JPH0144238B2 - - Google Patents

Info

Publication number
JPH0144238B2
JPH0144238B2 JP22919083A JP22919083A JPH0144238B2 JP H0144238 B2 JPH0144238 B2 JP H0144238B2 JP 22919083 A JP22919083 A JP 22919083A JP 22919083 A JP22919083 A JP 22919083A JP H0144238 B2 JPH0144238 B2 JP H0144238B2
Authority
JP
Japan
Prior art keywords
oil
refined
lubricating
base oil
sulfur
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP22919083A
Other languages
Japanese (ja)
Other versions
JPS60120793A (en
Inventor
Mitsufumi Matsunaga
Hideo Suzuki
Shintaro Myawaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining Co Ltd filed Critical Nippon Mining Co Ltd
Priority to JP22919083A priority Critical patent/JPS60120793A/en
Publication of JPS60120793A publication Critical patent/JPS60120793A/en
Publication of JPH0144238B2 publication Critical patent/JPH0144238B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はパラフイン基又は混合基原油からも高
温酸化安定性及び高温清浄性に優れ、しかも粘度
指数の高い潤滑油基油を高い収率でかつ経済的に
製造する方法に関するものである。 近年内燃機関は熱効率向上、小型化、高出力化
及び省エネルギー化の対策が進み、これらに使用
されるクランクケース油、シリンダー油等の潤滑
油の製造には高温での酸化安定性及び高温清浄性
が優れ、かつ粘度指数が高い基油が要望される。
一方工業用潤滑油例えば、油圧作動油、軸受油、
タービン油、圧縮機械油の製造には、前記内燃機
関油用よりも一段と精製度の高い基油が必要であ
る。よつて潤滑油基油製造工業に於いては、用途
に応じた基油を同時的に、しかも収率良く、少な
いエネルギーで製造する技術の開発が望まれてい
る。 従来、前記原油から潤滑油基油を生産するに
は、水素化精製、溶剤抽出精製、脱ろう精製を第
1図に示す如く、直列的に組合せた手段が採用さ
れて来た。この方法の欠点は、高度精製基油が得
られるものの、収率向上と精製コスト低減に難点
があり、また性状の異なる基油製造の要求に対拠
が困難である。しかも高度精製基油は、内燃機関
用潤滑油の如き苛酷条件での使用の場合、沈積物
を生成し易い欠点を有する。 従来ナフテン基原油から酸化安定性を改良した
潤滑油基油を製造する方法として、水素化精製油
に、水素化精製しない油を混合する方法が開示
(U.S.P3759817,U.S.P3000807、特公昭58―
12961)されているが、該原油種は我国で入手困
難で、しかも粘度指数を90以上に高める配慮は為
されていない。 本発明者は、パラフイン基又は混合基原油を原
料とし、内燃機関潤滑油用基油と工業用潤滑油基
油を同時的に、かつ経済的に製造する方策を検討
し、本発明を完成した。本発明の方法での主なる
製造品は、全体の基油の中でもとくに使用量の多
い内燃機関潤滑油用基油である。そして、該基油
に必要な性能は高温条件下での長期使用中、酸化
され難く(酸化安定性)、また潤滑部分の金属例
えばエンジンピストン、シリンダーライナー等に
沈積物あるいはラツカー状物質の生成を起こし難
いこと(清浄性)、さらには温度変化に対する粘
度変化が少ないこと(高い粘度指数)である。本
発明者は、高温酸化安定性に対し基油中硫黄分を
0.15〜0.7wt%、好ましくは0.2〜0.6wt%含有させ
ること、また高温清浄性に対しては硫黄分0.2wt
%以上、好ましくは0.25wt%以上含有させること
が効果的であることの知見を得た。第2図はこれ
らの根拠を示す実験例である。内燃機関潤滑油基
油の粘度指数は、少なくとも90以上好ましくは92
以上であれば、何ら支障は無い。即ち前記硫黄分
及び粘度指数を有する基油が本発明の方法での製
造目的物となる。併せて、該内燃機関用に比べ、
高度に精製した基油も同時的に本発明の方法で製
造し得る。 即ち本発明の目的は、前記のとおりパラフイン
基又は混合基原油から、高温酸化安定性、高温清
浄性を有し、高い粘度指数を有する潤滑油基油
を、収率を高めかつ少ないエネルギーで製造する
方法を提供することにある。本発明の方法によ
り、従来の方法に比べ単位原料油当たり収率が数
%高く、かつエネルギーも1Klの基油製造当たり
約5万Kcal低減できる。 本発明について以下に詳しく説明する。本発明
はパラフイン基又は混合基原油から蒸留手段で分
離した潤滑油留分を原料油として用い、これから
硫黄分0.2乃至0.7wt%を含有し、粘度指数90以上
を有する潤滑油基油を製造する方法に於いて、 (イ) 前記原料油をフルフラール溶剤によりラフイ
ネート収率65〜80容量%の条件で溶剤抽出精製
して硫黄分1.0〜1.6wt%含有の第1の精製油と
し、 (ロ) 次いで該第1の精製油の一部分を水素化精製
用触媒存在下に、水素分圧50〜150Kg/cm2(ゲ
ージ圧)、温度330〜380℃、液空間速度0.5〜
2.0時間-1の条件で接触させて水素化精製し、
硫黄分を0.03乃至1.10重量%含有する第2の精
製油とし、 (ハ) 前記両精製油を混合前又は混合後に溶剤脱ろ
う精製し、 (ニ) 両精製油を適当割合で混合し、混合油中の硫
黄分0.2〜0.7wt%に調整すること、 から成る潤滑油基油の製造方法である。 本発明で用いられる原料油は、アラビアンライ
ト、アラビアンヘビー、バスラライト、クウエー
ト、イラニアンライト等中東地域産出の原油の一
種又は二種以上を常圧蒸留し、その残油を更に真
空蒸留し、分離される粘度区分で仕分けられた軽
質、中質、重質の留出油及び残油から脱れきによ
り得られたブライトストツク油である。これらの
うちでも軽質留出油を除く各粘度の油がとくに本
発明では原料油として好適である。中でも、中質
及び重質即ち80〜150ニユートラル油、400〜500
ニユートラル油級の基油生産に対し、収率向上の
メリツトが大である。該原料油は硫黄分約2.0〜
約3.5wt%を含有し、常圧換算約400℃以上の沸点
留分であり、粘度約4〜約30cSt(100℃)を有
するものである。該原料油は、多種の硫黄化合物
及び窒素化合物その他潤滑油基油として不適な炭
化水素を含有するため、次の方法で精製される。 本発明で用いられる精製工程を第3図及び第4
図に示し、これらに基づき説明する。第5図は本
発明の別の実施態様例である。前記原料油は、溶
剤抽出精製(以下EX処理と略す。)され、第1の
精製油となる。この際、公知の溶剤即ち、フルフ
ラール、N―メチル―2―ピロリドン、フエノー
ル等が使用され、抽出装置内で接触後、ラフイネ
ート分とエキストラクト分に分けられ、ラフイネ
ート中に含有される溶剤は蒸留除去される。本発
明では抽出を比較的温和な条件で行うべきであ
り、その目標として、得られる第1の精製油中の
硫黄分を約1.0〜1.6wt%、好ましくは1.1〜1.6wt
%、とくに好ましくは1.2〜1.5wt%にすべきであ
る。該硫黄分の数字限定は以後の操作で得られる
第2の精製油の性状、混合により得られる目的の
潤滑油基油の性能確保、収率向上、製造に係る熱
エネルギー節約の総合見地から定められた。より
詳しく説明すると、抽出精製の際溶剤の割合を高
めることは、粘度指数が高まつた高度な精製油は
得られるものの、収率低下と精製エネルギーの増
加となる。例えば硫黄分0.6〜0.7wt%になるよう
苛酷条件で溶剤抽出精製し、これを水素化精製し
て硫黄分0.1〜0.2wt%の精製油とし、混合により
硫黄分0.4wt%にした基油では粘度指数94〜96を
有するものの、本発明の方法に比べ、収率が約6
%低下し、精製エネルギーも約8%増大する。一
方溶剤抽出精製を極く温和に行い、例えば硫黄分
1.8wt%の精製油とし、これを水素化精製して硫
黄分0.1〜0.2wt%の精製油とし、両精製油を混合
し硫黄分0.3wt%にした基油では粘度指数90以上
が確保できない。 本発明で使用される第1の精製油を得る条件の
好ましい例は、フルフラール溶剤/油比150〜
220vol%、好ましくは150〜200vol%、抽出温度
60〜90℃であり、ラフイネートの収率約60〜
85vol%、好ましくは65〜80vol%になるよう前記
溶剤比を選択する。該第1の精製油中には、熱又
は水素化の影響を全く受けていないスルフイド型
硫黄化合物が硫黄分として全硫黄分の50%以上即
ち約0.3〜約1.0wt%含有され、以後の第2の精製
油との混合時に有効作用を及ぼす。 得られた第1の精製油の一部分は、苛酷な条件
で水素化精製(以下HF処理と略す。)に供せら
れ、第2の精製油となる。該精製油中の硫黄分は
0.02〜0.15wt%、好ましくは0.02〜0.12wt%、更
に好ましくは0.03〜0.10wt%とすべきである。該
硫黄分の設定根拠は、前記第1の精製油の硫黄
分、粘度指数及び目的とする基油性状並びに該第
2の精製油の粘度指数、さらには該精製油を単独
に脱ろうして一段高い精製度の工業用潤滑油基油
