JPH0145724B2 - - Google Patents

Info

Publication number
JPH0145724B2
JPH0145724B2 JP14453681A JP14453681A JPH0145724B2 JP H0145724 B2 JPH0145724 B2 JP H0145724B2 JP 14453681 A JP14453681 A JP 14453681A JP 14453681 A JP14453681 A JP 14453681A JP H0145724 B2 JPH0145724 B2 JP H0145724B2
Authority
JP
Japan
Prior art keywords
ceramic
wire
resistance wire
resistance
fine particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP14453681A
Other languages
Japanese (ja)
Other versions
JPS5846601A (en
Inventor
Toshimi Kuma
Kinji Kanegae
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seibu Giken Co Ltd
Original Assignee
Seibu Giken Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seibu Giken Co Ltd filed Critical Seibu Giken Co Ltd
Priority to JP14453681A priority Critical patent/JPS5846601A/en
Publication of JPS5846601A publication Critical patent/JPS5846601A/en
Publication of JPH0145724B2 publication Critical patent/JPH0145724B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Details Of Resistors (AREA)
  • Apparatuses And Processes For Manufacturing Resistors (AREA)

Description

【発明の詳細な説明】 本発明は温度変化による電気抵抗の変化を利用
して流体または固体の温度を測定する測温抵抗
体、流体の流れ中に置いた場合の温度変化による
電気抵抗の変化を検出しこれによつて流体の流速
を測定する流速計測用センサー、またはシーズヒ
ーターなどの抵抗線を細管内に固定し保護する方
法にかかるものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a resistance temperature detector that measures the temperature of a fluid or solid by utilizing a change in electrical resistance due to a temperature change, and a resistance thermometer that measures the temperature of a fluid or solid by using a change in electrical resistance due to a change in temperature when placed in a flow of fluid. This relates to a flow rate measurement sensor that detects the flow rate and thereby measures the flow rate of the fluid, or a method of securing and protecting a resistance wire such as a sheathed heater inside a thin tube.

従来この種の測温抵抗体、計測器用センサーな
どは抵抗の温度係数の大きな細線(5〜40ミクロ
ン)たとえばタングステン線、ニツケル線または
白金線等を低抗線として真直または螺旋状態の裸
線でそのままあるいは絶縁体の表面に巻きつけた
状態で使用しているが、裸線の状態で用いる場合
にはしばしば切断して使用不能となり、一方絶縁
体の表面に抵抗線を巻いて使用するものは形状不
安定でまた流体中の塵埃が付着した場合清掃が極
めて困難でありまた湿度の影響を受け易く測定精
度が大きく狂う欠陥があり、尚又このようなセン
サーでは液体の温度または流速の測定は不可能で
ある。
Conventionally, this type of resistance temperature detector, sensor for measuring instruments, etc. has been made using a thin wire (5 to 40 microns) with a large temperature coefficient of resistance, such as a tungsten wire, nickel wire, or platinum wire, as a low resistance wire, and a straight or spiral bare wire. They are used either as they are or wrapped around the surface of an insulator, but when used as bare wires, they are often cut and become unusable, while those that are used with resistance wires wrapped around the surface of an insulator It has an unstable shape, is extremely difficult to clean if dust in the fluid adheres to it, and is easily affected by humidity, resulting in a major loss of measurement accuracy.In addition, such sensors cannot measure the temperature or flow rate of the fluid. It's impossible.

かかる欠点を除去するためセンサーの熱敏感抵
抗体を硬質チユーブの中にマグネシア等の無機絶
縁体粉末または絶縁性の有機高分子接着剤ととも
に封入し固定する方法が実施されたが、かかる充
填方式では硬質チユーブの内径が微小なものは無
機絶縁体粉末等の填入が不可能であり、従つて微
小なセンサーは製作し得ずセンサー自体が大きく
なるため、測定すべき流体と抵抗体とが熱平衡に
達するのに時間を要し、流体の変動する温度また
は流速を測定するに適せず、また有機高分子接着
剤とともに封入する方法では一般に200℃程度以
上の高温に耐え得ない欠点があつた。
In order to eliminate this drawback, a method has been implemented in which the heat-sensitive resistor of the sensor is encapsulated and fixed in a hard tube together with an inorganic insulating powder such as magnesia or an insulating organic polymer adhesive. If the inner diameter of the hard tube is minute, it is impossible to insert inorganic insulating powder, etc. Therefore, it is impossible to manufacture a minute sensor and the sensor itself becomes large, so the fluid to be measured and the resistor are in thermal equilibrium. It takes time to reach this temperature, making it unsuitable for measuring fluctuating temperatures or flow rates of fluids, and the method of enclosing it with organic polymer adhesives generally has the drawback of not being able to withstand high temperatures of around 200°C or higher. .

