JPH0144646B2 - - Google Patents

Info

Publication number
JPH0144646B2
JPH0144646B2 JP55110459A JP11045980A JPH0144646B2 JP H0144646 B2 JPH0144646 B2 JP H0144646B2 JP 55110459 A JP55110459 A JP 55110459A JP 11045980 A JP11045980 A JP 11045980A JP H0144646 B2 JPH0144646 B2 JP H0144646B2
Authority
JP
Japan
Prior art keywords
uranium
fluorine
tetrafluoride
hydrogen fluoride
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55110459A
Other languages
Japanese (ja)
Other versions
JPS5632330A (en
Inventor
Geruharuto Hatsukushutain Kaaru
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nukem GmbH
Original Assignee
Nukem GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nukem GmbH filed Critical Nukem GmbH
Publication of JPS5632330A publication Critical patent/JPS5632330A/en
Publication of JPH0144646B2 publication Critical patent/JPH0144646B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G43/00Compounds of uranium
    • C01G43/04Halides of uranium
    • C01G43/06Fluorides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/68Halogens or halogen compounds
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G43/00Compounds of uranium
    • C01G43/04Halides of uranium
    • C01G43/06Fluorides
    • C01G43/063Hexafluoride (UF6)
    • C01G43/066Preparation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Description

【発明の詳細な説明】 弗化水素もしくは弗素の定量的利用下に活性2
次廃棄物を生じさせることなしに、二酸化ウラン
と弗化水素とを反応させ四弗化ウランとし、かつ
四弗化ウランと弗素とを反応させ六弗化ウランを
製造する方法に関する。
[Detailed description of the invention] Activity 2 under quantitative utilization of hydrogen fluoride or fluorine
The present invention relates to a method for reacting uranium dioxide and hydrogen fluoride to produce uranium tetrafluoride, and reacting uranium tetrafluoride and fluorine to produce uranium hexafluoride, without producing waste.

六弗化ウラン(UF6)を製造するためには、先
ず四弗化ウラン(UF4)とし、これを2番目の反
応において元素状弗素と反応させ、UF6とする。
UF4の製造は大工業的に次の反応式により乾燥工
程中500〜600℃で二酸化ウラン(UO2)と無水弗
化水素(HF)とを反応させることにより行なわ
れる: UO2+4HFUF4+H2O この際、この反応は平衡反応であるので、同一
の温度において加水分解反応に戻るので、乾燥
UF4−製造において、化学量論的に必要量の弗化
水素を定量的に使用することができない:理論的
に反応に必要な量の約7%が希弗化水素酸水溶液
として工程の廃棄ガス中に生じる。
To produce uranium hexafluoride (UF 6 ), uranium tetrafluoride (UF 4 ) is first produced and reacted with elemental fluorine in a second reaction to form UF 6 .
The production of UF 4 is carried out industrially by reacting uranium dioxide (UO 2 ) with anhydrous hydrogen fluoride (HF) at 500-600 °C during a drying process according to the following reaction formula: UO 2 +4HFUF 4 +H 2 O At this time, since this reaction is an equilibrium reaction, it returns to the hydrolysis reaction at the same temperature, so drying
In the production of UF 4 , the stoichiometrically required amount of hydrogen fluoride cannot be used quantitatively: approximately 7% of the amount theoretically required for the reaction is discarded as a dilute aqueous hydrofluoric acid solution during the process. Occurs in gas.

UF4の公知の製法においては希弗化水素酸水溶
液をCaOと共にわずかにラジオ活性である不溶性
の弗化カルシウム(CaF2)とし、活性廃棄物と
して貯蔵しなければならない。UF4を製造する
際、弗化水素が重要な費用の要因であるというこ
との他にも、活性CaF2−廃棄物の貯蔵が同様に
高い費用と環境問題の原因となる。
In the known production process for UF 4 , a dilute aqueous hydrofluoric acid solution together with CaO forms insoluble calcium fluoride (CaF 2 ), which is slightly radioactive and must be stored as active waste. Besides the fact that hydrogen fluoride is an important cost factor when producing UF 4 , the storage of active CaF 2 -waste also causes high costs and environmental problems.