を得る見地に基づいている。即ち、前記硫黄分に
なるようHF処理すると脱ろう油は粘度指数95以
上が確保でき、しかも第1の精製油を10〜50vol
%混合した際、目的の粘度指数及び硫黄分が安定
的に確保できる。硫黄分0.01wt%又はこれ以下の
如く超苛酷精製すると水素化分解を起こし、収率
低下をもたらし、一方温和精製では粘度指数向上
が困難となる。種々脱硫率と粘度指数との検討を
進め、HF処理で脱硫黄率約90%以上、より好ま
しくは92〜97%とすることにより、粘度指数は95
以上(脱ろう後)のものが安定確保できる。 HF処理は、シリカ、アルミナ、シリカ・アル
ミナ等の担体に、Ni,Co,Mo,W等の1種又は
2種以上が約0.2〜約15wt%担持された公知の水
素化精製用触媒存在下で、水素分圧50〜150Kg/
cm2(G)、好ましくは70〜100Kg/cm2(G)、温度330〜
380℃、好ましくは350〜380℃、LHSV0.5〜
2.0hr-1で油と接触させ行われる。 両精製油は流動点降下のため脱ろう精製され
る。これには溶剤脱ろう手段が好適である。脱ろ
うにより含有のワツクス分が10〜20wt%除去さ
れ、その結果、脱ろう油中の硫黄分は若干数値上
昇すると共に、粘度指数は低下する。第3図及び
第4図に示す第2の精製油を単独に溶剤脱ろう精
製して得られる基油は、工業用潤滑油基油として
好ましく使用される。 前記第1の精製油と第2の精製油は、第3図及
び第4図に示すように混合される。第3図は混合
後に脱ろうする例、第4図は各々単独に脱ろう後
混合する例である。いずれの場合でも、最終的に
硫黄分0.2〜0.7wt%になるようにすべきであり、
第1及び第2の精製油の混合は、10:90〜50:50
(容量比)の範囲で行われる。粘度指数を高める
には、第2の混合量の増加が好ましい。前記混合
割合は、、目的とする潤滑油中の硫黄分及び粘度
指数と、両精製油自身の硫黄分及び粘度指数にも
とづき決定された。当然のことながら、収率向上
及び精製エネルギーの低減も関係し、全体バラン
スが配慮されている。混合後の基油の最も好まし
い硫黄部分は0.3〜0.6wt%であり、これには20:
80〜35:65(容量比)が適当である。例えば第1
の精製油100部のうち80部をHF処理に供し、該
80部の第2の精製油のうち60部と、残部20部の第
1の精製油との混合により内燃機関用潤滑油基油
80部が製造出来、前記第2の精製油残部20部が工
業用潤滑油基油とされ得る。 本発明の方法により、従来方法に比べ収率は2
〜7vol%向上し、温和な溶剤精製による溶剤節約
と溶剤回収等に要する精製エネルギーは5〜10%
削減可能である。更には、精製度の異なる2種又
は2種以上の基油が同時に製造可能となり、用途
に応じた性能の潤滑油製造の対応が可能となる。
第5図は粘度の異なる2種の原料油を使用した場
合の対応例を示している。 以下に本発明内容と効果を実施例及び比較例に
もとづき説明する。 実施例 1 アラビアンライト原油から蒸留分離された沸点
400〜600℃(常圧換算)の潤滑油留分(粘度
15cSt100℃、硫黄分2.70wt%)を原料油とし、
以下の工程で精製し、第1の精製油No.1A及び第
2の精製油No.2Aを得た。 第1の精製油No.1Aの製造 RDCフルフラール溶剤抽出装置で以下の通り
精製した。 フルフラール/油比;190% 原料油送入量;50.3Kl/Hr 温 度:95℃ 精製結果は以下の通りであつた。 ラフイネート分収率:68.3vol% 精製エネルギー;225×103Kcal (精製油1Kl当た
り) 第2の精製油No.2Aの製造 前記第1の精製油を水素化精製装置により以下
のとおり精製した。 触 媒:アルミナ担体にNi 1.0wt%、Co
3.0wt%、Mo 12.0wt%担持の水素
化触媒 水素分圧;98Kg/cm2(G) 温 度;378℃ LHSV;1.0hr-1 送 油 量;34.3Kl/Hr 以上の方法で高度に脱硫した第2の精製油No.
2Aを収率98.9vol%で得た。 脱ろう精製 前記第1の精製油No.1Aと第2の精製油No.2Aを
それぞれ別々に、油100容量部当たりメチルエチ
ルケトン/トルエン(1:1容量比)の混合溶剤
350容量部を用い、−20℃に冷却し、析出ワツクス
分をロ別し、脱ろう油No.1A―DとNo.2A―Dを得
た。各々の性状を第1表に示した。
The present invention relates to a method for economically producing a lubricating base oil with excellent high-temperature oxidation stability and high-temperature detergency and a high viscosity index even from paraffin-base or mixed-base crude oils in a high yield. In recent years, measures have been taken to improve thermal efficiency, miniaturize, increase output, and save energy for internal combustion engines, and the production of lubricating oils such as crankcase oil and cylinder oil used in these engines requires high-temperature oxidation stability and high-temperature cleanliness. There is a need for a base oil that has excellent properties and a high viscosity index.
On the other hand, industrial lubricants such as hydraulic oil, bearing oil,
The production of turbine oil and compressed machine oil requires a base oil with a higher degree of refinement than that for internal combustion engine oil. Therefore, in the lubricating base oil manufacturing industry, there is a desire to develop a technology that can simultaneously produce base oils according to their uses, with high yields, and with less energy. Conventionally, in order to produce lubricating base oil from the crude oil, a method has been adopted in which hydrorefining, solvent extraction refining, and dewaxing refining are combined in series as shown in FIG. The disadvantages of this method are that although highly refined base oils can be obtained, there are difficulties in improving yield and reducing refining costs, and it is difficult to meet the demands for producing base oils with different properties. Moreover, highly refined base oils have the disadvantage that they tend to form deposits when used under severe conditions such as lubricating oils for internal combustion engines. Conventionally, as a method for producing lubricating base oil with improved oxidation stability from naphthenic crude oil, a method of mixing non-hydrorefined oil with hydrorefined oil was disclosed (USP 3759817, USP 3000807, Japanese Patent Publication No. 1983-