本発明は以上の如き欠点を除去し、小型で応答
性が速く高温に耐え、正確に温度あるいは流体の
流速を測定し得る計測器用センサー(熱敏感抵抗
体)あるいは高温用のシーズヒーターを提供する
ことを目的とするもので、この目的は本発明によ
り抵抗線を挿入した細管をセラミツク微粒子の分
散体の中に浸漬し、抵抗線と他の電極板との間に
電圧を加えることにより電気泳動を利用して分散
体中のセラミツク粒子を抵抗線表面全長にわたり
析出固定して細管内に充填し乾燥することにより
達成される。
The present invention eliminates the above-mentioned drawbacks and provides a measuring instrument sensor (heat-sensitive resistor) or a high-temperature sheathed heater that is small, has fast response, can withstand high temperatures, and can accurately measure temperature or fluid flow velocity. The purpose of this invention is to immerse a capillary tube into which a resistance wire is inserted into a dispersion of ceramic fine particles according to the present invention, and apply a voltage between the resistance wire and another electrode plate to perform electrophoresis. This is accomplished by precipitating and fixing the ceramic particles in the dispersion over the entire length of the resistance wire surface, filling it into a capillary, and drying it.

以下実施例を図面について説明すれば、第1図
に示す如く径20ミクロンの白金細線を径約0.35mm
の螺旋状に巻いた抵抗細線2の両端に経0.2mmの
白金リード線1,1を電気溶接等によつて接続
し、アルミナまたはシリカ或はその混合物よりな
る内径0.5mm、長さ約30mmのセラミツク細管3に
リード線1,1と抵抗細線2との溶着部が納まる
ように該白金抵抗細線2を挿通し、セラミツク細
管3を適宜の保持具6によつて容器7に満たした
シリカの20%水性ゾル中に吊下げ浸漬し、適宜の
直流電源8により白金リード線1に正電圧シリカ
ゾル4中に設けた電極9に負電圧を加えると、負
の電荷を帯びているシリカゾル4中のシリカ微粒
子は白金リード線1および白金抵抗細線2の表面
に析出固定する。10ボルトの電圧を約10分間加え
るとセラミツク細管3内はほぼシリカ粒子4aで
充填されるので通電を止めセラミツク管3を引上
げ、第2図に示す如くセラミツク管3内に析出し
たシリカ4aを乾燥し、白金リード線1に析出固
着したシリカ粒子層を除去した後、セラミツクの
泥漿たとえばアルミナ粒末30%と硬質ガラス粉末
70%との混合物を約2倍量の水、メチルアルコー
ル等適宜の揮発性液体に混和して得た泥漿状分散
体を細管両端に4bの如く追加充填して80〜100
℃で約1時間乾燥して上記分散体4b内の水分を
蒸発し、6時間で約1200℃に昇温し約1200℃に30
分間維持して細管内のシリカを焼成し、セラミツ
ク管内の空気、吸着ガス、水蒸気等を完全に追出
しかつ細管両端のセラミツク4bを燒結する。そ
の後常温まで約10時間かけて徐冷すると、白金抵
抗細線2はセラミツク細管3内に焼成セラミツク
4a,4bによつて固定される。
To explain the example below with reference to the drawings, as shown in Fig. 1, a fine platinum wire of 20 microns in diameter was
Platinum lead wires 1, 1 with a diameter of 0.2 mm are connected to both ends of the spirally wound resistance wire 2 by electric welding, etc., and the inner diameter is 0.5 mm and the length is about 30 mm, made of alumina, silica, or a mixture thereof. The thin platinum resistance wire 2 is inserted into the ceramic thin tube 3 so that the welded portion of the lead wires 1, 1 and the thin resistance wire 2 is accommodated, and the ceramic thin tube 3 is held by an appropriate holder 6 to fill a container 7 with 20 ml of silica. % aqueous sol, and when a positive voltage is applied to the platinum lead wire 1 by an appropriate DC power supply 8 and a negative voltage is applied to the electrode 9 provided in the silica sol 4, the silica in the silica sol 4, which is negatively charged, is The fine particles are deposited and fixed on the surfaces of the platinum lead wire 1 and the thin platinum resistance wire 2. When a voltage of 10 volts is applied for about 10 minutes, the inside of the ceramic tube 3 is almost filled with silica particles 4a, so the electricity is stopped and the ceramic tube 3 is pulled up to dry the silica 4a deposited inside the ceramic tube 3 as shown in Fig. 2. After removing the silica particle layer deposited and fixed on the platinum lead wire 1, a ceramic slurry such as 30% alumina powder and hard glass powder is added.
A slurry-like dispersion obtained by mixing a mixture of 70% and 70% with an appropriate volatile liquid such as water or methyl alcohol is added to both ends of the tube as shown in 4b, and the mixture is heated to 80 to 100%.
℃ for about 1 hour to evaporate the moisture in the dispersion 4b, and the temperature was raised to about 1200℃ for 6 hours.
The silica inside the capillary is fired for 1 minute, air, adsorbed gas, water vapor, etc. inside the ceramic tube are completely expelled, and the ceramics 4b at both ends of the capillary are sintered. Thereafter, the platinum resistance wire 2 is slowly cooled to room temperature over a period of about 10 hours, and the platinum resistance wire 2 is fixed in the ceramic thin tube 3 by the fired ceramics 4a and 4b.

