JPH0144946B2 - - Google Patents

Info

Publication number
JPH0144946B2
JPH0144946B2 JP56089469A JP8946981A JPH0144946B2 JP H0144946 B2 JPH0144946 B2 JP H0144946B2 JP 56089469 A JP56089469 A JP 56089469A JP 8946981 A JP8946981 A JP 8946981A JP H0144946 B2 JPH0144946 B2 JP H0144946B2
Authority
JP
Japan
Prior art keywords
valve
plunger
flow rate
pulse
solenoid valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56089469A
Other languages
Japanese (ja)
Other versions
JPS57204381A (en
Inventor
Tomoo Okada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saginomiya Seisakusho Inc
Original Assignee
Saginomiya Seisakusho Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saginomiya Seisakusho Inc filed Critical Saginomiya Seisakusho Inc
Priority to JP56089469A priority Critical patent/JPS57204381A/en
Publication of JPS57204381A publication Critical patent/JPS57204381A/en
Publication of JPH0144946B2 publication Critical patent/JPH0144946B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • F25B41/34Expansion valves with the valve member being actuated by electric means, e.g. by piezoelectric actuators
    • F25B41/345Expansion valves with the valve member being actuated by electric means, e.g. by piezoelectric actuators by solenoids
    • F25B41/347Expansion valves with the valve member being actuated by electric means, e.g. by piezoelectric actuators by solenoids with the valve member being opened and closed cyclically, e.g. with pulse width modulation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Magnetically Actuated Valves (AREA)

Description

【発明の詳細な説明】 本発明は、流量制御装置に関するものである。[Detailed description of the invention] The present invention relates to a flow rate control device.

流量制御を必要とするものには各種の装置があ
るが、その一例としての冷凍機がある。冷凍機
は、フレオンガスなどの気体(冷媒)を圧縮機で
高圧にし、水冷或は空冷によつて液化させ、調整
機に入れて所要の低圧にして気化器内で気化さ
せ、その際周囲から気化熱をうばうことで冷却を
行うものであるが、この冷却温度を制御するた
め、上記調整機と気化器との間に気化器への冷媒
の流量を制御するための一般に自動膨張弁と呼ば
れる弁が設けられている。斯かる自動膨張弁とし
て従来、温度(自力)式、バイメタル式、電磁比
例式などのものが使用されている。
There are various devices that require flow rate control, one example of which is a refrigerator. Refrigerators use a compressor to pressurize a gas (refrigerant) such as Freon gas, liquefy it by water or air cooling, and then put it into a regulator to bring it to the required low pressure and vaporize it in a vaporizer. Cooling is performed by transferring heat, and in order to control this cooling temperature, a valve generally called an automatic expansion valve is installed between the regulator and the vaporizer to control the flow rate of refrigerant to the vaporizer. is provided. Conventionally, such automatic expansion valves include temperature (self-powered) type, bimetallic type, electromagnetic proportional type, and the like.

ところが、温度式自動膨張弁は、流れている冷
媒の蒸発圧力と吸入過熱度を検出し、これらに基
き冷媒量を制御するように過熱度により自力で動
作する弁であり、例えば負荷の大小のような他の
要因によつて流量を増減することが出来ないの
で、冷凍機の運転停止時に弁を全開したり全閉し
ておくという方法がとれず、またハンチングを防
止するため、感温部の時定数を大きくしているの
で、起動時などの過渡時に追従が遅れ、液戻りな
どを起し易いという欠点がある。
However, thermostatic automatic expansion valves detect the evaporation pressure and suction superheat of the flowing refrigerant and operate on their own depending on the superheat to control the amount of refrigerant based on these. Since it is not possible to increase or decrease the flow rate depending on other factors such as Since the time constant of is made large, there is a drawback that there is a delay in tracking during transient times such as during startup, and liquid return is likely to occur.

バイメタル式自動膨張弁は、ヒータによつて暖
められるバイメタルによつて直接動作される弁
で、弁駆動部の動作が緩慢で動作に長い時間を要
するので、カーエアコンなどのように変動のある
装置には追従できず、ヒータ部の設置場所の温度
或は冷媒液の有無などにより弁の位置が変動し易
く、また印加電圧に対する弁の開度を予め相当の
精度で設定しておかなければならないなどの欠点
がある。
A bimetallic automatic expansion valve is a valve that is directly operated by a bimetal that is heated by a heater.The valve drive unit operates slowly and takes a long time to operate, so it is suitable for devices that fluctuate, such as car air conditioners. The position of the valve is likely to fluctuate depending on the temperature of the location where the heater is installed or the presence or absence of refrigerant, and the opening degree of the valve relative to the applied voltage must be set in advance with considerable accuracy. There are drawbacks such as.

