JPH0144722B2 - - Google Patents

Info

Publication number
JPH0144722B2
JPH0144722B2 JP17157281A JP17157281A JPH0144722B2 JP H0144722 B2 JPH0144722 B2 JP H0144722B2 JP 17157281 A JP17157281 A JP 17157281A JP 17157281 A JP17157281 A JP 17157281A JP H0144722 B2 JPH0144722 B2 JP H0144722B2
Authority
JP
Japan
Prior art keywords
polymerization
polymer particles
weight
particle size
soluble phosphate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP17157281A
Other languages
Japanese (ja)
Other versions
JPS5871901A (en
Inventor
Yoshuki Kato
Fumiaki Kanega
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP17157281A priority Critical patent/JPS5871901A/en
Publication of JPS5871901A publication Critical patent/JPS5871901A/en
Publication of JPH0144722B2 publication Critical patent/JPH0144722B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Polymerisation Methods In General (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はビニル系単量体を懸濁重合することに
より大粒径でかつ粒径分布がせまいビニル系重合
体粒子を得る方法に関する。 特に、懸濁重合法でスチレン単量体を重合する
にあたり、重合体粒子の粒径が特に1.4〜2.4mmの
大粒径を中心とする粒子径分布の狭いものを収率
よく製造することを特徴とする方法に関するもの
である。 一般に懸濁重合によつて生成される重合体粒子
は撹拌と懸濁剤(分散剤)の働きによつて、水中
に分散される、すくなくとも一種以上のビニル系
単量体を粒子状で重合させることによつて生成さ
れる。懸濁剤はビニル系単量体あるいは単量体と
重合体の混合物、すなわち油系粒子が合一して塊
状となるのを防止する働きを持つ。 従来、スチレンを主体とするビニル系単量体の
懸濁重合に用いられる懸濁剤には主懸濁剤として
は難溶性リン酸塩、懸濁助剤としては陰イオン界
面活性剤が用いられることが公知である。具体的
にはリン酸三カルシウムとドデシルベンゼンスル
ホン酸ナトリウムが最も一般的な懸濁剤である。
この懸濁剤を用いての懸濁重合によつて生成され
る重合体粒子の粒子径は約0.1〜3mmの範囲にあ
り、粒子径分布は幅広いものであつた。従来、重
合体粒子の粒子径は懸濁剤濃度及び撹拌効果等の
機械的要因等によつて任意にコントロールするこ
とは可能であつた。しかし、重合体粒子の粒子径
分布を狭くすることは非常に困難であつた。 懸濁重合体で得られたスチレンを主体とする重
合体粒子は発泡剤(例えばプロパン、ブタン、ペ
ンタン等)を含浸して、目的とする発泡性ポリス
チレン樹脂が得られる。発泡性ポリスチレン樹脂
の用途は粒子の大きさによつて、次の三つの分野
に分けられる。すなわち、(1)粒子径約300μから
700μの発泡性ポリスチレン粒子はインスタント
食品等のカツプ用、(2)粒子径約700μから1800μの
粒子径のものは各種の梱包用及び魚箱用、(3)粒子
径約1500μから3000μのものは建材用ボード等に
使用される。これらの用途の違いから、要求され
る発泡性ポリスチレンの性質も異なるので、用途
別に発泡性ポリスチレンを製造する必要に迫られ
るが、懸濁重合で得られた重合体粒子の粒子径分
布が広いとその目的を達し難い。 この問題を解決するため、本発明者は鋭意研究
を重ねた結果、重合体粒子の大きさが要求される
ものだけを高収率で得る方法を見い出すに至つ
た。 すなわち、本発明は、ビニル系単量体を懸濁重
合するに際し、難溶性リン酸塩と陰イオン界面活
性剤の存在下において、水系で中性を示す水溶性
無機塩が0.5〜0.01重量%の範囲であり、水性媒
体/単量体の重量比が1.5/1〜1.1/1の範囲で
懸濁重合を開始した後、上記ビニル系単量体の重
合転化率30重量%と70重量%の間で難溶性リン酸
塩を1回以上添加して重合を進め、重合体粒子の
粒子径分布が1.4〜2.4mmを中心とするものを得る
ことを特徴とするビニル系重合体粒子の製造方法
に関する。 本発明におけるビニル系単量体としてはスチレ
ン、α−メチルスチレン、クロロスチレン等のス
チレン誘導体、アクリロニトリル、メチルメタク
リレート、ブチルアクリレート等であり、これら
の一種または二種以上が使用される。特に、スチ
レンまたはスチレン誘導体を50重量%以上使用す
るのが好ましい。 難溶性リン酸塩としてはリン酸三カルシウム、
リン酸マグネシウム等であり、サブミクロン単位
とよばれる0.2〜0.05μの大きさのものが有用であ
る。難溶性リン酸塩の合計の使用量としては重合
系に存在する物質全量に対して0.01重量%以上で
あり、上限は特別に制限はないが、1重量%を越
えると必要量を越えるため、無駄になる。好まし
くは0.05〜0.4重量%使用される。0.01重量%未満
では生成される重合体粒子の粒子径分布を狭くす
ることはできない。最初に反応系に存在させる難
溶性リン酸塩の量は、上記範囲において特に制限
はないが、好ましくは難溶性リン酸塩の合計量の
1/4〜3/4使用される。 陰イオン界面活性剤は例えば、ドデシルベンゼ
ンスルホン酸ナトリウム等のアルキルベンゼンス
ルホン酸塩、アルキル基に直接SO3Naが付加し
たアルキルスルホン酸塩、ナフタリンにSO3Na
が付加したβ−テトラヒドロナフタリンスルホン
酸煙、N−イソプロピルシクロヘキシルアシドス
ルホン酸ナトリウム等のアシドスルホン酸、オレ
イン酸ナトリウム等の高級脂肪酸塩、スルホコハ
ク酸ジ−2−エチルヘキシルナトリウム等のジア
ルキルスルホコハク酸塩などが使用される。これ
らの添加量は目的とする粒子径、機械的条件、懸
濁剤濃度及び水溶性無機塩あるいは分散媒対単量
体比等によつて適宜決定され、一概にその量が決
定されるものではないが一応の目安として全容量
に対して0.0002〜0.02重量%、好ましくは0.001〜
0.01重量%の範囲である。 水系で中性を示す水溶性無機塩としては硫酸ナ
トリウム、硫酸カリウム、硫酸マグネシウム等の
硫酸塩、塩化カリウム、塩化マグネシウム、塩化
ナトリウム等の塩化塩等がある。これらの無機塩
は単独または併用して用いてもよい。これらの使
用量は重合系に存在する物質全量に対して0.5〜
0.01重量%の範囲で、好ましくは0.3〜0.02重量%
の範囲で使用される。水系で中性を示す水溶性無
機塩が多すぎると懸濁系は不安定となり塊状とな
り易く、逆に少なすぎると生成される重合体粒子
の粒子径分布を狭くすることはできない。 重合開始剤としては過酸化ベンゾイル、過安息
香酸ブチルの如き有機過酸化物、アゾビスイソブ
チルニトリル等のアゾ化合物など、一般にビニル
系単量体のラジカル重合に用いられている重合開
始剤が使用できる。また、その他メルカプタンの
如き連鎖移動剤等のラジカル重合に使用される
種々の添加剤を必要に応じて添加できる。 水性媒体/単量体は重量比で1.1/1以上の範
囲で使用されるが、単量体に対する水性媒体の上
限は特別に制限はないが、1.5/1を越えると効
果が余り変わらないこと及び生産性が低下するこ
とからそれ以上にする必要はない。水性媒体/単
量体の重量比が1.1/1未満では懸濁系は不安定
となり塊状となり易く、生成される重合体粒子の
粒子径分布を狭くすることはできない。また、単