12961), but this type of crude oil is difficult to obtain in Japan, and no consideration has been taken to increase the viscosity index to 90 or higher. The present inventor has studied a method for simultaneously and economically producing base oil for internal combustion engine lubricating oil and base oil for industrial lubricating oil using paraffin base or mixed base crude oil as a raw material, and has completed the present invention. . The main product produced by the method of the present invention is base oil for internal combustion engine lubricating oil, which is used in particularly large amounts among all base oils. The performance required for this base oil is that it is resistant to oxidation (oxidation stability) during long-term use under high-temperature conditions, and it also prevents the formation of deposits or lubricious substances on lubricated metal parts such as engine pistons and cylinder liners. It is difficult to cause such problems (cleanliness), and furthermore, the viscosity changes little with respect to temperature changes (high viscosity index). The present inventor has determined that the sulfur content in the base oil should be improved for high-temperature oxidation stability.
Sulfur content should be 0.15 to 0.7wt%, preferably 0.2 to 0.6wt%, and 0.2wt for high temperature cleanliness.
% or more, preferably 0.25 wt% or more is effective. Figure 2 is an experimental example showing these grounds. The viscosity index of the internal combustion engine lubricant base oil is at least 90 or more preferably 92
If the above is the case, there will be no problem. That is, a base oil having the above-mentioned sulfur content and viscosity index is the object of production in the method of the present invention. In addition, compared to the internal combustion engine,
Highly refined base oils can also be simultaneously produced in the process of the invention. That is, the object of the present invention is to produce a lubricating base oil having high temperature oxidation stability, high temperature detergency, and a high viscosity index from paraffin base or mixed base crude oil with high yield and with less energy. The goal is to provide a way to do so. By the method of the present invention, the yield per unit of feedstock oil is several percent higher than that of conventional methods, and the energy consumption can be reduced by about 50,000 Kcal per 1 Kl of base oil production. The present invention will be explained in detail below. The present invention uses a lubricating oil fraction separated from paraffin base or mixed base crude oil by distillation means as a raw material oil, and produces from it a lubricating base oil containing 0.2 to 0.7 wt% sulfur content and having a viscosity index of 90 or more. In the method, (a) the raw material oil is subjected to solvent extraction and refinement using a furfural solvent under conditions of a raffinate yield of 65 to 80% by volume to obtain a first refined oil containing 1.0 to 1.6 wt% of sulfur; (b) Next, a portion of the first refined oil is heated in the presence of a hydrorefining catalyst at a hydrogen partial pressure of 50 to 150 Kg/cm 2 (gauge pressure), a temperature of 330 to 380°C, and a liquid hourly space velocity of 0.5 to 1.
Hydrorefining by contacting under the conditions of 2.0 h -1 ,
a second refined oil containing 0.03 to 1.10% by weight of sulfur; (c) both refined oils are solvent dewaxed before or after mixing; (d) both refined oils are mixed in an appropriate ratio and mixed. A method for producing lubricating base oil, which comprises adjusting the sulfur content in oil to 0.2 to 0.7 wt%. The raw material oil used in the present invention is obtained by atmospheric distillation of one or more types of crude oil produced in the Middle East, such as Arabian Light, Arabian Heavy, Basra Light, Kuwait, and Iranian Light, and the residual oil is further vacuum distilled and separated. Bright stock oil is obtained by deasphalting from light, medium, and heavy distillate oils and residual oils, which are classified by viscosity. Among these, oils of various viscosities except light distillate oils are particularly suitable as raw material oils in the present invention. Among them, medium and heavy oils, i.e. 80-150 neutral oil, 400-500
It has a great advantage in yield improvement for the production of neutral grade base oil. The raw material oil has a sulfur content of approximately 2.0~
It contains about 3.5 wt%, is a boiling point fraction of about 400°C or more in terms of normal pressure, and has a viscosity of about 4 to about 30 cSt (100°C). Since the raw material oil contains various sulfur compounds, nitrogen compounds, and other hydrocarbons unsuitable as a lubricating oil base oil, it is refined by the following method. The purification process used in the present invention is shown in Figures 3 and 4.
