JPH0144022B2 - - Google Patents

Info

Publication number
JPH0144022B2
JPH0144022B2 JP59086829A JP8682984A JPH0144022B2 JP H0144022 B2 JPH0144022 B2 JP H0144022B2 JP 59086829 A JP59086829 A JP 59086829A JP 8682984 A JP8682984 A JP 8682984A JP H0144022 B2 JPH0144022 B2 JP H0144022B2
Authority
JP
Japan
Prior art keywords
power supply
voltage
supply line
internal
semiconductor integrated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP59086829A
Other languages
Japanese (ja)
Other versions
JPS60231355A (en
Inventor
Tatsuo Yamada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP59086829A priority Critical patent/JPS60231355A/en
Publication of JPS60231355A publication Critical patent/JPS60231355A/en
Publication of JPH0144022B2 publication Critical patent/JPH0144022B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • H01L27/092Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate complementary MIS field-effect transistors
    • H01L27/0921Means for preventing a bipolar, e.g. thyristor, action between the different transistor regions, e.g. Latchup prevention
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/0203Particular design considerations for integrated circuits
    • H01L27/0248Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection
    • H01L27/0251Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection for MOS devices
    • H01L27/0266Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection for MOS devices using field effect transistors as protective elements

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、PチヤネルMOSFET及びNチヤネ
ルMOSFETからなる相補型半導体集積回路に関
し、特に電源端子のラツチアツプ発生電圧を改善
した相補型半導体集積回路に関するものである。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to a complementary semiconductor integrated circuit comprising a P-channel MOSFET and an N-channel MOSFET, and more particularly to a complementary semiconductor integrated circuit with improved latch-up generation voltage at a power supply terminal. It is.

〔従来技術〕 相補型半導体集積回路においては、その電源ラ
インに印加されるノイズによりラツチアツプが発
生することがあり、該ラツチアツプには、該集積
回路の内部回路部分で起こるもの、内部回路以外
の周辺回路、例えば出力バツフア等で起こるも
の、あるいは周辺回路と内部回路との間で起こる
ものなどがある。周辺回路で起こるラツチアツプ
や、周辺回路と内部回路との間で起こるラツチア
ツプについては、ラツチアツプを起こすトランジ
スタの間隔を広げたり、VCCレベルまたはGNDレ
ベル等の電位をもつガードを設けたりすること等
により、比較的容易に電源端子のラツチアツプ発
生電圧に対処することが可能である。
[Prior Art] In complementary semiconductor integrated circuits, latch-up may occur due to noise applied to the power supply line. These include things that occur in circuits, such as output buffers, and things that occur between peripheral circuits and internal circuits. Latch-ups that occur in peripheral circuits or between peripheral circuits and internal circuits can be prevented by increasing the distance between the transistors that cause the latch-up, or by providing a guard with a potential such as V CC level or GND level. , it is possible to deal with the latch-up voltage of the power supply terminal relatively easily.

一方、内部回路において発生するラツチアツプ
については、一般的にこの種の回路においては集
積度を上げる必要がある等の理由により、内部回
路を構成するPチヤネルMOSFETとNチヤネル
MOSFETとの間の間隔を十分にとつたり、その
間に十分なガードを設けたりすることは容易では
ない。
On the other hand, regarding latch-up that occurs in internal circuits, generally speaking, due to the need to increase the degree of integration in this type of circuit, the P-channel MOSFET and N-channel MOSFET that make up the internal circuit
It is not easy to provide sufficient space between the MOSFET and a sufficient guard between them.

そこで従来は、内部回路に給電する電源ライン
に抵抗等を付加したり、内部回路のMOSFETの
ソース電位をウエルもしくは基板を介して供給す
ることにより、電源端子のラツチアツプ発生電圧
を改善するという対策がとられてきた。
Conventionally, countermeasures have been taken to improve the latch-up voltage at the power supply terminals by adding a resistor, etc. to the power supply line that supplies power to the internal circuit, or by supplying the source potential of the MOSFET in the internal circuit through a well or substrate. It has been taken.

第1図は上記対策のうち内部回路に給電する電
源ラインに拡散抵抗を付加した例を模式的に示し
たものである。以下、相補型半導体集積回路がP
型基板を持つN型ウエル方式であり、かつP型基
板が電気的にGND電位に接続されている場合を
例にとつて説明する。第1図において、1は相補
型半導体集積回路(図示せず)のGND電位に対
して正の電位VCCを外部から印加するための電源
端子であるVCC端子、2はその適当な箇所から半
導体集積回路の出力バツフア等の周辺回路に電位
を供給する周辺電源ライン、3はN型拡散抵抗、
4は電気的にVCC端子1とN拡散抵抗3とを結ぶ
給電ライン、5はその適当な箇所から内部回路に
電位を供給する内部電源ライン、6はGND電位
と同電位であるP型基板(図示せず)とN型拡散
抵抗3との接合部分に存在する寄生ダイオードで
ある。
FIG. 1 schematically shows an example of the above countermeasures in which a diffused resistor is added to the power supply line that supplies power to the internal circuit. Below, the complementary semiconductor integrated circuit is P
An example will be explained in which the method is an N-type well type having a type substrate and a P-type substrate is electrically connected to the GND potential. In Figure 1, 1 is a V CC terminal which is a power supply terminal for externally applying a positive potential V CC with respect to the GND potential of a complementary semiconductor integrated circuit (not shown), and 2 is a V CC terminal from an appropriate location. A peripheral power supply line that supplies a potential to peripheral circuits such as an output buffer of a semiconductor integrated circuit; 3 is an N-type diffused resistor;
4 is a power supply line that electrically connects the V CC terminal 1 and the N diffused resistor 3, 5 is an internal power supply line that supplies potential to the internal circuit from an appropriate point, and 6 is a P-type board that has the same potential as the GND potential. (not shown) and the N-type diffused resistor 3.

