
Inert gas is ejected from the 8th group toward the feed line L of the side seam α at a set pressure of 0.1 to 20 m 3 /hour to a predetermined section of the feed line L immediately after the welding point P between the upper and lower electrode wires W 1 and W 2 . is suspended and suspended to create a stable inert gas atmosphere. Under such environmental conditions, the can body β, which has been bent and held the side seam α wrapped, is wound around the guide rod 4 and rotated in the direction of the arrow at a speed of about 7 m/min or more, for example about 10 m/min.
When the wire is fed at a conveying speed of around m/min and passes between the upper and lower electrode rollers 3 and 6, the upper and lower electrode wires W 1 and W 2 become electrically connected through the side seam α, generating high-temperature resistance heat. Then, the lap surface is softened and pressure welded, but at this time, the starting end of the side seam α starts to penetrate into an inert gas atmosphere that cuts off contact with the outside air, and a predetermined section along the feed line L after passing between the upper and lower electrode rollers 3 and 6 is formed. , inert gas is sprayed onto the inner and outer surfaces of the side seam α from the upper and lower blowing nozzles 7 and 8, and the air is forced to rapidly cool down to a temperature that does not promote the formation of an oxide film while passing through an inert gas atmosphere. Send it to the paint film correction process. Effects Here, various experimental comparisons will be made between the case of the present invention in which lap seam welding is performed in an inert gas atmosphere and the case of a conventional example in which lap seam welding is performed in the atmosphere. (1) In the case of the present invention The present invention refers to reflow tinplate (plate thickness 0.23 mm,
Plating amount #25...Outer side FreeSn amount 2.12g/m 2 ,
Alloy Sn content 0.60g/m 2 ), chromium-treated steel plate (chromium oxide 15mg/m 2 , metal chromium 100mg/m 2 )
Seam welding was performed under the following welding conditions in a N2 gas stream using a black plate (from which the surface chromium layer of a chromium-treated steel plate has been peeled off), and then the appearance of the oxide film thickness of the welded area (reflected light),
Weldability, processing adhesion, and chemical resistance were measured. The measurement method was as follows. Oxide film thickness Using EXCA (X-ray photoelectron spectrometer), Ar
While etching the surface with gas, Sn, O,
The oxide film thickness is measured based on the Fe element concentration ratio. Appearance Visually observe the oxide film thickness. Adhesion Apply nylon powder as a paint to the welded area and bake at 300 to 320℃ for 15 to 20 seconds to a thickness of approx.
Form a coating film of 80 to 100μ and use it as a sample.
This coating film is forcibly peeled off from the board and the adhesion is visually observed to see if the oxide film has migrated to the coating side. Processing Adhesion Two types of paint are used: epoxy powder and epoxy urea solvent-based paint, and the epoxy powder forms a coating film with a thickness of about 40μ under the same method conditions as above. In addition, epoxy urea-based solvent-based paints are applied with a brush at 280°C.
Baked for 10 seconds to form a coating film with a thickness of approximately 13 to 15μ and use it as a sample. Each sample was bent into a U-shape and the micro-racks generated on the coating in the processed area were observed under a microscope to check the adhesion of the process. Chemical resistance A sample using the same method and conditions as above using epoxy powder as a paint was immersed in Glastar sol, which is the most corrosive type of aerosol product, and stored at 50°C for one month. Observe the bubbles generated at the bottom over time to check chemical resistance. However, the welding conditions are: Electrode: Cu wire wrap width: 0.4mm Welding speed: 35m/min Electrode pressure: 40Kg Primary side voltage: 200V (2) In the case of conventional example The conventional example is the same material and the same welding conditions as the present invention. However, seam welding was performed in the atmosphere without using N 2 gas, and the oxide film thickness, appearance, adhesion, processing adhesion, and chemical resistance were measured under the same method conditions. The results are shown in Table 2.