量体に対する分散媒量の比が小さいほど、難溶性
リン酸塩を重合途中に添加した時、所望とする粒
子径まで成長した油滴が再び分散し、粒子径分布
の幅が広くなり、所望の粒子径のものの収率が低
い粒子しか得られない。重合途中で添加される難
溶性リン酸塩は、1回または2回以上に分割して
添加される。添加時期は、ビニル系単量体の重合
転化率が30重量%と70重量%の間である。これ
は、ビニル系重合体粒子の最終的な粒径が決定さ
れる時に難溶性リン酸塩を添加し、目的の粒経以
上に、粒子が成長しないようにする。 なお、重合転化率は、例えばガスクロマトグラ
フ法、比重液法等により測定できる。 一般に懸濁重合過程は所定の重合温度で重合を
開始させた後、反応途中で難溶性リン酸塩を添加
しない場合には、難溶性リン酸塩の初期濃度は重
合体油滴が合一して塊状にならない限度より少し
濃い程度が好ましい。重合の進行に伴つて重合体
油滴は撹拌によつて分散、合一現象をくり返して
いくが、重合により油滴は粘度の増大により合一
の方がより支配的となり、油滴の粒子径は徐々に
大きく成長していく。重合を継続して行けば油滴
はますます合一を続けて遂には塊状化してしまう
ことがある。あるいは粒子径分布の幅が広く所望
とする粒子径のものの収率の低い粒子しか得られ
ない。 本方法においては難溶性リン酸塩の初期濃度は
やや低くして重合を開始進行させ、所望の粒子径
まで成長した時点において、難溶性リン酸塩を添
加し、さらに重合を継続させる。この時点におい
て、重合体油滴はもはや撹拌により再び小粒子に
分散され得ないまでに重合が進行しており、わず
かに合一を起こしながら次第に粒子径が決定され
遂には重合が終了する。 難溶性リン酸塩を追加する場合、難溶性リン酸
塩を追加添加した後の難溶性リン酸塩の濃度は以
後の重合完結の過程において重合体油滴が再び分
散され、小粒子化せしめないようその濃度を調節
しなければならない。すなわち、難溶性リン酸塩
の追加添加量が多過ぎると以後の重合過程におい
て重合体油滴が再び分散され、小粒子化してしま
うし、逆に難溶性リン酸塩の合計添加量が少な過
ぎると以後の重合過程でさらに重合体油滴が合一
して大きくなり、所望の粒径の粒子が得られなか
つたり、あるいは重合途中で塊状化したりして、
難溶性リン酸塩の最適な使用量を見い出すのが困
難であつた。 以下に本発明の実施例を示す。実施例中、「部」
は「重量部」を意味する。 実施例 1 3セパラブルフラスコに第三リン酸カルシウ
ム1部、ドデシルベンゼンスルホン酸ナトリウム
の1%水溶液を5部および硫酸ナトリウム1部を
蒸留水1100部に分散および溶解させて、これに過
酸化ベンゾイル2.5部をスチレン1000部に溶解し
たものを撹拌しながら添加し、90℃に昇温して重
合を開始した。ついで重合率が40〜50%に達した
時点で第三リン酸カルシウムを0.5部添加し、そ
のまま90℃で8時間重合して、重合体粒子を得
た。 実施例 2 蒸留水を1200部に変更した以外は、実施例1に
準じて行なつた。 実施例 3 硫酸ナトリウムを塩化ナトリウム5部に変更し
た以外は、実施例1に準じて行なつた。 実施例 4 硫酸ナトリウムを塩化ナトリウム5部に、蒸留
水を1200部に変更した以外は、実施例1に準じて
行なつた。 比較例 1 3セパラブルフラスコに第三リン酸カルシウ
ム1部、ドデシルベンゼンスルホン酸ナトリウム
の1%水溶液を5部を蒸留水1000部に分散および
溶解させて、これに過酸化ベンゾイル2.5部をス
チレン1000部に溶解したものを撹拌しながら添加
し、90℃に昇温して重合を開始した。ついで重合
率が40〜50%に達した時点で第三リン酸カルシウ
ムを0.5部添加し、そのまま90℃で8時間重合し
て、重合体粒子を得た。 比較例 2 硫酸ナトリウム1部を併用した以外は、比較例
1に準じて行なつた。 上記の各実施例および比較例で得られた重合体
粒子の粒子径分布を表1に示した。
The present invention relates to a method for obtaining vinyl polymer particles having a large particle size and a narrow particle size distribution by suspension polymerizing vinyl monomers. In particular, when polymerizing styrene monomer using the suspension polymerization method, it is important to produce polymer particles with a narrow particle size distribution centered on large particle sizes of 1.4 to 2.4 mm with good yield. It is related to a method of characteristics. Generally, polymer particles produced by suspension polymerization are polymerized in the form of at least one type of vinyl monomer that is dispersed in water through stirring and the action of a suspending agent (dispersing agent). It is generated by The suspending agent has the function of preventing vinyl monomers or mixtures of monomers and polymers, that is, oil particles, from coalescing into lumps. Conventionally, suspending agents used for suspension polymerization of vinyl monomers mainly composed of styrene include sparingly soluble phosphates as the main suspending agent and anionic surfactants as the suspending aids. This is well known. Specifically, tricalcium phosphate and sodium dodecylbenzenesulfonate are the most common suspending agents.
The particle size of the polymer particles produced by suspension polymerization using this suspending agent was in the range of about 0.1 to 3 mm, and the particle size distribution was wide. Conventionally, it has been possible to arbitrarily control the particle diameter of polymer particles by mechanical factors such as suspending agent concentration and stirring effect. However, it has been extremely difficult to narrow the particle size distribution of polymer particles. The styrene-based polymer particles obtained as a suspension polymer are impregnated with a blowing agent (eg, propane, butane, pentane, etc.) to obtain the desired expandable polystyrene resin. The uses of expandable polystyrene resin can be divided into the following three fields depending on the particle size. In other words, (1) particle size from about 300μ