言わゆる反射炉中での UF4+F2=UF6 によるUF6の製造はほとんど定量的に行なわれ
る。しかし電解製造によるこれに必要な元素状弗
素はなお弗化水素を含有し、かつ更に弗素は痕跡
程度の水もしくは湿気とHFの形成下に反応する
ので、UF6製造の際にも少なからぬ量のHFが生
じ、同様にこれをCaOと共にCaF2に変換しなけ
ればならず、すでに記載した廃棄物問題を更にき
びしくする。
The production of UF 6 from UF 4 +F 2 =UF 6 in a so-called reverberatory furnace is carried out almost quantitatively. However, the elemental fluorine required for this by electrolytic production still contains hydrogen fluoride, and since fluorine reacts with traces of water or moisture with the formation of HF, considerable quantities are also used in the production of UF 6 . of HF is produced which likewise has to be converted together with CaO to CaF 2 , further aggravating the waste problem already described.

従つて、本発明の課題は二酸化ウランと弗化水
素酸の反応により四弗化ウランを製造し、四弗化
ウランと弗素とを反応させることにより六弗化ウ
ランを製造する際に、活性2次廃棄物を生じさせ
ることなしに反応のために必要な弗化水素酸もし
くは弗素を定量的に完全に使用する方法を見い出
すことである。
Therefore, the problem of the present invention is to produce uranium tetrafluoride by reacting uranium dioxide and hydrofluoric acid, and to produce uranium hexafluoride by reacting uranium tetrafluoride with fluorine, which has an activity of 2. The next step was to find a way to quantitatively and completely use the hydrofluoric acid or fluorine required for the reaction without producing waste products.

この課題は本発明により、反応の際生じた弗化
水素含有及び弗素含有廃棄ガスをウラン()−
イオン含有水溶液中に吸収させ、この際生じた難
溶性結晶水含有四弗化ウラン(UF4・2.5H2O)
を更に処理することによりなる。吸収のために硫
酸ウラン()の水溶液を使用するのが有利であ
る。
This problem has been solved according to the present invention by converting hydrogen fluoride-containing and fluorine-containing waste gases generated during the reaction into uranium()-
Uranium tetrafluoride (UF 4 2.5H 2 O) containing poorly soluble water of crystallization is absorbed into an ion-containing aqueous solution.
This is achieved by further processing. It is advantageous to use an aqueous solution of uranium sulphate () for the absorption.

本発明により工程への弗化水素及び弗素の定量
的返還、従つて、これらの定量的利用が容易に次
のようにして達せられる、すなわちUF4−もしく
はUF6−変換の反応からの弗化水素含有かつ弗素
含有廃棄ガスを有利に硫酸ウラン()の水溶液
に通じ、この際弗化水素及び弗素がウラン()
−イオンの過剰において定量的に結合し、次の反
応式により難溶性のUF4・2.5H2Oとなる: U(SO42+2.5H2O+4HF=UF4・2.5H2SO4 6U(SO42+4F2+13H2O=2UF4・2.5H2O+4UO
・SO4+8H2SO4 生じた難溶性四弗化ウランを濾別し、UF4の製
造のために直接又は乾燥後に又はUF6の製造のた
めに水不含生成物として使用する。こうして、
UF4及びUF6の製造のための工程中に弗化水素及
び弗素は定量的に残留し、確実に貯蔵しなければ
ならない活性2次廃棄物を生じさせないというこ
とが達せられた。
According to the present invention, quantitative return of hydrogen fluoride and fluorine to the process, and therefore quantitative utilization thereof, can be easily achieved by fluorination from the reaction of UF 4 - or UF 6 -conversion. The hydrogen-containing and fluorine-containing waste gas is preferably passed through an aqueous solution of uranium sulfate (), in which the hydrogen fluoride and fluorine are converted to uranium ().
- In excess of ions, they combine quantitatively to form poorly soluble UF 4 2.5H 2 O according to the following reaction formula: U(SO 4 ) 2 +2.5H 2 O+4HF=UF 4 2.5H 2 SO 4 6U (SO 4 ) 2 +4F 2 +13H 2 O=2UF 4・2.5H 2 O+4UO
SO 4 +8H 2 SO 4 The sparingly soluble uranium tetrafluoride formed is filtered off and used directly or after drying for the production of UF 4 or as water-free product for the production of UF 6 . thus,
It has been achieved that during the process for the production of UF 4 and UF 6 hydrogen fluoride and fluorine remain quantitatively and do not give rise to active secondary waste which must be reliably stored.