It is shown in the figure and explained based on these. FIG. 5 shows another embodiment of the invention. The raw material oil is subjected to solvent extraction and refining (hereinafter abbreviated as EX treatment) to become a first refined oil. At this time, known solvents, such as furfural, N-methyl-2-pyrrolidone, and phenol, are used, and after contact in an extraction device, they are separated into a raffinate component and an extract component, and the solvent contained in the raffinate is distilled. removed. In the present invention, extraction should be performed under relatively mild conditions, and the goal is to reduce the sulfur content in the resulting first refined oil to about 1.0 to 1.6 wt%, preferably 1.1 to 1.6 wt%.
%, particularly preferably 1.2 to 1.5 wt%. The numerical limit for the sulfur content is determined from the comprehensive viewpoint of the properties of the second refined oil obtained in the subsequent operations, ensuring the performance of the target lubricating base oil obtained by mixing, improving yield, and saving thermal energy during production. It was done. To explain in more detail, increasing the proportion of solvent during extraction and purification results in a decrease in yield and an increase in refining energy, although highly refined oil with an increased viscosity index can be obtained. For example, a base oil that is extracted and refined under severe conditions to have a sulfur content of 0.6 to 0.7 wt%, hydrorefined to produce a refined oil with a sulfur content of 0.1 to 0.2 wt%, and then mixed to have a sulfur content of 0.4 wt%. Although it has a viscosity index of 94 to 96, the yield is about 6% compared to the method of the present invention.
% decrease, and the refining energy also increases by about 8%. On the other hand, solvent extraction and purification are carried out very mildly, for example, to remove sulfur content.
A base oil with a sulfur content of 0.3wt% cannot be secured by using a refined oil of 1.8wt%, which is hydrorefined to a refined oil with a sulfur content of 0.1 to 0.2wt%, and a mixture of both refined oils with a sulfur content of 0.3wt%. . A preferable example of the conditions for obtaining the first refined oil used in the present invention is a furfural solvent/oil ratio of 150 to
220vol%, preferably 150-200vol%, extraction temperature
60~90℃, the yield of roughinate is about 60~
The solvent ratio is selected to be 85 vol%, preferably 65-80 vol%. The first refined oil contains sulfide-type sulfur compounds that have not been affected by heat or hydrogenation at all as a sulfur content of 50% or more of the total sulfur content, that is, about 0.3 to about 1.0 wt%. It exerts an effective effect when mixed with the refined oil in step 2. A portion of the obtained first refined oil is subjected to hydrorefining (hereinafter abbreviated as HF treatment) under severe conditions to become a second refined oil. The sulfur content in the refined oil is
It should be between 0.02 and 0.15 wt%, preferably between 0.02 and 0.12 wt%, and more preferably between 0.03 and 0.10 wt%. The basis for setting the sulfur content is the sulfur content, viscosity index, and target base oil properties of the first refined oil, the viscosity index of the second refined oil, and furthermore, It is based on the perspective of obtaining industrial lubricant base oil with a high degree of refinement. In other words, by HF treatment to achieve the above sulfur content, the dewaxed oil can have a viscosity index of 95 or more, and the first refined oil can be reduced to 10 to 50 vol.
% mixing, the desired viscosity index and sulfur content can be stably ensured. If the sulfur content is 0.01 wt% or less, ultra-severe refining will cause hydrogenolysis, resulting in a decrease in yield, while mild refining will make it difficult to improve the viscosity index. After studying various desulfurization rates and viscosity indexes, the viscosity index was 95% by increasing the desulfurization rate to approximately 90% or more, preferably 92 to 97%, through HF treatment.