Expandable polystyrene particles with a diameter of 700μ are suitable for cups such as instant foods, (2) particles with a particle size of approximately 700μ to 1800μ are used for various packaging and fish boxes, and (3) particles with a diameter of approximately 1500μ to 3000μ are used for various packaging and fish boxes. Used for building boards, etc. Due to these differences in use, the required properties of expandable polystyrene also differ, so it is necessary to manufacture expandable polystyrene for each purpose. It is difficult to achieve that goal. In order to solve this problem, the inventors of the present invention have conducted extensive research, and as a result have found a method for obtaining only polymer particles with a required size at a high yield. That is, in the present invention, when carrying out suspension polymerization of vinyl monomers, in the presence of a sparingly soluble phosphate and an anionic surfactant, 0.5 to 0.01% by weight of a water-soluble inorganic salt that is neutral in an aqueous system is used. After starting suspension polymerization at an aqueous medium/monomer weight ratio of 1.5/1 to 1.1/1, the polymerization conversion rate of the vinyl monomer is 30% by weight and 70% by weight. Production of vinyl polymer particles characterized by adding a poorly soluble phosphate one or more times between the steps of 1 to 3 to advance the polymerization to obtain polymer particles having a particle size distribution centered on 1.4 to 2.4 mm. Regarding the method. Examples of the vinyl monomer in the present invention include styrene, styrene derivatives such as α-methylstyrene and chlorostyrene, acrylonitrile, methyl methacrylate, and butyl acrylate, and one or more of these may be used. In particular, it is preferable to use styrene or a styrene derivative in an amount of 50% by weight or more. As poorly soluble phosphates, tricalcium phosphate,
Magnesium phosphate, etc., and those with a size of 0.2 to 0.05 μ, which is called a submicron unit, are useful. The total amount of poorly soluble phosphate used is 0.01% by weight or more based on the total amount of substances present in the polymerization system, and there is no particular upper limit, but if it exceeds 1% by weight, it exceeds the necessary amount. It will be wasted. Preferably 0.05-0.4% by weight is used. If the amount is less than 0.01% by weight, the particle size distribution of the produced polymer particles cannot be narrowed. The amount of the poorly soluble phosphate initially present in the reaction system is not particularly limited within the above range, but it is preferably used from 1/4 to 3/4 of the total amount of the poorly soluble phosphate. Examples of anionic surfactants include alkylbenzene sulfonates such as sodium dodecylbenzenesulfonate, alkyl sulfonates with SO 3 Na added directly to the alkyl group, and naphthalene with SO 3 Na added directly to the alkyl group.
β-tetrahydronaphthalenesulfonic acid fumes added with, acidosulfonic acids such as sodium N-isopropylcyclohexyl acidosulfonate, higher fatty acid salts such as sodium oleate, dialkyl sulfosuccinates such as di-2-ethylhexyl sodium sulfosuccinate, etc. used. The amount of these additives is appropriately determined depending on the target particle size, mechanical conditions, suspending agent concentration, water-soluble inorganic salt or dispersion medium to monomer ratio, etc., and the amount cannot be determined unconditionally. However, as a general guideline, it is 0.0002 to 0.02% by weight, preferably 0.001 to 0.02% by weight based on the total capacity.