必要な硫酸ウラン()溶液は有利に三酸化ウ
ラン(UO3)を硫酸中に溶かし、引き続きU()
−イオンをU()−イオンに部分的電解還元する
ことにより製造する。U()−含有溶液中に弗素
を吸収させて生じるU()−化合物(UO2
SO4)を同様に還元し、U()とし、更にHFも
しくはF2を吸収させるために使用可能なものと
する。しかしU()を完全にUF()に還元す
ることは必要ではなく、廃ガス中のHF−もしく
はF2−濃度に対して、U()が十分に過剰であ
ればよい。
The required uranium sulfate () solution is advantageously obtained by dissolving uranium trioxide (UO 3 ) in sulfuric acid and subsequently adding U()
- ions by partial electrolytic reduction to U()- ions. A U()-compound ( UO2 .
SO 4 ) is similarly reduced to U(), which can be further used to absorb HF or F 2 . However, it is not necessary to completely reduce U() to UF(), as long as U() is in sufficient excess relative to the HF- or F2- concentration in the waste gas.

吸収溶液中のU()濃度が10〜200gU/で
あるのが有利であり、この際更にU()が存在
していてよい。しかしながら、U()が吸収す
るためのHFもしくはF2に対し過剰に存在するこ
とが重要である。
Advantageously, the U() concentration in the absorption solution is between 10 and 200 gU/U(), additional U() being present. However, it is important that U() is present in excess relative to the HF or F2 for absorption.

ウラン()溶液もしくはウラン()/ウラ
ン()溶液を循環させるのも有利であり、この
際濾別したUF4・2.5H2OはUO3の添加、引き続
くウラン()への還元により補充される。
It is also advantageous to circulate the uranium() solution or the uranium()/uranium() solution, in which case the filtered-off UF 4 2.5H 2 O is replenished by addition of UO 3 and subsequent reduction to uranium(). Ru.

次に実施例につき本発明を詳細に説明する。 The invention will now be explained in detail with reference to examples.

例 1 硫酸中に三酸化ウランを溶かすことにより製造
した1あたりウラン100g及び濃度1.5Nの遊離
硫酸を有する硫酸ウラン溶液を電気分解によりウ
ラン()濃度40g/及びウラン()濃度60
g/となるまで還元した。この40℃の溶液を底
部に篩板、側面に配置した濾過装置及びそれに後
続した熱交換器を有する噴霧式洗浄機中を、この
溶液が先ずノズルを通つて洗浄機中に、次いで濾
過器及び熱交換器を介して再びノズルを通つて流
れが戻るようにポンプで循環させた。
Example 1 A uranium sulfate solution containing 100 g of uranium per unit and free sulfuric acid at a concentration of 1.5N was prepared by dissolving uranium trioxide in sulfuric acid, and was electrolyzed to produce a uranium () concentration of 40 g/and a uranium () concentration of 60
It was reduced to g/g/g. The solution at 40° C. is passed through a spray washer having a sieve plate at the bottom, a filtration device placed on the side and a heat exchanger following it, first through a nozzle into the washer, then through a filter and The flow was pumped through the heat exchanger and back through the nozzle.

この洗浄機中に洗浄機の床の下降する管を介し
てUF4−装置中廃棄ガスとして生じた水蒸気1Kg
及びHF0.162Kgから成る混合物並びにN210を
毎分導入する。生じたUF4・2.5H2Oをウラン
()/ウラン()溶液から濾過器を介して吸
引濾過し、この溶液を熱交換器中40℃に冷却し、
再び洗浄機中にポンプで入れる。
During this washing machine, UF 4 - 1 kg of water vapor produced as waste gas in the equipment is passed through the descending pipes in the floor of the washing machine.
and 0.162 Kg of HF and 10 of N 2 are introduced per minute. The resulting UF4.2.5H2O is suction filtered from the uranium()/uranium() solution through a filter, and the solution is cooled to 40° C in a heat exchanger.
Pump into the washer again.

この例中一緒に供給した窒素担体(技術工程に
おいて窒素はほとんど生じない)を連続的に取り
除き10水酸化カリウム溶液容器中に導入し、場
合によりまだ存在する弗素を吸収させた。次い
で、この水酸化カリウム溶液中、弗素を弗素イオ
ンに鋭敏な電極を用いて測定した。水酸化カリウ
ム溶液中の全弗化物の量は30分後わずかに
HF0.317であつた。これはHF162gの使用に対し
99.8%の分離度に相応する。
The nitrogen carrier supplied in this example (little nitrogen is produced in the technical process) was continuously removed and introduced into a 10-potassium hydroxide solution vessel, if necessary to absorb any fluorine still present. Next, fluorine was measured in this potassium hydroxide solution using an electrode sensitive to fluorine ions. The amount of total fluoride in potassium hydroxide solution is small after 30 minutes.
It was HF0.317. This is for using HF162g
Corresponds to a degree of separation of 99.8%.