【表】 なお、◎最良、○良、×不良、××極めて
不良をそれぞれ表す。
以上のようにN2ガス気流中でのシーム溶接で
はいずれの材料においても酸化膜が薄く、外観、
密着性、加工密着性、耐薬品性も優れていること
が認められる。 次に本発明の有効性を確認するため具体的試験
例を挙げる。 試験例 第1図乃至第3図に示す本発明の溶接機Aにお
いてN2ガス量の缶胴溶接継目に与える影響試験
を下記のそれぞれの溶接条件で行つた。 <溶接条件1> a 溶接速度 :7m/分 b 使用板材 :ETブリキ#25/25、0.24mm c 缶胴サイズ:径74mm、高さ178mm d 溶接圧力 :52Kg e 溶接継目幅:0.35mm 7m/分の場合、0.13秒間N2ガス雰囲気中を
通過 <溶接条件2> a 溶接速度 :36m/分 b 使用板材 :ETブリキ#50/25、0.21mm c 缶胴サイズ:径65mm、高さ102mm d 溶接圧力 :40Kg e 溶接継目幅:0.35mm 36m/分の場合、0.08秒間N2ガス雰囲気中を
通過 <溶接条件3> b 使用板材、c 缶胴サイズ、d 溶接圧
力、e 溶接継目幅は溶接条件2と同一条件 a 溶接速度:45m/分 45m/分の場合、0.08秒間N2ガス雰囲気中を
通過 但し、酸化皮膜厚の定量計測はESCA(X線光
電子分光器)により、缶胴温の測定法としては先
端を抵抗溶接したCA素線(クロメルアルメル熱
電対)を使用してその起電力(アナログ信号)を
波形記憶装置のメモリーに記憶し、ペン記録計応
答速度にマツチした早さで記憶した信号を記録計
に出力させ、起電力を読み取る方式を、かつ測定
点は上下ガス分配箱11,14の後端間から0.5
〜1.0mm下流側でサイドシーム中央部とした。 結 果 溶接条件1乃至3の缶胴搬送速度とN2ガス吹
付量及びサイドシームの酸化皮膜厚との関係デー
タ値が第3表に、かつ第3表に基づき表中太線で
区画した素材地色を保持する上限データ値と下限
データ値をN2ガス量(縦軸)とに缶胴搬送速度
(横軸)に対して示したグラフが第4図である。
なお第4図において缶胴搬送速度に対するN2
ス量の関係を示す二点鎖線は缶胴の内面側もしく
は外綿側の片側面のみの場合を示し、実線は内外
両面の場合を示す。(実線には搬送速度60m/分
までは運転しているが上限を100m/分に置いた
場合も予測した。) しかして第4図にプロツトされた点は下記の様
にして求めている。 第3表に示す実験データを基にして 素材地色が得られた最大(又は最小)ガス量
とそれより1ランク多い(又は少い)ガス量の
中間に上限(又は下限)のガス量があるとみな
し このガス量を計算で求めた 即ちその計算例を次に示す。 計算値 45m/分での上限値の場合、(内外両面の合計) 第3表より 素材地色の得られた最大ガス量=4.8m3/時 それより1ランク多いガス量=7.2m3/時 求める上限のガス量=4.8+7.2/2=6.0m3/時 この6.0m3/時を上限ガス量として第4図にプ
ロツトしてある。 このように45m/分の内外両面の下限値、36
m/分の内外両面の上限値および下限値、7m/
分の内外両面の上限値および下限値を求めてプロ
ツトされる。 また45m/分、36m/分、7m/分の片側面の
それぞれ上限値および下限値は各場合の内外両面
の上限値および下限値の1/2としてプロツトした。
[Table] In addition, ◎ is the best, ○ is good, × is poor, and xx is extremely poor, respectively.
As mentioned above, in seam welding in a N2 gas stream, the oxide film is thin for all materials, and the appearance and
It is recognized that adhesion, processing adhesion, and chemical resistance are also excellent. Next, specific test examples will be given to confirm the effectiveness of the present invention. Test Example In the welding machine A of the present invention shown in FIGS. 1 to 3, a test on the effect of the amount of N 2 gas on the welded seam of the can body was conducted under the following welding conditions. <Welding conditions 1> a Welding speed: 7 m/min b Plate material used: ET tinplate #25/25, 0.24 mm c Can body size: Diameter 74 mm, height 178 mm d Welding pressure: 52 Kg e Weld seam width: 0.35 mm 7 m/ In case of 0.13 seconds, pass through N2 gas atmosphere for 0.13 seconds <Welding conditions 2> a Welding speed: 36 m/min b Plate material used: ET tin plate #50/25, 0.21 mm c Can body size: Diameter 65 mm, height 102 mm d Welding pressure: 40Kg e Welding seam width: 0.35mm At 36m/min, passing through N2 gas atmosphere for 0.08 seconds <Welding conditions 3> b Plate material used, c Can body size, d Welding pressure, e Welding seam width Same condition as condition 2 a. Welding speed: 45 