最後に、電磁比例式自動膨張弁は、印加電圧に
比例するコイルの吸引力とこれに抗するばねの荷
重とのバランスにより所定の開度を保つようにし
た弁で、印加電圧に対する弁の開度を予め相当の
精度で設定しても、弁前後の液体の圧力差による
荷重が上記荷重に加わるためこの圧力差の変化に
より弁の開度に変動或はずれがでてくるようにな
り、また通電を続けているとコイルの温度が上昇
しこれが吸引力を減少させるため、これによつて
も弁の開度が変動するなどの欠点がある。
Finally, an electromagnetic proportional automatic expansion valve is a valve that maintains a predetermined opening degree by balancing the attraction force of a coil that is proportional to the applied voltage and the load of a spring that resists this. Even if the degree is set in advance with considerable accuracy, the load due to the pressure difference between the liquid before and after the valve is added to the above load, so changes in this pressure difference will cause the valve opening degree to fluctuate or deviate. Continuing to apply electricity causes the temperature of the coil to rise, which reduces the suction force, resulting in drawbacks such as fluctuations in the opening degree of the valve.

上述のように従来の自動膨張弁はいずれも、弁
の開度を制御することにより冷媒の流量を制御す
るようになつているため、例えば冷蔵庫のように
小容量の冷媒制御を必要とし、レイノルズ数の小
さな所での流体制御を行わなければならないもの
にあつては、たとえ弁の位置を或所に保つていて
も流体の粘度変化などにより流量が変化してしま
い制御ができないという問題がある。
As mentioned above, all conventional automatic expansion valves control the flow rate of refrigerant by controlling the opening degree of the valve, so they require small-capacity refrigerant control, such as in refrigerators, and Reynolds For products that require fluid control in a small number of locations, there is a problem that even if the valve position is maintained at a certain location, the flow rate changes due to changes in fluid viscosity and cannot be controlled. .

本発明は上述した点に鑑みてなされたもので、
その目的とするところは、弁の開度により行う従
来の流量制御の問題点を解消した新規の流量制御
装置を提供することにある。
The present invention has been made in view of the above points, and
The purpose is to provide a new flow rate control device that solves the problems of conventional flow control based on the opening degree of a valve.

本発明による流量制御装置は、弁の開度により
流量を制御するのではなく、弁の開時間により流
量を制御するようにしたもので、パルスによりオ
ン・オフ動作する電磁弁に一定の繰返周期のパル
スを印加し、このパルスの幅を変えて上記電磁弁
のオン時間を変えることにより電磁弁を通る流体
の流量を制御し、また、上記電磁弁が、吸引子と
弁口との間で往復動するプランジヤと、このプラ
ンジヤの上記弁口と対向する面に弁口方向にばね
付勢されて突設された弁体と、上記プランジヤの
上記吸引子と対向する面にばね付勢されて突設さ
れたクツシヨン材とを備えることを特徴とする。
The flow rate control device according to the present invention does not control the flow rate by the opening degree of the valve, but by the opening time of the valve. The flow rate of the fluid passing through the solenoid valve is controlled by applying a periodic pulse and changing the width of this pulse to change the ON time of the solenoid valve, and the solenoid valve a plunger that reciprocates in a direction, a valve body protruding from a surface of the plunger facing the valve port and biased by a spring in the direction of the valve port; and a cushion member protruding from the cushion member.

以下本発明を図面を示した実施例について説明
する。
The present invention will be described below with reference to embodiments shown in the drawings.

第1図は、本発明による流量制御装置により冷
媒の流量制御が行われる冷凍機のブロツク図で、
図中1は冷媒を高圧にして水冷或は空冷によつて
液化させる圧縮機、2は液化された冷媒を所要の
低圧にする調整機、3は冷媒を気化させ周囲から
気化熱をうばう気化器、4は調整機2と気化器3
との間に設けられ気化器3への冷媒の流量を制御
する自動膨張弁である。
FIG. 1 is a block diagram of a refrigerator in which the flow rate of refrigerant is controlled by the flow rate control device according to the present invention.
In the figure, 1 is a compressor that makes the refrigerant high pressure and liquefies it by water cooling or air cooling, 2 is a regulator that brings the liquefied refrigerant to the required low pressure, and 3 is a vaporizer that vaporizes the refrigerant and takes the heat of vaporization from the surroundings. , 4 is regulator 2 and vaporizer 3
This is an automatic expansion valve that is installed between the vaporizer 3 and the vaporizer 3 and controls the flow rate of the refrigerant to the vaporizer 3.