例 2 例1により得られたUF4・2.5H2O1Kgを水で洗
浄し、90℃で乾燥させ、次いでUO29Kgと混合し
た。この混合物をインコネル炉中で550℃で無水
HFを用いて弗化水素化を行なつた。得られた無
水UF4は申し分のない品質であつた。
Example 2 1 Kg of UF 4 .2.5H 2 O obtained according to Example 1 was washed with water, dried at 90° C. and then mixed with 9 Kg of UO 2 . This mixture was dried in an Inconel furnace at 550°C.
Hydrofluorination was carried out using HF. The obtained anhydrous UF 4 was of satisfactory quality.

例 3 例1で得られ、かつ洗浄したUF4・2.5H2O0.2
Kgを100〜300℃の温度範囲で真空中注意深く脱水
した。こうして得られた無水UF4を微細に粉砕し
たモネル合金から成る円筒状炉中で元素状弗素と
反応させUF6とした。非常にわずかな未反応固体
残分2.1gが残留した。従つて、使用した材料の
98.95%がUF6となつた。
Example 3 UF 4・2.5H 2 O0.2 obtained in Example 1 and washed
Kg was carefully dehydrated in vacuo at a temperature range of 100-300°C. The anhydrous UF 4 thus obtained was reacted with elemental fluorine to form UF 6 in a cylindrical furnace made of finely ground Monel alloy. A very small amount of unreacted solid residue, 2.1 g, remained. Therefore, the materials used
98.95% became UF 6 .

こうして、本発明方法により得られたUF4
2.5H2Oを例2によるUF4を製造するための弗化
水素化工程中に又は例3によるUF6を製造するた
めの弗素化工程中に供給することができる。こう
して例1で目的とした弗素化収率は全工程で
99.98%を実現可能とする。
In this way, the UF4 .
2.5H 2 O can be fed into the hydrofluorination step to produce UF 4 according to example 2 or during the fluorination step to produce UF 6 according to example 3. Thus, the fluorination yield targeted in Example 1 was achieved in the entire process.
Make 99.98% possible.

Claims (1)

【特許請求の範囲】 1 反応のために必要な弗化水素もしくは弗素の
定量的利用下に、活性2次廃棄物を生じさせるこ
となしに、二酸化ウランと弗化水素とを反応させ
て四弗化ウランを製造し、かつ四弗化ウランと弗
素とを反応させて六弗化ウランを製造する方法に
おいて、反応において生じる弗化水素及び弗素含
有廃ガスをウラン()−イオン含有水溶液中に
吸収させ、この際生じる難溶性結晶水含有四弗化
ウラン(UF4・2.5H2O)を更に処理することを
特徴とする四弗化ウラン及び六弗化ウランの製
法。 2 ウラン()−水溶液が硫酸ウラン()を
含有する特許請求の範囲第1項記載の方法。 3 ウラン()−溶液が10〜200gU/を含有
する特許請求の範囲第1項又は第2項記載の方
法。 4 硫酸中にUO3を溶解させ、引き続きウラン
()を還元してウラン()とすることにより
ウラン()溶液を製造する特許請求の範囲第1
項〜第3項のいずれかに記載の方法。 5 ウラン()−吸収溶液を循環させる、特許
請求の範囲第1項〜第4項のいずれかに記載の方
法。
[Claims] 1. To produce tetrafluoride by reacting uranium dioxide and hydrogen fluoride without producing active secondary waste, with quantitative utilization of hydrogen fluoride or fluorine necessary for the reaction. In a method for producing uranium oxide and reacting uranium tetrafluoride and fluorine to produce uranium hexafluoride, hydrogen fluoride and fluorine-containing waste gas generated in the reaction are absorbed into an aqueous solution containing uranium ()-ions. A method for producing uranium tetrafluoride and uranium hexafluoride, characterized in that uranium tetrafluoride (UF 4 .2.5H 2 O) containing poorly soluble water of crystallization is further treated. 2. The method according to claim 1, wherein the uranium ()-aqueous solution contains uranium sulfate (). 3. The method according to claim 1 or 2, wherein the uranium () solution contains 10 to 200 gU/. 4. Claim 1 of manufacturing a uranium () solution by dissolving UO 3 in sulfuric acid and subsequently reducing uranium () to uranium ().
The method according to any one of Items 1 to 3. 5. The method according to any one of claims 1 to 4, wherein the uranium ()-absorbing solution is circulated.
JP11045980A 1979-08-18 1980-08-13 Manufacture of uranium tetrafluoride and uranium hexafluoride Granted JPS5632330A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE2933502A DE2933502C2 (en) 1979-08-18 1979-08-18 Process for the purification of waste gases containing hydrogen fluoride and fluorine