第3図乃至第5図は本発明の他の実施例を示す
もので、第3図および第4図に示す如く2本の透
孔を穿つたセラミツク製円柱体3aを用意し、タ
ングステンリード線1,1を両端に電気溶接した
タングステン抵謙細線2を前記2本の透孔に挿通
し、セラミツク製円柱体3aを適宜の保持具6に
よつて容器7に満したアルミナの20%水性ゾル4
中に吊下げ浸漬し、適宜の直流電源8によりリー
ド線1に負電圧、アルミナゾル4中に設けた電極
9に正電圧を加えると、正の電荷を帯びているア
ルミナゾル4中のアルミナ微粒子はリード線1お
よび抵抗細線2の表面に析出固定する。10ボルト
の電圧を約10分間加えるセラミツク製円柱体3a
の透孔はほぼアルミナ微粒子で充填されるので通
電を止めセラミツク製円柱体3aを引上げ、第5
図に示す如くセラミツク製円柱体3aの透孔内に
析出固定したアルミナ粒子4aを乾燥し、リード
線1に付着したアルミナ粒子析出層を除去した
後、楽焼またはスピネル(MgAl2O4)粉末等の
低融点セラミツクを約2倍量の水、メチルアルコ
ール等適宜の揮発性液体に混和して得た泥漿を細
管両端に4bの如く充填して80〜100℃で約1時
間乾燥し、6時間で約700℃に昇温し約700℃に10
分間維持してアルミナ粉末4aを焼成し、セラミ
ツク管内の空気、吸着ガス、水蒸気等を完全に追
出し、かつ両端の低融点セラミツク4bを燒結す
る。その後常温まで約10時間かけて徐冷すると、
抵抗細線2はセラミツク管3a内に焼成セラミツ
ク4a、焼結セラミツク4bによつて固定され
る。
3 to 5 show another embodiment of the present invention, in which a ceramic cylindrical body 3a with two through holes is prepared as shown in FIGS. 3 and 4, and a tungsten lead wire is prepared. A tungsten resistive thin wire 2 with 1 and 1 electrically welded at both ends is inserted into the two through holes, and a ceramic cylinder 3a is held by a suitable holder 6 to fill a container 7 with 20% alumina aqueous sol. 4
When a negative voltage is applied to the lead wire 1 and a positive voltage is applied to the electrode 9 provided in the alumina sol 4 using an appropriate DC power source 8, the alumina fine particles in the alumina sol 4, which have a positive charge, are suspended in the alumina sol 4. It is deposited and fixed on the surfaces of the wire 1 and the resistance thin wire 2. Ceramic cylinder body 3a to which a voltage of 10 volts is applied for about 10 minutes
The through hole is almost filled with alumina fine particles, so turn off the electricity and pull up the ceramic cylinder 3a.
As shown in the figure, after drying the alumina particles 4a precipitated and fixed in the through holes of the ceramic cylinder 3a and removing the alumina particle precipitation layer adhering to the lead wire 1, Rakuyaki or spinel (MgAl 2 O 4 ) powder, etc. A slurry obtained by mixing about twice the amount of low melting point ceramic with a suitable volatile liquid such as water or methyl alcohol was filled into both ends of the tube as shown in 4b, dried at 80 to 100°C for about 1 hour, and then dried for 6 hours. The temperature was raised to about 700℃, and the temperature was increased to about 700℃ for 10
The alumina powder 4a is fired for a minute to completely expel air, adsorbed gas, water vapor, etc. inside the ceramic tube, and to sinter the low melting point ceramics 4b at both ends. After that, slowly cool it down to room temperature for about 10 hours.
The thin resistance wire 2 is fixed in the ceramic tube 3a by fired ceramics 4a and sintered ceramics 4b.