The above (after removing wax) can be stably secured. The HF treatment is performed in the presence of a known hydrorefining catalyst in which about 0.2 to about 15 wt% of one or more of Ni, Co, Mo, W, etc. is supported on a carrier such as silica, alumina, or silica/alumina. So, the hydrogen partial pressure is 50~150Kg/
cm 2 (G), preferably 70-100Kg/cm 2 (G), temperature 330-
380℃, preferably 350~380℃, LHSV0.5~
Conducted in contact with oil at 2.0hr -1 . Both refined oils are dewaxed to lower their pour points. Solvent dewaxing means are suitable for this purpose. By dewaxing, 10 to 20 wt% of the wax content is removed, and as a result, the sulfur content in the dewaxed oil increases slightly and the viscosity index decreases. The base oil obtained by independently solvent dewaxing refining the second refined oil shown in FIGS. 3 and 4 is preferably used as an industrial lubricant base oil. The first refined oil and the second refined oil are mixed as shown in FIGS. 3 and 4. FIG. 3 shows an example in which dewaxing is performed after mixing, and FIG. 4 is an example in which each is individually mixed after dewaxing. In either case, the final sulfur content should be 0.2 to 0.7 wt%,
Mixing of the first and second refined oils is from 10:90 to 50:50.
(capacity ratio). In order to increase the viscosity index, it is preferable to increase the second mixing amount. The mixing ratio was determined based on the sulfur content and viscosity index of the target lubricating oil and the sulfur content and viscosity index of both refined oils themselves. Naturally, improvement in yield and reduction in refining energy are also involved, and overall balance is taken into consideration. The most preferred sulfur content of the base oil after mixing is 0.3-0.6wt%, which includes 20:
A ratio of 80 to 35:65 (capacity ratio) is appropriate. For example, the first
Of the 100 parts of refined oil, 80 parts are subjected to HF treatment, and the
By mixing 60 parts of the 80 parts of the second refined oil with the remaining 20 parts of the first refined oil, a lubricating base oil for internal combustion engines is produced.
80 parts can be produced, and the remaining 20 parts of the second refined oil can be used as industrial lubricant base oil. The method of the present invention has a yield of 2% compared to the conventional method.
~7vol% improvement, and mild solvent refining reduces solvent savings and refining energy required for solvent recovery, etc., is 5~10%
It is possible to reduce Furthermore, it becomes possible to simultaneously produce two or more types of base oils with different degrees of refinement, making it possible to produce lubricating oils with performance depending on the application.
FIG. 5 shows an example of the case where two types of raw material oils with different viscosities are used. The contents and effects of the present invention will be explained below based on Examples and Comparative Examples. Example 1 Boiling point separated by distillation from Arabian Light crude oil
Lubricating oil fraction (viscosity
15cSt100℃, sulfur content 2.70wt%) as raw material oil,
It was refined in the following steps to obtain a first refined oil No. 1A and a second refined oil No. 2A. Production of first refined oil No. 1A Purification was performed using the RDC furfural solvent extraction device as follows. Furfural/oil ratio: 190% Feedstock oil feed rate: 50.3 Kl/Hr Temperature: 95°C The refining results were as follows. Roughinate fraction yield: 68.3 vol% Refining energy: 225×10 3 Kcal (per 1 Kl of refined oil) Production of second refined oil No. 2A The first refined oil was refined as follows using a hydrorefining apparatus. Catalyst: Ni 1.0wt%, Co on alumina carrier
3.0wt%, Mo 12.0wt% supported hydrogenation catalyst Hydrogen partial pressure: 98Kg/cm 2 (G) Temperature: 378℃ LHSV: 1.0hr -1 Oil feed rate: 34.3Kl/Hr Highly desulfurized using the above method The second refined oil No.
2A was obtained in a yield of 98.9vol%. Dewaxing refining The first refined oil No. 1A and the second refined oil No. 2A were each treated separately with a mixed solvent of methyl ethyl ketone/toluene (1:1 volume ratio) per 100 parts by volume of oil.
Using 350 parts by volume, it was cooled to -20°C and the precipitated wax was filtered out to obtain dewaxed oils No. 1A-D and No. 2A-D. The properties of each are shown in Table 1.