It is in the range of 0.01% by weight. Water-soluble inorganic salts that are neutral in aqueous systems include sulfates such as sodium sulfate, potassium sulfate, and magnesium sulfate, and chlorides such as potassium chloride, magnesium chloride, and sodium chloride. These inorganic salts may be used alone or in combination. The amount used is 0.5 to 0.5 to the total amount of substances present in the polymerization system.
In the range of 0.01% by weight, preferably 0.3-0.02% by weight
used within the range. If there is too much water-soluble inorganic salt that is neutral in an aqueous system, the suspended system becomes unstable and tends to form lumps, whereas if it is too little, the particle size distribution of the produced polymer particles cannot be narrowed. As the polymerization initiator, polymerization initiators that are generally used for radical polymerization of vinyl monomers can be used, such as organic peroxides such as benzoyl peroxide and butyl perbenzoate, and azo compounds such as azobisisobutylnitrile. . In addition, various additives used in radical polymerization such as chain transfer agents such as mercaptans can be added as necessary. The aqueous medium/monomer is used in a weight ratio of 1.1/1 or more, but there is no particular upper limit on the amount of aqueous medium to monomer, but if it exceeds 1.5/1, the effect will not change much. There is no need to increase the amount more than that because it also reduces productivity. If the aqueous medium/monomer weight ratio is less than 1.1/1, the suspension system becomes unstable and tends to form lumps, making it impossible to narrow the particle size distribution of the produced polymer particles. In addition, the smaller the ratio of the amount of dispersion medium to the monomer, the wider the particle size distribution because when the poorly soluble phosphate is added during polymerization, the oil droplets that have grown to the desired particle size will be dispersed again. Therefore, only particles having the desired particle size can be obtained with a low yield. The sparingly soluble phosphate salt added during the polymerization is added once or in two or more portions. The timing of addition is when the polymerization conversion rate of the vinyl monomer is between 30% and 70% by weight. This is done by adding a sparingly soluble phosphate when the final particle size of the vinyl polymer particles is determined to prevent the particles from growing beyond the desired particle size. The polymerization conversion rate can be measured, for example, by gas chromatography, specific gravity liquid method, or the like. In general, in the suspension polymerization process, after polymerization is started at a predetermined polymerization temperature, if the poorly soluble phosphate is not added during the reaction, the initial concentration of the poorly soluble phosphate will be the same as that of the polymer oil droplets. It is preferable that it be slightly darker than the limit that does not form lumps. As the polymerization progresses, the polymer oil droplets repeat the dispersion and coalescence phenomenon by stirring, but due to the increase in viscosity of the oil droplets during polymerization, coalescence becomes more dominant, and the particle size of the oil droplets decreases. gradually grows larger. If polymerization continues, the oil droplets may continue to coalesce