以上実施例ではリード線1および抵抗細線2と
して白金およびタングステンを、セラミツク管
3,3aとしてアルミナ、シリカ等を使用した
が、リード線1、抵抗細線2には外気により表面
酸化を起こさない範囲で適宜導体を使用すること
ができ、またセラミツク細管3,3aにはアルミ
ナ、ムライト、ジルコニア等を使用し、充填用セ
ラミツク微粒子4a,4bとしてはアルミナ、シ
リカ、マグネシア、石英ガラス等またはその混合
物を使用し得る。尚セラミツ細管3と充填用セラ
ミツク微粒子4aおよび抵抗線2とは熱膨脹係数
が可及的等しくなるように夫々の材料を選定し組
合わせる必要があり、温度の変化による電気抵抗
の変化を利用する計測器用センサーとして使用す
る場合には抵抗細線2として抵抗の温度係数の大
きい白金、タングステン、ニツケル、ステンレス
鋼、洋銀、燐青銅等の導線を使用する。勿論抵抗
細線2は螺旋状のものに限られず真直のものを使
用することもある。また上記実施例ではすべての
細管3の端部にセラミツクの泥漿状分散体よりな
る絶縁物4bを塗着したが、セラミツク微粒子4
aが細管3内に確実に固定している場合には絶縁
物4bは必ずしも必要ではない。
In the above embodiments, platinum and tungsten were used for the lead wire 1 and the thin resistance wire 2, and alumina, silica, etc. were used for the ceramic tubes 3 and 3a. A suitable conductor can be used, and alumina, mullite, zirconia, etc. can be used for the ceramic thin tubes 3, 3a, and alumina, silica, magnesia, quartz glass, etc., or a mixture thereof can be used for the ceramic fine particles 4a, 4b for filling. It is possible. Furthermore, it is necessary to select and combine the materials of the ceramic thin tube 3, the ceramic fine particles for filling 4a, and the resistance wire 2 so that their coefficients of thermal expansion are as equal as possible. When used as a dexterity sensor, a conducting wire of platinum, tungsten, nickel, stainless steel, nickel silver, phosphor bronze, or the like having a large temperature coefficient of resistance is used as the resistance wire 2. Of course, the resistance thin wire 2 is not limited to a spiral shape, and a straight wire may be used. Further, in the above embodiment, the insulating material 4b made of a ceramic slurry dispersion was applied to the ends of all the thin tubes 3, but the ceramic fine particles 4
The insulator 4b is not necessarily required when the insulator 4a is securely fixed within the thin tube 3.