m/min At 45 m/min, pass through N2 gas atmosphere for 0.08 seconds. However, quantitative measurement of oxide film thickness is performed using ESCA (X-ray photoelectron spectrometer). The measurement method is to use a CA wire (chromel alumel thermocouple) with resistance welded at the tip, and store the electromotive force (analog signal) in the memory of the waveform storage device, at a speed that matches the response speed of the pen recorder. The method is to output the stored signal to a recorder and read the electromotive force, and the measurement point is 0.5 from the rear end of the upper and lower gas distribution boxes 11 and 14.
The center of the side seam was ~1.0mm downstream. Results Table 3 shows the relationship data between the can body transport speed, N2 gas spray amount, and side seam oxide film thickness for welding conditions 1 to 3, and the material areas divided by thick lines in the table based on Table 3. FIG. 4 is a graph showing the upper limit data value and lower limit data value for maintaining color against the N 2 gas amount (vertical axis) and the can body conveyance speed (horizontal axis).
In FIG. 4, the two-dot chain line showing the relationship between the amount of N 2 gas and the conveying speed of the can body shows the case of only one side of the inner surface or the outer cotton side of the can body, and the solid line shows the case of both the inner and outer sides. (The solid line shows operation at a transport speed of up to 60 m/min, but predictions were also made when the upper limit was set at 100 m/min.) The points plotted in Figure 4 were obtained as follows. Based on the experimental data shown in Table 3, the upper (or lower) gas amount is set between the maximum (or minimum) gas amount that gives the material background color and the gas amount that is one rank higher (or lower) than that. The following is an example of calculating the amount of gas that is assumed to be present. Calculated value In the case of the upper limit value at 45m/min (total of both the inside and outside) From Table 3 Maximum gas amount obtained for the material ground color = 4.8m 3 / hour Gas amount one rank higher than that = 7.2m 3 / Hour: Upper limit gas amount to be determined = 4.8 + 7.2/2 = 6.0m 3 /hour This 6.0m 3 /hour is plotted in Figure 4 as the upper limit gas amount. In this way, the lower limit for both the inner and outer surfaces of 45 m/min is 36
Upper and lower limits of m/min both inside and outside, 7m/min.
The upper and lower limits for both the inner and outer limits of the minute are determined and plotted. The upper and lower limits for one side of 45 m/min, 36 m/min, and 7 m/min were plotted as 1/2 of the upper and lower limits for both the inner and outer surfaces in each case.