and eventually form a lump. Alternatively, the width of the particle size distribution is wide, and only particles having the desired particle size can be obtained in a low yield. In this method, the initial concentration of the sparingly soluble phosphate is slightly low to allow polymerization to start and proceed, and when the particles have grown to a desired particle size, the sparingly soluble phosphate is added and the polymerization is continued. At this point, the polymerization has progressed to the point where the polymer oil droplets can no longer be dispersed into small particles by stirring, and the particle size is gradually determined with slight coalescence, and the polymerization is finally completed. When sparingly soluble phosphate is added, the concentration of sparingly soluble phosphate after additional addition of the sparingly soluble phosphate is such that the polymer oil droplets are dispersed again in the subsequent process of polymerization completion and do not become small particles. The concentration of yeast must be adjusted. In other words, if the additional amount of poorly soluble phosphate is too large, the polymer oil droplets will be dispersed again in the subsequent polymerization process and become small particles, and conversely, if the total amount of poorly soluble phosphate added is too small. In the subsequent polymerization process, the polymer oil droplets coalesce and become larger, making it impossible to obtain particles with the desired particle size, or forming agglomerates during polymerization.
It has been difficult to find the optimal amount of sparingly soluble phosphate to be used. Examples of the present invention are shown below. In examples, “part”
means "parts by weight". Example 1 In a 3-separable flask, 1 part of tribasic calcium phosphate, 5 parts of a 1% aqueous solution of sodium dodecylbenzenesulfonate, and 1 part of sodium sulfate were dispersed and dissolved in 1100 parts of distilled water, and 2.5 parts of benzoyl peroxide was added thereto. A solution of 1,000 parts of styrene was added with stirring, and the temperature was raised to 90°C to initiate polymerization. Then, when the polymerization rate reached 40 to 50%, 0.5 part of tribasic calcium phosphate was added, and the mixture was directly polymerized at 90° C. for 8 hours to obtain polymer particles. Example 2 The procedure of Example 1 was followed except that the amount of distilled water was changed to 1200 parts. Example 3 The procedure of Example 1 was repeated except that 5 parts of sodium chloride was used instead of sodium sulfate. Example 4 The procedure of Example 1 was repeated except that sodium sulfate was changed to 5 parts of sodium chloride and distilled water was changed to 1200 parts. Comparative Example 1 In a 3-separable flask, 1 part of tribasic calcium phosphate and 5 parts of a 1% aqueous solution of sodium dodecylbenzenesulfonate were dispersed and dissolved in 1000 parts of distilled water, and 2.5 parts of benzoyl peroxide was added to 1000 parts of styrene. The dissolved material was added while stirring, and the temperature was raised to 90°C to start polymerization. Then, when the polymerization rate reached 40 to 50%, 0.5 part of tribasic calcium phosphate was added, and the mixture was directly polymerized at 90° C. for 8 hours to obtain polymer particles. Comparative Example 2 Comparative Example 1 was followed except that 1 part of sodium sulfate was also used. Table 1 shows the particle size distribution of the polymer particles obtained in each of the above Examples and Comparative Examples.