上記自動膨張弁4は、電子回路によつて極めて
一般的に得ることのできるパルスにより弁が全
開、全閉される電磁弁からなり、この電磁弁には
第2図に示すぐうに繰返周期Tが一定のパルスが
印加され、パルスの幅によつて弁の全開時が制御
されるようになつている。第2図a乃至cは、電
磁弁4を通過する冷媒の流量をその許容流量の90
%、550%及び10%にする際電磁弁4に印加する
パルスを示し、各パルスの幅はそれぞれτ1、τ2
τ3で示されている。
The automatic expansion valve 4 is composed of a solenoid valve that is fully opened and fully closed by pulses that can be very commonly obtained by an electronic circuit. A pulse with a constant T is applied, and the full opening time of the valve is controlled by the width of the pulse. Figures 2a to 2c show the flow rate of refrigerant passing through the solenoid valve 4 at 90% of its allowable flow rate.
%, 550% and 10%, the pulses applied to the solenoid valve 4 are shown, and the width of each pulse is τ 1 , τ 2 , respectively.
Denoted by τ 3 .

冷凍機においては一般に、その冷却温度は気化
器3に供給する冷媒量と共に気化器3の出入力の
温度差、すなわち過熱度にも比例するため、この
過熱度を設定し、この設定値に基き電磁弁4を通
過する冷媒の流量を制御することにより所定の冷
却温度を得ることができる。
In general, in a refrigerator, the cooling temperature is proportional to the amount of refrigerant supplied to the vaporizer 3 as well as the temperature difference between the input and output of the vaporizer 3, that is, the degree of superheating. By controlling the flow rate of the refrigerant passing through the electromagnetic valve 4, a predetermined cooling temperature can be obtained.

第1図の冷凍機の他の部分は、過熱度が設定値
になるように冷媒の流量を電磁弁4で制御するた
めに電磁弁4に印加する必要のあるパルスを発生
するためのもので、5は気化器3の入口温度を検
知する温度センサ、6は気化器4の出口温度を検
知する温度センサ、7は発振器、8はパルス発生
器、9はドライバ、10は演算部である。上記温
度センサ5及び6の出力は過熱度の設定値が印加
されている演算器10に入力され、演算器10の
出力は発振器7の発振出力が印加されているパル
ス発生器8に入力され、かつドライバ9はパルス
発生器8の発生するパルスに基き電磁弁4をオ
ン・オフ駆動する。
The other parts of the refrigerator shown in Figure 1 are for generating the pulses that need to be applied to the solenoid valve 4 in order to control the flow rate of the refrigerant with the solenoid valve 4 so that the degree of superheat is at the set value. , 5 is a temperature sensor for detecting the inlet temperature of the vaporizer 3, 6 is a temperature sensor for detecting the outlet temperature of the vaporizer 4, 7 is an oscillator, 8 is a pulse generator, 9 is a driver, and 10 is a calculation section. The outputs of the temperature sensors 5 and 6 are input to an arithmetic unit 10 to which a set value of the degree of superheat is applied, and the output of the arithmetic unit 10 is input to a pulse generator 8 to which an oscillation output of an oscillator 7 is applied. The driver 9 turns the solenoid valve 4 on and off based on the pulses generated by the pulse generator 8.

より詳細には、演算部10及びパルス発生器8
は第3図に示されるように構成され、演算器10
は、温度センサ5及び6からの信号に基き出入力
の差温に相当する電圧を発生する加え合せ点10
aと、この加え合せ点10aの出力信号と過熱度
の設定値との偏差を求める加え合せ点10bと、
この加え合せ点10bの出力信号を時間で積分す
る積分器10cとからなる。パルス発生器8は、
積分器10cの出力信号と発振器7からの信号を
比較して積分器10cからの出力信号の方が大き
い期間の間高レベルとなるパルスを発生する比較
器8aからなる。
More specifically, the calculation unit 10 and the pulse generator 8
is configured as shown in FIG.
is a summing point 10 that generates a voltage corresponding to the temperature difference between the input and output based on the signals from the temperature sensors 5 and 6.
a, a summing point 10b for determining the deviation between the output signal of this summing point 10a and the set value of the degree of superheat;
It consists of an integrator 10c that integrates the output signal of this summing point 10b over time. The pulse generator 8 is
It consists of a comparator 8a that compares the output signal of the integrator 10c and the signal from the oscillator 7 and generates a pulse in which the output signal from the integrator 10c is at a high level for a period of time when it is greater.