【表】【table】

【表】 それによると溶接搬送速度(7m/分以上)と
不活性ガス量との間に相関関係があり素材地色を
保持するには片側面の場合には最下限値0.05m3
時〜最上限10m3時の不活性ガス量が確定される。
内外両面の場合には片側面の場合の最下限値およ
び最上限値×2=0.1〜20m3/時となる。 ここで0.05m3/時の下限値を求めるには搬送速
度7m/分の場合の、(素材地色の得られた最小
ガス量0.12+それより1ランク少いガス量0.06)
÷2=0.09m3/時、の片側分として×1/2=0.045 m3/時より求めて10m3/時の上限値は、100m/
分の場合のガス量20m3/時×1/2=10より求めた。 即ちサイドシームに400Å以下の溶接皮膜生成
を抑制するには、缶胴溶接搬送速度に応じた不活
性ガス量の制御が極めて重要であることが知れ
る。
[Table] According to the table, there is a correlation between the welding transport speed (7 m/min or more) and the amount of inert gas, and in order to maintain the ground color of the material, the minimum value is 0.05 m 3 /
hour to maximum limit 10m 3 o'clock inert gas amount is determined.
In the case of both the inner and outer surfaces, the lower limit and upper limit in the case of one side x 2 = 0.1 to 20 m 3 /hour. Here, to find the lower limit of 0.05 m 3 /hour, when the conveyance speed is 7 m/min, (minimum gas amount obtained for the material ground color 0.12 + gas amount one rank less than that 0.06)
÷2 = 0.09m 3 /hour, calculated from x 1/2 = 0.045 m 3 /hour, and the upper limit of 10m 3 /hour is 100m / hour.
The amount of gas in the case of 20 m 3 /hour x 1/2 = 10 was calculated. That is, it is known that in order to suppress the formation of a weld film of 400 Å or less on the side seam, it is extremely important to control the amount of inert gas according to the can body welding conveyance speed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第一実施例を示す略示側面
図、第2図は第1図−線視一部切欠拡大断面
図、第3図は第1図−線視平面図、第4図は
サイドシームの溶接後も素材地色を保持するため
のN2ガス量と缶胴溶接搬送速度との上限−下限
の相関特性線グラフである。 A〜C……金属容器の製造装置、L……フイー
ドライン、α……サイドシーム、β……缶胴、
3,6……上下電極ローラー、7,8……上下吹
出ノズル。
1 is a schematic side view showing a first embodiment of the present invention, FIG. 2 is an enlarged partially cutaway sectional view taken from FIG. 1, and FIG. 3 is a plan view taken from FIG. The figure is a graph showing the correlation between the upper and lower limits of the N2 gas amount and the can body welding conveyance speed to maintain the base color of the material even after side seam welding. A to C...Metal container manufacturing equipment, L...Feed line, α...Side seam, β...Can body,
3, 6... Upper and lower electrode rollers, 7, 8... Upper and lower blowing nozzles.

Claims (1)

【特許請求の範囲】 1 電気抵抗溶接表面に生成する酸化皮膜の膜厚
を少なくとも400Å以下に抑制自在として、サイ
ドシームの上下電極ローラ間を上下一対の電極ワ
イヤーを介して7m/分以上の搬送速度で通過直
後から所定区間に亘り、前記サイドシームのフイ
ードライン上側に沿つて550℃まで無酸化冷却す
るため一斉に0.1〜20m3/時の設定圧で噴出する
複数の不活性ガス吹出ノズル群を下向配列してな
る金属容器のワイヤー電極溶接装置。 2 吹出ノズル群は、所定区間の始端に近いほど
上下電極ローラー間に対する指向度を大きくとつ
てなる特許請求の範囲第1項記載の金属容器のワ
イヤー電極溶接装置。 3 電気抵抗溶接表面に生成する酸化皮膜の膜厚
を少なくとも400Å以下に抑制自在として、サイ
ドシームの上下電極ローラー間を上下一対の電極
ワイヤーを介して約7m/分以上の搬送速度で通
過直後から所定区間に亘り、前記サイドシームの
フイードラインを中に挟んで上下に550℃まで無
酸化冷却するため一斉に0.1〜20m3/時の設定圧
で噴出する複数の不活性ガス吹出ノズル群を対向
配列してなる金属容器のワイヤー電極溶接装置。 4 吹出ノズル群は、所定区間の始端に近いほど
上下電極ローラ間に対する指向度を大きくとつて
なる特許請求の範囲第3項記載の金属容器のワイ
ヤー電極溶接装置。 5 上下の吹出ノズル群は、千鳥状に相互に食違
つて対向配列してなる特許請求の範囲第3項記載
の金属容器のワイヤー電極溶接装置。
[Scope of Claims] 1. Conveyance at a speed of 7 m/min or more between the upper and lower electrode rollers of the side seam via a pair of upper and lower electrode wires, while the thickness of the oxide film generated on the electric resistance welding surface can be suppressed to at least 400 Å or less. A plurality of inert gas blowing nozzle groups are installed to simultaneously blow out at a set pressure of 0.1 to 20 m 3 /hour in order to perform oxidation-free cooling to 550°C along the upper side of the feed line of the side seam over a predetermined section immediately after passing at a high speed. Wire electrode welding equipment for metal containers arranged downward. 2. The wire electrode welding device for a metal container according to claim 1, wherein the blowing nozzle group has a larger directivity with respect to the upper and lower electrode rollers as it approaches the starting end of the predetermined section. 3. The thickness of the oxide film generated on the electric resistance welding surface can be suppressed to at least 400 Å or less, and immediately after passing between the upper and lower electrode rollers of the side seam via a pair of upper and lower electrode wires at a conveyance speed of about 7 m/min or more. A plurality of inert gas blowing nozzle groups are arranged facing each other and eject all at once at a set pressure of 0.1 to 20 m 3 /hour in order to perform oxidation-free cooling up to 550 degrees Celsius above and below the feed line of the side seam over a predetermined section. Wire electrode welding equipment for metal containers. 4. The wire electrode welding device for a metal container according to claim 3, wherein the blowing nozzle group has a larger directivity with respect to the upper and lower electrode rollers as it approaches the starting end of the predetermined section. 5. The wire electrode welding device for a metal container according to claim 3, wherein the upper and lower blow-off nozzle groups are arranged opposite to each other in a staggered manner.
JP10752884A 1984-05-29 1984-05-29 Metallic vessel and producing apparatus thereof Granted JPS6037278A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10752884A JPS6037278A (en) 1984-05-29 1984-05-29 Metallic vessel and producing apparatus thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10752884A JPS6037278A (en) 1984-05-29 1984-05-29 Metallic vessel and producing apparatus thereof