【表】【table】

【表】 両精製油を混合することにより、500ニユート
ラル級潤滑油基油No.1〜No.6を得た。各基油の性
能を第2表に示した。 第1表及び第2表から明らかなように、両精製
油No.1A―DとNo.2A―Dを混合し、硫黄分を0.2〜
0.7wt%に制御することにより、高温酸化安定性、
高温清浄性のいずれにも優れ、しかも粘度指数92
以上を有する基油が得られた。第1表に示す第2
の精製油No.2A―Dは工業用潤滑油基油として使
用出来る。
[Table] By mixing both refined oils, 500 neutral grade lubricating oil base oils No. 1 to No. 6 were obtained. The performance of each base oil is shown in Table 2. As is clear from Tables 1 and 2, both refined oils No. 1A-D and No. 2A-D were mixed and the sulfur content was reduced to 0.2~
High temperature oxidation stability by controlling to 0.7wt%,
Excellent high temperature cleanliness and viscosity index of 92
A base oil having the above properties was obtained. 2 shown in Table 1
Refined oils No. 2A-D can be used as industrial lubricant base oils.

【表】 比較例 1 実施例1で用いた原料油を第1図フローにもと
づき実施例1で用いたフルフラール溶剤抽出装置
及び水素化精製装置により以下のとおり精製し潤
滑油基油No.7を得た。 溶剤抽出精製 溶 剤;フルフラール 溶 剤 量;230%(フルフラール/油) =230/100容量部) 原料油送入量;50.3Kl/Hr 温 度;95℃ ラフイネート収率;62.7vol% 精製結果は以下の通りであつた。 精製エネルギー;310×103kcal(精製油1Kl当
たり) 精製油の性状;硫黄分 1.04wt% 得られた溶剤精製油を次いで、水素化精製し
た。 触 媒;実施例1と同じ 反応温度;330℃ 水素分圧;98.9Kg/(G) LHSV;1.0hr-1 送 油 量;34.4Kl/Hr 以上の条件は脱硫率60%に設定の条件であり、
得られた水素化精製油中の硫黄分は0.45wt%であ
つた。次いで実施例1と同様に溶剤脱ろうを行
い、潤滑油基油No.7を得た。該油の性状を第2表
に示した。 溶剤抽出を苛酷にし、一方水素化精製を温和に
し、しかも混合によらず得られた基油No.7は、第
2表に示すように、本発明の方法で得た基油No.3
及びNo.4とほぼ同じ硫黄分を有するものの粘度指
数が低く、しかも高温酸化安定度及び清浄性能に
欠ける。しかも、溶剤精製における収率が実施例
1に比べ約5%低く、精製エネルギーも85×
103Kcal/Kl多く必要とされる。 実施例 2 第1表に示す第1の精製油No.1A―D25vol%と
第2の精製油No.2A―D75vol%を混合して第3表
に示す潤滑油基油No.8を作成した。該基油に清浄
分散剤、酸化防止剤等を配合し、デイーゼルエン
ジン油No.8Dを作成し、該エンジン油を用い、キ
ヤタピラL―1エンジンにより、120時間連続テ
スト(1G2テスト)を実施し、性能テストした。
結果を第4表に示した。 比較例 2 比較例1で示した水素化精製条件のうち温度を
350℃にすることにより脱硫率90%で精製する以
外は、比較例1と同じ方法で同じ原料油を精製
し、第3表に示す硫黄分0.11wt%、粘度指数98の
潤滑油基油No.9を得た。該基油に実施例3で用い
たと同じ添加剤を同量配合し、デイーゼルエンジ
ン油No.9Dを作成し、実施例3と同様のテストを
行つた。結果を第4表に示した。
[Table] Comparative Example 1 The raw material oil used in Example 1 was refined as follows using the furfural solvent extraction device and hydrorefining device used in Example 1 based on the flow shown in Figure 1 to obtain lubricant base oil No. 7. Obtained. Solvent extraction and purification solvent; furfural solvent amount: 230% (furfural/oil) = 230/100 parts by volume) Raw material oil feed rate: 50.3 Kl/Hr Temperature: 95°C Raffinate yield: 62.7 vol% The refining results are as follows: It was as follows. Refining energy: 310×10 3 kcal (per 1 Kl of refined oil) Properties of refined oil: Sulfur content: 1.04 wt% The obtained solvent refined oil was then hydrorefined. Catalyst: Same as Example 1 Reaction temperature: 330°C Hydrogen partial pressure: 98.9Kg/(G) LHSV: 1.0hr -1 Oil feed rate: 34.4Kl/Hr The above conditions were set at a desulfurization rate of 60%. can be,
The sulfur content in the obtained hydrotreated oil was 0.45 wt%. Next, solvent dewaxing was performed in the same manner as in Example 1 to obtain lubricating base oil No. 7. The properties of the oil are shown in Table 2. As shown in Table 2, base oil No. 7 obtained by harsh solvent extraction and mild hydrorefining without mixing is different from base oil No. 3 obtained by the method of the present invention.
Although it has approximately the same sulfur content as No. 4, it has a low viscosity index and lacks high-temperature oxidation stability and cleaning performance. Moreover, the yield in solvent purification is about 5% lower than in Example 1, and the purification energy is 85×
10 3 Kcal/Kl more is required. Example 2 Lubricant base oil No. 8 shown in Table 3 was created by mixing the first refined oil No. 1A-D 25 vol% shown in Table 1 and the second refined oil No. 2A-D 75 vol%. . A detergent dispersant, antioxidant, etc. were blended with the base oil to create diesel engine oil No. 8D, and a 120-hour continuous test (1G2 test) was conducted using this engine oil using the Caterpillar L-1 engine. , performance tested.
The results are shown in Table 4. Comparative Example 2 Among the hydrorefining conditions shown in Comparative Example 1, the temperature was
The same raw material oil was refined in the same manner as in Comparative Example 1, except that it was purified at 350°C with a desulfurization rate of 90%, and lubricant base oil No. 1 with a sulfur content of 0.11 wt% and a viscosity index of 98 as shown in Table 3 was obtained. I got a .9. The same amount of the same additive as used in Example 3 was added to the base oil to prepare diesel engine oil No. 9D, and the same test as in Example 3 was conducted. The results are shown in Table 4.