今、発振器7の出力が第4図aに示すような三
角波であるとき、積分器10cの出力が第4bに
示すように漸増すると、パルス発生器8の出力に
は、第4図eに斜線を付して示すように、パルス
幅が序々に大きくなるパルス列が発生されるよう
になる。図の例では、実際の過熱度が設定値より
も小さく+偏差がでていく積分器10cの出力が
漸増し、パルス幅を広くして気化器3への冷媒の
流量を増大する制御を行つているときの様子が示
されているが、偏差が±0のときには、積分器1
0cの出力は一定レベルを保つため、そのレベル
に応じたパルス幅のパルス列が発生されるように
なり、また−偏差がでているときには、積分器1
0cの出力が漸減し、パルス幅が序々に小さくな
るパルス列が発生されるようになる。
Now, when the output of the oscillator 7 is a triangular wave as shown in FIG. 4a, and the output of the integrator 10c gradually increases as shown in FIG. 4b, the output of the pulse generator 8 has a diagonal line shown in FIG. As shown with , a pulse train whose pulse width gradually increases is generated. In the example shown in the figure, the output of the integrator 10c gradually increases when the actual degree of superheating becomes smaller than the set value + a deviation appears, and control is performed to widen the pulse width and increase the flow rate of refrigerant to the vaporizer 3. When the deviation is ±0, the integrator 1
Since the output of 0c maintains a constant level, a pulse train with a pulse width corresponding to the level is generated, and when there is a deviation, the integrator 1
The output of 0c gradually decreases, and a pulse train whose pulse width gradually becomes smaller is generated.

要するに、本弁はパルス幅で制御され流量の増
減のスピードコントロールや分解能の向上が他の
方式に比べ容易であるので、気化器などのように
無駄時間が長く、流量を序々に変化させていくこ
とが系の安定のために必要なものへの流量制御に
適する。従つて、設定過熱度に対する実際の過熱
度の大小により、実際の過熱度が設定値に達する
まで弁開時間を序々に減少・増大させ、実際の過
熱度が設定値に達した時点でそのときの弁開時間
を維持する制御が行われる。
In short, this valve is controlled by pulse width, making it easier to control the speed of increase/decrease in flow rate and to improve resolution compared to other methods, so unlike a vaporizer, there is a long dead time and the flow rate is changed gradually. This makes it suitable for controlling the flow rate to what is necessary for system stability. Therefore, depending on the magnitude of the actual degree of superheat relative to the set degree of superheat, the valve opening time is gradually decreased or increased until the actual degree of superheat reaches the set value, and when the actual degree of superheat reaches the set value, Control is performed to maintain the valve opening time.

上述した流量制御装置に使用される電磁弁は、
その制御の特徴上、単位時間当りのオン・オフ動
作回数が通常の電磁弁に比べ多いので、耐久性を
向上することや動作音を小さくするなどの工夫を
施す必要がある。
The solenoid valve used in the above-mentioned flow control device is
Due to its control characteristics, the number of on/off operations per unit time is greater than that of ordinary solenoid valves, so it is necessary to take measures such as improving durability and reducing operating noise.

第5図は上述の工夫を施した電磁弁の一実施例
を示し、図中20は磁性材料によりコ字状に形成
された外凾で、この外凾20の対向片間には、鍔
付中空ボビン21に巻設された電磁コイル22が
挾持されている。23は上記ボビン21の中空部
に嵌挿された一端に吸引子24が、ボビン21の
中空部から突出している他端に弁座25がそれぞ
れ固着されているプランジヤチユーブで、吸引子
24をねじ止め26することにより外凾20に固
着されている。
FIG. 5 shows an embodiment of a solenoid valve with the above-mentioned device, and in the figure, 20 is a U-shaped outer cover made of magnetic material, and between the opposing pieces of this outer cover 20, a flange is attached. An electromagnetic coil 22 wound around a hollow bobbin 21 is held therebetween. Reference numeral 23 designates a plunger tube having a suction element 24 fixed to one end inserted into the hollow part of the bobbin 21 and a valve seat 25 fixed to the other end protruding from the hollow part of the bobbin 21. It is fixed to the outer case 20 by fastening 26.