【表】 表1から明らかなように、実施例1〜4では粒
子径分布が、B−1、B−2及びB−3カツトを
中心とし、かつAカツトの粒子や微粒子の少ない
粒子径分布のせまい粒子が得られているが、比較
例1及び2ではAカツトの粒子や微粒子が多く、
かつ粒子径分布の広い粒子が得られているにすぎ
ない。 以上より明らかなように、本発明によれば、ビ
ニル系単量体を懸濁重合することによつて1.4〜
2.4mmの粒子径を中心とする粒子分布のせまいビ
ニル系重合体粒子を得ることができる。
[Table] As is clear from Table 1, in Examples 1 to 4, the particle size distribution was centered around the B-1, B-2, and B-3 cuts, with fewer particles and fine particles in the A cut. Although small particles were obtained, in Comparative Examples 1 and 2, there were many A-cut particles and fine particles.
Moreover, only particles with a wide particle size distribution are obtained. As is clear from the above, according to the present invention, by suspension polymerizing vinyl monomers,
It is possible to obtain narrow vinyl polymer particles with a particle distribution centered on a particle diameter of 2.4 mm.

Claims (1)

【特許請求の範囲】 1 ビニル系単量体を懸濁重合するに際し、難溶
性リン酸塩と陰イオン界面活性剤の存在下におい
て、水系で中性を示す水溶性無機塩が0.5〜0.01
重量%の範囲であり、水性媒体/単量体の重量比
が1.1/1以上の範囲で懸濁重合を開始した後、
上記ビニル系単量体の重合転化率30重量%と70重
量%の間で重合系に難溶性リン酸塩を1回以上添
加して重合を進め、重合体粒子の粒子径分布が、
1.4〜2.4mmを中心とするものを得ることを特徴と
するビニル系重合体粒子の製造方法。 2 難溶性リン酸塩が塩基性リン酸三カルシウム
(ハイドロオキシアパタイト)であり、陰イオン
界面活性剤がドデシルベンゼンスルホン酸ナトリ
ウムである特許請求の範囲第1項記載のビニル系
重合体粒子の製造方法。 3 水溶性無機塩が硫酸ナトリウムである特許請
求の範囲第1項記載のビニル系重合体粒子の製造
方法。 4 ビニル系単量体の重合転化率30重量%と70重
量%の間に、難溶性リン酸塩を1回または2回添
加する特許請求の範囲第1項記載のビニル系重合
体粒子の製造方法。
[Scope of Claims] 1. When carrying out suspension polymerization of vinyl monomers, in the presence of a sparingly soluble phosphate and an anionic surfactant, a water-soluble inorganic salt that is neutral in an aqueous system contains 0.5 to 0.01
After starting suspension polymerization at a range of % by weight and an aqueous medium/monomer weight ratio of 1.1/1 or more,
The polymerization is proceeded by adding a sparingly soluble phosphate to the polymerization system at least once at a polymerization conversion rate of the vinyl monomer between 30% and 70% by weight, and the particle size distribution of the polymer particles is
A method for producing vinyl polymer particles, characterized in that particles having a diameter of 1.4 to 2.4 mm are obtained. 2. Production of vinyl polymer particles according to claim 1, wherein the poorly soluble phosphate is basic tricalcium phosphate (hydroxyapatite) and the anionic surfactant is sodium dodecylbenzenesulfonate. Method. 3. The method for producing vinyl polymer particles according to claim 1, wherein the water-soluble inorganic salt is sodium sulfate. 4. Production of vinyl polymer particles according to claim 1, in which a sparingly soluble phosphate is added once or twice between 30% and 70% by weight of the vinyl monomer polymerization conversion rate. Method.
JP17157281A 1981-10-26 1981-10-26 Preparation of vinyl polymer beads Granted JPS5871901A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17157281A JPS5871901A (en) 1981-10-26 1981-10-26 Preparation of vinyl polymer beads