Publications (2)

Publication Number Publication Date
JPS5632330A JPS5632330A (en) 1981-04-01
JPH0144646B2 true JPH0144646B2 (en) 1989-09-28

Family

ID=6078758

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11045980A Granted JPS5632330A (en) 1979-08-18 1980-08-13 Manufacture of uranium tetrafluoride and uranium hexafluoride

Country Status (7)

Country Link
JP (1) JPS5632330A (en)
AU (1) AU536256B2 (en)
BR (1) BR8005124A (en)
DE (1) DE2933502C2 (en)
FR (1) FR2463747A1 (en)
GB (1) GB2056426B (en)
ZA (1) ZA804338B (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2480019B1 (en) * 1980-04-08 1986-11-14 Etu En Nucleaire Centre PROCESS FOR EXTRACTING FLUORIDE IONS FROM A NUCLEAR FUEL SOLUTION
GB8417364D0 (en) * 1984-07-06 1984-08-30 British Nuclear Fuels Plc Production of uranium tetrafluoride
GB2161464A (en) * 1984-07-06 1986-01-15 British Nuclear Fuels Plc Production of uranium tetrafluoride
US4970288A (en) * 1989-09-22 1990-11-13 Atochem North America, Inc. Non-toxic polyester compositions made with organotin esterification catalysts

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB704741A (en) * 1943-09-17 1954-03-03 Mini Of Supply Improvements in or relating to the production of uranium compounds
US3010784A (en) * 1957-09-30 1961-11-28 Hercules Powder Co Ltd Process for making uranium hexafluoride

Also Published As

Publication number Publication date
BR8005124A (en) 1981-02-24
FR2463747B1 (en) 1984-09-07
DE2933502C2 (en) 1984-03-08
FR2463747A1 (en) 1981-02-27
ZA804338B (en) 1981-07-29
JPS5632330A (en) 1981-04-01
AU6062780A (en) 1981-02-26
DE2933502A1 (en) 1981-02-19
AU536256B2 (en) 1984-05-03
GB2056426A (en) 1981-03-18
GB2056426B (en) 1983-04-27

Similar Documents

Publication Publication Date Title
US2780522A (en) Production of fluorine compounds
EP0319857B1 (en) Method for producing titanium fluoride
JPH0144646B2 (en)
US4585634A (en) Process for the production of uranium trioxide having a large specific surface from hydrated uranyl nitrate
US3005684A (en) Process for making ammonium bifluoride
US3128152A (en) Process for recovering hydrogen fluoride from aqueous fluosilicic acid solution
US4067957A (en) Process for producing hydrogen fluoride from an aqueous hydrofluorosilicic acid solution
US4057614A (en) Process for producing sodium fluoride from sodium silicofluoride
US3101254A (en) Production of silica free hydrogen fluoride
US3175879A (en) Treatment of by-product uranium material to recover purified concentrated uranium values
US3238017A (en) Method for the recovery of hydrogen fluoride from the spent gases
US2761756A (en) Process for production of uranium hexafluoride
US3697235A (en) Method of purifying uranium hexafluoride by reduction to lower uranium fluorides
US3645681A (en) Production of gaseous hydrogen fluoride
US1914425A (en) Process of dehydrating fluorine compounds
US2793102A (en) Production of pure chlorine
Tananaev et al. The chemistry of uranium fluorides
US4180546A (en) Process for removing phosphorus from phosphorus-containing fluorite
US3056656A (en) Production of aqueous perchloric acid
US2771338A (en) Manufacture of uranium peroxide
US2982618A (en) Process for the catalytic production of perchloryl fluoride
RU2601477C1 (en) Method of producing uranium tetrafluoride
US4012489A (en) Process for the preparation of uranium dioxide
US3806590A (en) Process for the production of chlorine
JP2930351B2 (en) Manufacturing method of NF (3)