上記弁座25には、入口管27と出口管28が
連結されると共に、出口管28との境に弁口とし
て働くオリフイス29が設けられている。
The valve seat 25 is connected to an inlet pipe 27 and an outlet pipe 28, and is provided with an orifice 29 at the boundary with the outlet pipe 28, which serves as a valve port.

30は磁性材料からなる管状のプランジヤで、
上記プランジヤチユーブ23内に摺動可能に収め
られており、その外周にはプランジヤ30の外周
とプランジヤチユーブ23との間の摺動抵抗を少
なくするためのピストンリング31が嵌装されて
いる。プランジヤ30の内周壁の両端部には周溝
30a及び30bがそれぞれ設けられると共に、
その中空部には上記周溝30a及び30bにそれ
ぞれ係合する鍔32a及び33aをそれぞれ有
し、テフロン等の軟質材で作られた弁体32とク
ツシヨン材33とが嵌挿されている。上記プラン
ジヤ30の中空部にはまた、上記弁体32とクツ
シヨン材33との間に縮設された負荷状態のコイ
ルばね34が収められている。上述のようにプラ
ンジヤ30の両端部に設けられた弁体32及びク
ツシヨン材33の端面は、プランジヤ30の端面
より僅かに突出されて上記弁口29及び吸引子2
4とそれぞれ対向されている。
30 is a tubular plunger made of magnetic material;
It is slidably housed in the plunger tube 23, and a piston ring 31 is fitted around the outer periphery of the piston ring 31 to reduce sliding resistance between the outer periphery of the plunger 30 and the plunger tube 23. Circumferential grooves 30a and 30b are provided at both ends of the inner circumferential wall of the plunger 30, respectively, and
The hollow portion has flanges 32a and 33a that engage with the circumferential grooves 30a and 30b, respectively, into which a valve body 32 and cushion material 33 made of a soft material such as Teflon are fitted. Also accommodated in the hollow portion of the plunger 30 is a loaded coil spring 34 that is compressed between the valve body 32 and the cushion material 33. As described above, the end surfaces of the valve body 32 and the cushion material 33 provided at both ends of the plunger 30 are slightly protruded from the end surfaces of the plunger 30 and are connected to the valve port 29 and the suction element 2.
4 are facing each other.

なお、35は電磁コイル22にパルス電流を供
給するためのリード線で、第5図はリード線35
にパルス電流が流されてコイル22が励磁される
ことにより、プランジヤ30が吸引子により吸引
されて弁体32が弁口29から離された弁全開の
状態を示している。
In addition, 35 is a lead wire for supplying pulse current to the electromagnetic coil 22, and FIG. 5 shows the lead wire 35.
A pulse current is applied to excite the coil 22, so that the plunger 30 is attracted by the attractor and the valve body 32 is separated from the valve port 29, indicating a fully open state of the valve.

上述した構成の電磁弁の動作を第6図a乃至c
を参照して説明する。
The operation of the solenoid valve configured as described above is shown in Figs. 6a to 6c.
Explain with reference to.

第6図aは弁閉の状態を示し、この状態では、
プランジヤ30の自重よる力と、ばね34の力と
が平衡するところまでばね34が圧縮され、弁体
32とプランジヤ30とが距離L1丈相対的に移
動している。この状態でコイル22に通電する
と、プランジヤ30が吸引子24により吸引され
るが、このときL1の間プランジヤ30には弁開
のための負荷がかからないため、L1は弁開の力
を増すための衝撃間隔として作用する。プランジ
ヤ30がL1を越えて移動し、弁体32が弁口2
9から僅かに離れると、クツシヨン材33が第6
図bに示すように吸引子24に衝突する。このと
きからクツシヨン材33の突出長L2の間、ばね
34が吸引子24の吸引力に抗する力として働く
ので、プランジヤ30は吸引子24への衝撃が弱
められて第6図cに示すように吸引子24に吸着
される。このとき弁は全開され弁体32は弁口2
9からL3丈離される。
Figure 6a shows the valve closed state; in this state,
The spring 34 is compressed to the point where the force due to the plunger 30's own weight and the force of the spring 34 are balanced, and the valve body 32 and the plunger 30 are relatively moved by a distance L1 . When the coil 22 is energized in this state, the plunger 30 is attracted by the attractor 24, but at this time, no load is applied to the plunger 30 during L 1 to open the valve, so L 1 increases the force for opening the valve. Acts as a shock interval for. The plunger 30 moves beyond L1 , and the valve body 32 moves to the valve port 2.
9, the cushion material 33 moves to the sixth position.
It collides with the suction element 24 as shown in Figure b. From this point on, during the protrusion length L 2 of the cushion material 33, the spring 34 acts as a force that resists the suction force of the suction element 24, so that the impact on the plunger 30 against the suction element 24 is weakened, as shown in FIG. 6c. It is attracted to the suction element 24 as shown in FIG. At this time, the valve is fully opened and the valve body 32 is connected to the valve port 2.
9 to L 3 lengths apart.