【表】【table】

【表】【table】

【表】【table】

【表】 第3表及び第4表に示されているように、本発
明の方法によつて製造される潤滑油基油は高温清
浄性に優れ、しかもこれにより製造されたデイー
ゼルエンジン油も、エンジン内の高温部分におけ
る清浄性がきわめて好ましいことが分る。
[Table] As shown in Tables 3 and 4, the lubricating base oil produced by the method of the present invention has excellent high-temperature detergency, and the diesel engine oil produced by this method also has excellent high-temperature detergency. It turns out that cleanliness in hot parts within the engine is highly desirable.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の製造フロー、第2図は潤滑油基
油中の硫黄分と酸化安定性及び清浄性との関係
図、第3図〜第5図は本発明の製造フローを示し
ている。
Figure 1 shows the conventional manufacturing flow, Figure 2 shows the relationship between sulfur content in lubricant base oil, oxidation stability and cleanliness, and Figures 3 to 5 show the manufacturing flow of the present invention. .

Claims (1)

【特許請求の範囲】 1 パラフイン基又は混合基原油から分離された
硫黄分2.0乃至3.5重量%含有の潤滑油留分から、
粘度指数90以上を有する高温酸化安定性及び高温
清浄性に優れた潤滑油基油を製造する方法に於い
て、(イ)前記留分をフルフラール溶剤によりラフイ
ネート収率65〜80容量%の条件で溶剤抽出精製す
ることにより、硫黄分1.0乃至1.6重量%含有する
第1の精製油とし、(ロ)次いで該第1の精製油の一
部分を水素化精製用触媒存在下に、水素分圧50〜
150Kg/cm2(ケージ圧)、温度330〜380℃、液空間
速度0.5〜2.0時間-1の条件で接触させて水素化精
製して、硫黄分0.03乃至0.10重量%含有する第2
の精製油とし、(ハ)両精製油を混前又は混合後に溶
剤脱ろう精製し、(ニ)次いで前記第1の精製油と第
2の精製油とを10:90乃至50:50容量割合で混合
し、硫黄分0.2乃至0.7重量%に調整することによ
り成る潤滑油基油の製造方法。 2 第1の精製油がスルフイド型硫黄分を少なく
とも0.3wt%以上含有する鉱油である特許請求の
範囲第1項記載の潤滑油基油の製造方法。 3 使用する潤滑油留分が粘度4cSt(◎100℃)以
上を有する鉱油である特許請求の範囲第1項記載
の潤滑油基油の製造方法。 4 目的とする潤滑油基油が粘度指数92〜96を有
し、内燃機関潤滑油用基油である特許請求の範囲
第1項記載の潤滑油基油の製造方法。 5 第2の精製油の脱ろう後に得られる精製鉱油
が粘度指数95以上を有し、かつ硫黄分0.12wt%以
下含有する工業用潤滑油製造基油である特許請求
の範囲第1項記載の潤滑油基油の製造方法。
[Claims] 1. From a lubricating oil fraction containing 2.0 to 3.5% by weight of sulfur separated from paraffin group or mixed group crude oil,
In a method for producing a lubricating base oil having a viscosity index of 90 or more and excellent high-temperature oxidation stability and high-temperature cleanliness, (a) the above-mentioned fraction is treated with a furfural solvent at a raffinate yield of 65 to 80% by volume. A first refined oil containing 1.0 to 1.6% by weight of sulfur is obtained by solvent extraction and refining, and (b) a portion of the first refined oil is heated to a hydrogen partial pressure of 50 to 50% by weight in the presence of a hydrorefining catalyst.
A second product containing 0.03 to 0.10% by weight of sulfur is hydrorefined by contacting under the conditions of 150 Kg/cm 2 (cage pressure), temperature 330 to 380°C, and liquid hourly space velocity of 0.5 to 2.0 h -1 .
(c) Both refined oils are mixed or mixed and then solvent dewaxed and purified, (d) The first refined oil and the second refined oil are then mixed in a volume ratio of 10:90 to 50:50. A method for producing lubricating base oil, which comprises mixing and adjusting the sulfur content to 0.2 to 0.7% by weight. 2. The method for producing a lubricating base oil according to claim 1, wherein the first refined oil is a mineral oil containing at least 0.3 wt% of sulfide type sulfur. 3. The method for producing a lubricating base oil according to claim 1, wherein the lubricating oil fraction used is a mineral oil having a viscosity of 4 cSt (◎100°C) or more. 4. The method for producing a lubricating base oil according to claim 1, wherein the target lubricating base oil has a viscosity index of 92 to 96 and is a base oil for internal combustion engine lubricating oil. 5. The refined mineral oil obtained after dewaxing the second refined oil is an industrial lubricating oil manufacturing base oil having a viscosity index of 95 or more and containing 0.12 wt% or less of sulfur. Method for producing lubricating base oil.