本発明は上記の如く抵抗線2を細管3内に挿通
してセラミツク微粒子の懸濁液4中に保持し、電
気泳動により懸濁液中のセラミツク微粒子を抵抗
線2に析出固定するので、電気泳動によりセラミ
ツク微粒子の移動を促すとともに抵抗線2への通
電による発熱により懸濁液中のセラミツク微粒子
が抵抗線2の外面に緻密に析出固着するため、例
えば外形0.8mm、内径0.5mm、長さ4mmのセラミツ
ク細管3を用い白金抵抗細線2の径を20〜50ミク
ロン、その螺旋状部の長さを3mm(抵抗1.0〜3
オーム)、白金リード線1の径0.2〜0.4mm程度に
構成することにより測温抵抗体としては−200〜
+200℃の範囲で正確に且つ応答速度0.1〜2秒以
内に迅速に測定することができ、また該センサー
温度変化により周囲の流体の流速を測定する場合
には上記同様−200〜+200℃の範囲で0.1〜50
m/sec.程度の流速を±2%以内の誤差で正確に
且つ応答時間0.5秒程度で迅速に測定することが
でき、また耐衝撃性、耐熱性にすぐれ流体中の活
性ガス、化学薬品等に対する抵抗も極めて大き
い、抵抗線2あるいはリード線1として白金以外
の導体を使用する場合はその耐熱性、耐酸化性、
耐薬品性によつて測定する流体またはその温度に
制限を受ける。
In the present invention, as described above, the resistance wire 2 is inserted into the thin tube 3 and held in the suspension 4 of ceramic fine particles, and the ceramic fine particles in the suspension are deposited and fixed on the resistance wire 2 by electrophoresis. The electrophoresis promotes the movement of the ceramic fine particles, and the heat generated by energizing the resistance wire 2 causes the ceramic fine particles in the suspension to deposit and adhere to the outer surface of the resistance wire 2 in a dense manner. Using a 4 mm ceramic thin tube 3, the diameter of the platinum resistance thin wire 2 is 20 to 50 microns, and the length of the spiral portion is 3 mm (resistance 1.0 to 3 mm).
Ohm), by configuring the platinum lead wire 1 to have a diameter of about 0.2 to 0.4 mm, it can be used as a resistance temperature detector with a temperature of -200 to
It can be measured accurately and quickly within a response time of 0.1 to 2 seconds in the range of +200℃, and when measuring the flow rate of the surrounding fluid based on the sensor temperature change, it can be measured in the range of -200 to +200℃ as above. in 0.1~50
It is possible to accurately measure flow velocities of about m/sec. with an error within ±2% and quickly with a response time of about 0.5 seconds.It also has excellent impact resistance and heat resistance, and can be used to measure active gases, chemicals, etc. in fluids. If a conductor other than platinum is used as the resistance wire 2 or lead wire 1, its heat resistance, oxidation resistance,
Chemical resistance limits the fluid to be measured or its temperature.

本発明は上記の如く極めて小さな管内に抵抗線
とともに無機質絶縁物を高密度(95%以上)で充
填することができ、従つてこの方法で製作した計
測器用センサーは従来の計測器用センサーに比し
熱容量が極めて小さく従つて熱応答が極めて速く
且つ正確に測定することができしかも物理的強度
が強く、測温抵抗体、流速測定用センサー、温度
補償用抵抗体等として使用し得るとともに、本発
明の方法により高温用シーズヒーターも同様に管
3として金属、セラミツクまたはその組合せ等を
使用して製造することができ、何れの場合にも何
等特殊な設備、技術を要せず簡易確実に製造し、
廉価に供給し得る効果を有するものである。
As described above, the present invention can fill an extremely small tube with an inorganic insulator together with a resistance wire at a high density (more than 95%), and therefore, a measuring instrument sensor manufactured using this method is compared to a conventional measuring instrument sensor. The heat capacity is extremely small, so the thermal response is extremely fast and can be measured accurately, and the physical strength is strong. High-temperature sheathed heaters can also be manufactured using metal, ceramic, or a combination thereof as the tube 3 using the method described above, and in either case, it can be easily and reliably manufactured without requiring any special equipment or technology. ,
It has the effect of being able to be supplied at a low price.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す一部断面説明
図、第2図はその製品の中央断面説明図、第3図
は本発明の他の実施例を示す一部断面説明図、第
4図は第3図のA−A線断面図、第5図はその製
品の中央断面説明図である。 尚図中6は保持具、9は電極を示す。
FIG. 1 is a partially cross-sectional explanatory diagram showing one embodiment of the present invention, FIG. 2 is a central cross-sectional diagram of the product, and FIG. 3 is a partially cross-sectional explanatory diagram showing another embodiment of the present invention. 4 is a cross-sectional view taken along the line A--A in FIG. 3, and FIG. 5 is a central cross-sectional view of the product. In the figure, 6 indicates a holder, and 9 indicates an electrode.