上述したことから判るように、プランジヤ30
のストロークをL4とすると、このストロークの
うちL1なる衝撃間隔は幅の小さなパルスにより
弁を開くのに有功に働き、またL2は吸引子24
へのプランジヤ30の衝撃を和らげるのに有功に
働く。
As can be seen from the above, the plunger 30
Assuming that the stroke is L 4 , the impact interval of L 1 of this stroke is effective in opening the valve with a small pulse width, and L 2 is the impact interval of the suction element 24.
It works effectively to soften the impact of the plunger 30 on.

続いてコイルへの通電を止めると、ばね34が
吸引子24の残留磁気に打勝ち、第6図bに示す
ようにプランジヤ30の吸引子24からL2丈引
き離す。このため、プランジヤ30はその自重に
よる力により第6図aの位置まで動いて弁が閉止
する。
When the coil is then de-energized, the spring 34 overcomes the residual magnetism of the attractor 24 and pulls the plunger 30 away from the attractor 24 by L 2 length, as shown in FIG. 6b. Therefore, the plunger 30 moves to the position shown in FIG. 6a by the force of its own weight, and the valve closes.

一般に電磁弁では、第6図cに示すようにプラ
ンジヤ30が吸引子24に密着してL4=0のと
き最大の力を発生するが、電磁弁が最大の力を必
要とするのは、流体の圧力差に打勝つて弁が僅か
に開くとき、すなわち第6図aの状態からbの状
態に移行するときで、それ以後はそれ程大きな力
を必要とせず、むしろその力が大きいと、衝撃音
などとして表われたり、吸着画の摩耗などの好ま
しくないことが生じる。
Generally, in a solenoid valve, the maximum force is generated when the plunger 30 is in close contact with the attractor 24 and L 4 =0, as shown in FIG. 6c, but the solenoid valve requires the maximum force because When the valve opens slightly by overcoming the pressure difference in the fluid, that is, when it transitions from the state shown in Figure 6 a to the state shown in b, from then on, it does not require that much force, but rather, if the force is large, This may appear as impact noise or cause undesirable effects such as abrasion of the adsorption image.

以上説明したように本発明による流量制御装置
では、電磁弁をオン・オフするパルスの幅を変え
ることにより状況に応じた流量を流すことができ
る。従つて、早い応答と精度を要求する例えばカ
ークーラのような装置に適用する場合には、パル
スの繰返周期Tを例えば0.1秒位に設定すればよ
く、そうでないものではこれよりも長い繰返周期
のパルスを利用すればよい。
As explained above, in the flow rate control device according to the present invention, by changing the width of the pulse that turns the solenoid valve on and off, it is possible to flow a flow rate depending on the situation. Therefore, when applied to devices such as car coolers that require quick response and precision, the pulse repetition period T may be set to, for example, 0.1 seconds; otherwise, a longer repetition period may be used. It is sufficient to use periodic pulses.

また、弁は全開、全閉の繰返しのみであるの
で、弁ポードのみを精度よく定め、パルス幅を正
確に設定すれば、流量は設計通りのものが得られ
る。
Furthermore, since the valve only needs to be fully opened and fully closed repeatedly, the designed flow rate can be obtained by accurately determining only the valve ports and accurately setting the pulse width.