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17157281A JPS5871901A (en) 1981-10-26 1981-10-26 Preparation of vinyl polymer beads

Publications (2)

Publication Number Publication Date
JPS5871901A JPS5871901A (en) 1983-04-28
JPH0144722B2 true JPH0144722B2 (en) 1989-09-29

Family

ID=15925628

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17157281A Granted JPS5871901A (en) 1981-10-26 1981-10-26 Preparation of vinyl polymer beads

Country Status (1)

Country Link
JP (1) JPS5871901A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60202102A (en) * 1984-03-27 1985-10-12 Hitachi Chem Co Ltd Production of polymer particle
US5391664A (en) * 1992-09-03 1995-02-21 Nippon Shokubai Co., Ltd. Process for producing polymer
JP3467399B2 (en) * 1998-01-16 2003-11-17 積水化成品工業株式会社 Method for producing spherical fine particles of vinyl polymer
JP4970393B2 (en) * 2008-09-17 2012-07-04 株式会社クボタ Cover device for rotary tiller
JP6824693B2 (en) * 2016-10-31 2021-02-03 キヤノン株式会社 Manufacturing method of toner particles

Also Published As

Publication number Publication date
JPS5871901A (en) 1983-04-28

Similar Documents

Publication Publication Date Title
US6387968B1 (en) Method for producing water expandable styrene polymers
JP3412320B2 (en) Suspending agent-containing slurry, method for producing the same, and suspension polymerization method using the same
JPH0144722B2 (en)
JP2017501294A (en) Manufacturing method for preparation of solid particulate vinyl aromatic polymer composition
NL8300703A (en) METHOD FOR SUSPENSION POLYMERIZATION.
JP2684740B2 (en) Method for producing vinyl polymer particles
US4237255A (en) Suspension stabilizer for p-methylstyrene suspension polymerization
JPH01313504A (en) Production of vinyl polymer particle and expandable vinyl polymer particle
US3819597A (en) Polymerization of vinyl aromatic monomers in aqueous suspension
US3649610A (en) Process for the polymerization of vinyl aromatic monomers in aqueous suspension
JPS6312481B2 (en)
JPH0364308A (en) Method for suspension polymerizing styrenic monomer
JP2636400B2 (en) Method for producing vinyl polymer particles and expandable vinyl polymer particles
JPS58109510A (en) Production of styrene resin particle
JP3265246B2 (en) Method for producing styrene resin particles
JPS62169801A (en) Production of vinyl polymer
JPH01210406A (en) Suspension polymerization of styrene resin
JP3265247B2 (en) Method for producing styrene resin particles
JPH04209601A (en) Production of vinyl polymer and expandable vinyl polymer
JP2565606B2 (en) Suspension polymerization method for vinyl monomers
JP3766105B2 (en) Polymer particle manufacturing method
US20020115784A1 (en) Production of water-expandable styrene polymers
JP3494249B2 (en) Method for producing vinyl polymer particles
JPS6052165B2 (en) Manufacturing method of vinyl polymer particles
US6545062B2 (en) Production of water-expandable styrene polymers