JP22919083A 1983-12-06 1983-12-06 Preparation of lubricating oil base Granted JPS60120793A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22919083A JPS60120793A (en) 1983-12-06 1983-12-06 Preparation of lubricating oil base

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22919083A JPS60120793A (en) 1983-12-06 1983-12-06 Preparation of lubricating oil base

Publications (2)

Publication Number Publication Date
JPS60120793A JPS60120793A (en) 1985-06-28
JPH0144238B2 true JPH0144238B2 (en) 1989-09-26

Family

ID=16888211

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22919083A Granted JPS60120793A (en) 1983-12-06 1983-12-06 Preparation of lubricating oil base

Country Status (1)

Country Link
JP (1) JPS60120793A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8425837D0 (en) * 1984-10-12 1984-11-21 Shell Int Research Manufacture of lubricating base oils
JPH07116452B2 (en) * 1986-06-23 1995-12-13 株式会社ジャパンエナジー Method for producing highly aromatic base oil
JP2564556B2 (en) * 1987-06-30 1996-12-18 出光興産 株式会社 Lubricating oil composition for internal combustion engines
JP5105557B2 (en) * 2010-04-26 2012-12-26 東燃ゼネラル石油株式会社 Lubricating oil composition for internal combustion engines

Also Published As

Publication number Publication date
JPS60120793A (en) 1985-06-28

Similar Documents

Publication Publication Date Title
JP3057125B2 (en) Method for producing high viscosity index low viscosity lubricating base oil
JPH06116571A (en) Production of low-viscosity base oil having high viscosity index for lubricating oil
JPH07242884A (en) Production of engine fuel by extraction and hydrogenation of hydrocarbon feed, and gas oil produced
CN1007732B (en) Process for the manufacture of lubrication base oil and the base oil produced thereof
JP2006503967A (en) Production method of high quality base oil
CN102051220B (en) Preparation method of high-viscosity-index lubricating oil base oil
US4385984A (en) Lubricating base oil compositions
US3702817A (en) Production of lubricating oils including hydrofining an extract
CN102021034B (en) Method for preparing white micro-crystalline wax
CN102079994B (en) Preparation method of bright oil
US4124489A (en) Production of transformer oil feed stocks from waxy crudes
JPH0144238B2 (en)
JPH09100480A (en) Base oil of light lubricant oil and its production
JPH0324194A (en) Manufacture of lubricant base oil
WO2019014681A2 (en) Production of high quality base oils
CN103254936A (en) Combined process of hydrotreatment-catalytic cracking for residuum
US4921593A (en) Catalytic dewaxing process
CN114790403B (en) Production method of heavy lubricating oil base oil
US4085036A (en) Process of hydrodesulfurization and separate solvent extraction of distillate and deasphalted residual lubricating oil fractions
US3896025A (en) Production of improved lubricating oils
CA1090275A (en) Base-oil compositions
US3790470A (en) Production of lubricating oils
JP2938487B2 (en) Manufacturing method of lubricating base oil
KR20230124635A (en) Methods with Improved Base Oil Yields
US11034895B1 (en) Process for production of on specification group III/III+ base oils while preserving base oil yield