更に、小容量の制御では、流体の粘度の影響を
受け難い弁ポートとし、パルス幅を小さくするこ
とにより従来の問題が解決できる。また、弁の開
閉繰返動作は、弁オリフイスの縁に堆積し易いス
ラツヂなどを除去する役目を果すため、この点か
らも流量の変動を防止できる。
Furthermore, in the case of small capacity control, the conventional problems can be solved by making the valve port less susceptible to the influence of fluid viscosity and by reducing the pulse width. Further, the repeated opening and closing operations of the valve serve to remove sludge and the like that tend to accumulate on the edges of the valve orifice, so fluctuations in the flow rate can also be prevented from this point of view.

更にまた、本発明による装置に使用する電磁弁
では、吸引子と弁口との間で往復動するプランジ
ヤの上記弁口と対向する面にばね付勢された弁体
が、上記吸引子と対向する面にばね付勢されたク
ツシヨン材がそれぞれ突設されているため、閉状
態にあるとき、弁体に対するばね付勢力が弁体と
プランジヤとの間に作る衝撃間隔の作用により小
さな力で弁が開くようになり、またクツシヨン材
に対するばね付勢力が吸引子に対するプランジヤ
の衝撃エネルギを吸収するようになる。そして、
開状態にあるとき、クツシヨン材に対する付勢力
が吸引子に抗する力として働き、通電を止めたと
き、吸引子の残留磁気に打勝つてプランジヤを吸
引子から引き離すように作用する。従つて、プラ
ンジヤに対する残留磁気の作用が微小になり、プ
ランジヤはその自重により移動して弁が閉止する
ようになる。
Furthermore, in the electromagnetic valve used in the device according to the present invention, the valve element, which is biased by a spring on the surface facing the valve opening of the plunger that reciprocates between the suction element and the valve opening, faces the suction element. Since the spring-biased cushion members protrude from the respective surfaces, when the valve body is in the closed state, the spring biasing force against the valve body closes the valve with a small force due to the effect of the impact gap created between the valve body and the plunger. opens, and the spring biasing force against the cushion material absorbs the impact energy of the plunger against the suction element. and,
When in the open state, the biasing force against the cushion material acts as a force against the attractor, and when the current is turned off, it acts to overcome the residual magnetism of the attractor and pull the plunger away from the attractor. Therefore, the effect of the residual magnetism on the plunger becomes minute, and the plunger moves under its own weight to close the valve.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明の実施例を示し、第1図は本発明
の装置を適用した冷凍機のブロツク図、第2図a
乃至cは本発明の原理を説明するためのグラフ、
第3図は第1図の一部分のより詳細な具体例を示
す回路図、第4図a乃至cは第1図及び第2図の
装置の動作を説明するためのグラフ、第5図は第
1図の装置に使用する好ましい電磁弁を示す断面
図、並びに第6図a乃至cは第5図の電磁弁の動
作を説明するための断面図である。 4……電磁弁、24……吸引子、29……弁
口、30……プランジヤ、32……弁体、33…
…クツシヨン材、34……ばね。
The drawings show embodiments of the present invention, and FIG. 1 is a block diagram of a refrigerator to which the device of the present invention is applied, and FIG.
to c are graphs for explaining the principle of the present invention,
FIG. 3 is a circuit diagram showing a more detailed example of a part of FIG. 1, FIGS. 4a to 4c are graphs for explaining the operation of the apparatus shown in FIGS. 1, and FIGS. 6a to 6c are sectional views for explaining the operation of the solenoid valve shown in FIG. 5. 4... Solenoid valve, 24... Attractor, 29... Valve port, 30... Plunger, 32... Valve body, 33...
...Cushion material, 34...Spring.

Claims (1)

【特許請求の範囲】[Claims] 1 パルスによりオン・オフ動作する電磁弁に一
定の繰返周期のパルスを印加し、該パルスの幅を
変えて前記電磁弁のオン時間を変えることにより
前記電磁弁を通る流体の流量を制御する液体制御
装置において、前記電磁弁が、吸引子と弁口との
間で往復動するプランジヤと、該プランジヤの前
記弁口と対向する面に突出された弁体と、前記プ
ランジヤの前記吸引子と対向する面に突出された
クツシヨン材と、前記プランジヤ内に収容され、
前記弁体及びクツシヨン材をその突出方向にばね
付勢するよう共用されるばねとを備えることを特
徴とする流量制御装置。
1. Applying a pulse with a constant repetition period to a solenoid valve that operates on and off by pulses, and controlling the flow rate of fluid passing through the solenoid valve by changing the width of the pulse and changing the ON time of the solenoid valve. In the liquid control device, the electromagnetic valve includes a plunger that reciprocates between a suction element and a valve port, a valve body protruding from a surface of the plunger facing the valve port, and the suction element of the plunger. a cushion member protruding from opposing surfaces; and a cushion member housed within the plunger;
A flow rate control device comprising: a spring that is commonly used to bias the valve body and the cushion material in a direction in which the valve body and the cushion material protrude.
JP56089469A 1981-06-12 1981-06-12 Flow rate control method and apparatus Granted JPS57204381A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56089469A JPS57204381A (en) 1981-06-12 1981-06-12 Flow rate control method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56089469A JPS57204381A (en) 1981-06-12 1981-06-12 Flow rate control method and apparatus