Claims (1)

【特許請求の範囲】 1 リード線1,1を両端に溶接した抵抗線2を
細管3内に挿通してセラミツク微粒子の水性ゾル
4中に保持し、水性ゾル4中に設けた電極9とリ
ード線1との間に電圧を加えて電気泳動により水
性ゾル4中のセラミツク微粒子を抵抗線2の表面
に析出固定し、乾燥してセラミツクを抵抗線2と
一体的に構成することを特徴とする抵抗線を細管
内に固定する方法。 2 リード線1,1を両端に溶接した抵抗線2を
細管3内に挿通してセラミツク微粒子の水性ゾル
4中に保持し、水性ゾル4中に設けた電極9とリ
ード線1との間に電圧を加えて電気泳動により水
性ゾル4中のセラミツク微粒子を抵抗線2の表面
に析出固定し、細管3の端部にセラミツクの泥漿
状分散体よりなる絶縁物4bを塗着した後、焼成
してセラミツクを抵抗線2と一体的に構成すると
ともに絶縁物4bをリード線1と一体的に固化す
ることを特徴とする抵抗線を細管内に固定する方
法。
[Claims] 1. A resistance wire 2 with lead wires 1 and 1 welded to both ends is inserted into a thin tube 3 and held in an aqueous sol 4 of ceramic fine particles, and an electrode 9 and a lead provided in the aqueous sol 4 are The ceramic particles in the aqueous sol 4 are precipitated and fixed on the surface of the resistance wire 2 by electrophoresis by applying a voltage between the sol 4 and the wire 1, and are dried to form the ceramic integrally with the resistance wire 2. A method of fixing resistance wire inside a thin tube. 2 A resistance wire 2 with lead wires 1 and 1 welded to both ends is inserted into a thin tube 3 and held in an aqueous sol 4 of ceramic fine particles, and a resistance wire 2 is inserted between an electrode 9 provided in the aqueous sol 4 and the lead wire 1. Ceramic fine particles in the aqueous sol 4 are precipitated and fixed on the surface of the resistance wire 2 by electrophoresis by applying a voltage, and an insulating material 4b made of a ceramic slurry dispersion is applied to the end of the thin tube 3, followed by firing. A method for fixing a resistance wire in a thin tube, characterized in that the ceramic is integrally formed with the resistance wire 2 and the insulator 4b is solidified integrally with the lead wire 1.
JP14453681A 1981-09-11 1981-09-11 Method of fixing resistance wire into fine tube Granted JPS5846601A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14453681A JPS5846601A (en) 1981-09-11 1981-09-11 Method of fixing resistance wire into fine tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14453681A JPS5846601A (en) 1981-09-11 1981-09-11 Method of fixing resistance wire into fine tube

Publications (2)

Publication Number Publication Date
JPS5846601A JPS5846601A (en) 1983-03-18
JPH0145724B2 true JPH0145724B2 (en) 1989-10-04

Family

ID=15364587

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14453681A Granted JPS5846601A (en) 1981-09-11 1981-09-11 Method of fixing resistance wire into fine tube

Country Status (1)

Country Link
JP (1) JPS5846601A (en)

Also Published As

Publication number Publication date
JPS5846601A (en) 1983-03-18

Similar Documents

Publication Publication Date Title
US4457633A (en) Temperature probe cover
CN106465481B (en) Planar heating element with PTC resistor structure
RU2284595C2 (en) STABLE TUNGSTEN-ON-AlN HIGH-TEMPERATURE SENSOR/HEATER SYSTEM AND METHOD THEREOF
US3893058A (en) Electronic thermometer probe
JP2620804B2 (en) Constant temperature operated adsorption hygrometer
US4396899A (en) Platinum thin film resistance element and production method therefor
US4512871A (en) Oxygen sensor with heater
JPH0215017B2 (en)
JPS6259442B2 (en)
GB2079533A (en) Resistance thermometer element
US4841273A (en) High temperature sensing apparatus
US5168256A (en) Resistor element using conductors having relatively low thermal conductivity
JPH0145724B2 (en)
JPH0119241B2 (en)
GB1562623A (en) Device for monitoring the composition of the gaseous emission of a combustion process
JPS58150833A (en) Temperature-measuring resistor
JPH0774790B2 (en) Sensor used for electric heating method
JPH0328719A (en) Detecting element
GB1421742A (en) Apparatus for controlling the flow of gas
JP3112769B2 (en) Resistor element and thermal flow meter
KR20030018345A (en) Mass flow sensor and measuring apparatus
JPH0211850B2 (en)
JPS6222821Y2 (en)
JP5292201B2 (en) RTD
GB2352816A (en) A thermistor probe or catheter comprising a temperature dependent material placed between concentric conductors