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP54009638A Division JPS5841152B2 (en) 1979-02-01 1979-02-01 Metal containers and their manufacturing method and equipment

Publications (2)

Publication Number Publication Date
JPS6037278A JPS6037278A (en) 1985-02-26
JPH0146232B2 true JPH0146232B2 (en) 1989-10-06

Family

ID=14461475

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10752884A Granted JPS6037278A (en) 1984-05-29 1984-05-29 Metallic vessel and producing apparatus thereof

Country Status (1)

Country Link
JP (1) JPS6037278A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007046709A1 (en) * 2007-09-28 2009-04-09 Linde Ag Method for joining objects

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3652818A (en) * 1970-07-31 1972-03-28 Continental Can Co Inert atmosphere seam welder
JPS5284141A (en) * 1976-01-06 1977-07-13 Fuji Kogyosho Kk Electric resistance seam welding machine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3652818A (en) * 1970-07-31 1972-03-28 Continental Can Co Inert atmosphere seam welder
JPS5284141A (en) * 1976-01-06 1977-07-13 Fuji Kogyosho Kk Electric resistance seam welding machine

Also Published As

Publication number Publication date
JPS6037278A (en) 1985-02-26

Similar Documents

Publication Publication Date Title
EP3396004B1 (en) Method for preparing a plated steel material having excellent friction resistance and white rust resistance
EP0445353B1 (en) Electric arc spraying of reactive metals
US4082212A (en) Galvanized tube welded seam repair metallizing process
US5254359A (en) Method of forming titanium nitride coatings on carbon/graphite substrates by electric arc thermal spray process using titanium feed wire and nitrogen as the atomizing gas
US5304417A (en) Graphite/carbon articles for elevated temperature service and method of manufacture
US3977842A (en) Product and process
US4386259A (en) Arc welding process using a consumable stranded wire electrode
JPH0146232B2 (en)
US3730758A (en) Method of protecting ferrous strip in hot-dip processes
CA1069390A (en) Method for effecting one side molten metal coating
KR840002232B1 (en) Bright welded seam can of tinplete
US4652715A (en) Method of making a welded can body
US4058700A (en) Method for horizontal fillet welding of steel plates
US4191319A (en) Galvanized tube welded seam repair metallizing process
JPS5841152B2 (en) Metal containers and their manufacturing method and equipment
US5251804A (en) Method for the continuous manufacture of metal-plated steel tubes by molten plating treatment
US3597261A (en) Method of coating copper plated strands with zinc
US3716906A (en) Method of making food containers
JP3720961B2 (en) Steel plate for welding cans with excellent weldability, corrosion resistance, and adhesion
JP3212136B2 (en) Can body having a welding can body
US6436556B1 (en) Method for producing a strip-like metal composite by high temperature dip coating
JP2981928B2 (en) Copper plated steel wire for gas shielded arc welding
JPH05222509A (en) Method for repairing welding bead cut part in plated resistance welded tube
JPH07251289A (en) Flux cored wire for arc welding and its production
WO1994021837A1 (en) Tube formed from steel strip having metal layer on one side