Publications (2)

Publication Number Publication Date
JPS57204381A JPS57204381A (en) 1982-12-15
JPH0144946B2 true JPH0144946B2 (en) 1989-10-02

Family

ID=13971566

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56089469A Granted JPS57204381A (en) 1981-06-12 1981-06-12 Flow rate control method and apparatus

Country Status (1)

Country Link
JP (1) JPS57204381A (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59182715U (en) * 1983-05-19 1984-12-05 株式会社 鷺宮製作所 Solenoid proportional valve control device
JPH0627558B2 (en) * 1983-11-01 1994-04-13 三洋電機株式会社 Motorized valve control method
JPS60162087A (en) * 1984-02-02 1985-08-23 Sanden Corp Capacity-control type compressor
DE3419666A1 (en) * 1984-05-25 1985-11-28 Emerson Electric Co., St. Louis, Mo. Expansion valve for a refrigerating installation as well as method and arrangement for controlling the same
JPS61572U (en) * 1984-06-08 1986-01-06 エスエムシ−株式会社 Energized closed type 2-port solenoid valve
JPS61188079U (en) * 1985-05-15 1986-11-22
JPS6280376A (en) * 1985-10-03 1987-04-13 Mitsubishi Electric Corp Solenoid operated proportional control valve
US6047557A (en) 1995-06-07 2000-04-11 Copeland Corporation Adaptive control for a refrigeration system using pulse width modulated duty cycle scroll compressor
US6206652B1 (en) 1998-08-25 2001-03-27 Copeland Corporation Compressor capacity modulation
CN106195395A (en) * 2016-08-31 2016-12-07 佛山市云米电器科技有限公司 The electrically-controlled valve of pulsed operation and control method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49100616A (en) * 1973-01-27 1974-09-24

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5243452Y2 (en) * 1973-08-24 1977-10-03

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49100616A (en) * 1973-01-27 1974-09-24

Also Published As

Publication number Publication date
JPS57204381A (en) 1982-12-15

Similar Documents

Publication Publication Date Title
US5295656A (en) Expansion valve for air conditioning system with proportional solenoid
CA1272887A (en) Pulse controlled solenoid valve
JPH0144946B2 (en)
US6234122B1 (en) Method for driving an electromagnetic actuator for operating a gas change valve
EP0728971B1 (en) Electrically operated expansion valve and method of making the same
JPS63131967A (en) Refrigeration cycle device
WO1988000320A1 (en) Refrigeration system having periodic flush cycles
US5460349A (en) Expansion valve control element for air conditioning system
US6253561B1 (en) Refrigerator with switching valve switching flow of refrigerant to one of refrigerant passages
JP2757205B2 (en) Solenoid operated valve assembly
JP2006514732A (en) Expansion mechanism for air conditioner
JP2001501296A (en) Control of mass flow of working fluid
JPH02283982A (en) Drive device for solenoid type proportional flow-rate control valve
EP0664861B1 (en) Expansion valve for air conditioning system with proportional solenoid
KR880005426A (en) Refrigerant expansion device and refrigerant volume control method of refrigeration system
JP4259891B2 (en) Superheat control method
EP0663992B1 (en) Expansion valve for air conditioning system
RU2163389C2 (en) Heat control valve device combined with solenoid valve
JPS62147182A (en) Expansion valve
JPS62131167A (en) Refrigeration cycle device
JPS601485A (en) Electromagnetic valve for control of refrigerant flow
JPH086989B2 (en) Refrigeration cycle control device
JPS633154A (en) Refrigeration cycle device
JPS6332271A (en) Refrigeration cycle device
JPS63135761A (en) Refrigeration cycle device