第1図において、周辺電源ライン2、給電ライ
ン4、及び内部電源ライン5は、通常、アルミニ
ウム等の金属を主体とした配線材料を用いて形成
され、有限の抵抗値を持つている。また給電ライ
ン4はVCC端子1の近傍から分岐させることが多
い。また寄生ダイオード6はVCC端子1にGND電
位に対し正の電圧が印加された時には逆バイアス
状態となる。周辺電源ライン2及び内部電源ライ
ン5にはそれぞれ例えば周辺部の出力バツフアや
内部回路が電気的に接続されており、一般的にN
型ウエルの電位も上記電源ラインより供給するた
め、周辺電源ライン2及び内部電源ライン5には
主としてN型ウエルの基板に対するウエル容量が
電気的に接続されていることになる。
In FIG. 1, a peripheral power supply line 2, a power supply line 4, and an internal power supply line 5 are usually formed using a wiring material mainly made of metal such as aluminum, and have a finite resistance value. Further, the power supply line 4 is often branched from the vicinity of the V CC terminal 1. Further, the parasitic diode 6 becomes reverse biased when a positive voltage with respect to the GND potential is applied to the V CC terminal 1. For example, peripheral output buffers and internal circuits are electrically connected to the peripheral power supply line 2 and the internal power supply line 5, respectively, and generally N
Since the potential of the type well is also supplied from the power supply line, the well capacitance of the N type well with respect to the substrate is electrically connected to the peripheral power supply line 2 and the internal power supply line 5.

ここでVCC端子1に正の値を持つパルス状のノ
イズがVCC電圧レベルに重畳して印加された場合
について考える。なおここでは内部回路で生じる
ラツチアツプについてのみ考える。VCC端子1に
ノイズ電圧が重畳印加された場合には、該印加さ
れたノイズ電圧がN型拡散抵抗3による電圧降
下、逆バイアスされた寄生ダイオード6のブレー
クダウン、あるいは周辺電源ライン2または内部
電源ライン5に付随する抵抗成分や容量成分によ
り十分吸収されるようにしなければ、内部回路の
内部電源ライン5からウエルもしくは基板に注入
されたキヤリアにより、内部回路においてラツチ
アツプが発生する。
Let us now consider the case where pulse-like noise having a positive value is applied to the V CC terminal 1 in a manner superimposed on the V CC voltage level. Note that here we will only consider the latch-up that occurs in the internal circuit. When a noise voltage is superimposed and applied to the V CC terminal 1, the applied noise voltage may be caused by a voltage drop due to the N-type diffused resistor 3, a breakdown of the reverse biased parasitic diode 6, or a breakdown of the peripheral power supply line 2 or internal Unless sufficient absorption is achieved by the resistance and capacitance components associated with the power supply line 5, latch-up will occur in the internal circuit due to carriers injected from the internal power supply line 5 into the well or substrate.

そしてVCC端子1に印加された例えば正の値を
もつノイズ電圧を十分に吸収する方法としては、
まずN型拡散抵抗3の抵抗値を十分に大きくする
ことが考えられるが、この方法では内部回路の電
源インピーダンスの抵抗成分が増大し、主に内部
回路の動作スピードが制限されることになる。
For example, as a method to sufficiently absorb noise voltage having a positive value applied to V CC terminal 1,
First, it is possible to make the resistance value of the N-type diffused resistor 3 sufficiently large, but this method increases the resistance component of the power source impedance of the internal circuit, which mainly limits the operating speed of the internal circuit.

また逆バイアスされた寄生ダイオード6のブレ
ークダウン電圧を低くすることができれば、寄生
ダイオード6のブレークダウン動作により外部か
らVCC端子1に印加されたノイズを軽減すること
ができるが、一般的に寄生ダイオード6のブレー
クダウン電圧は製造プロセスによつて決まり、こ
れをあまり低くすると半導体集積回路全体の動作
電圧の上限を制限してしまうことになる。またこ
のブレークダウンを起こさせるほどの例えば正の
値をもつノイズ電圧が印加された場合には、その
基板との接合部からキヤリアが注入され、それが
さらにラツチアツプの原因となつてしまうことが
ある。
Furthermore, if the breakdown voltage of the reverse-biased parasitic diode 6 can be lowered, the noise applied from the outside to the V CC terminal 1 can be reduced by the breakdown operation of the parasitic diode 6. The breakdown voltage of the diode 6 is determined by the manufacturing process, and if it is set too low, the upper limit of the operating voltage of the entire semiconductor integrated circuit will be restricted. Additionally, if a noise voltage with a positive value is applied that is sufficient to cause this breakdown, carriers may be injected from the junction with the substrate, which may further cause latch-up. .

またVCC端子1に印加されたノイズ電圧を吸収
する成分としては、周辺電源ライン2に付随する
容量があるが、給電ライン4をVCC端子1の近く
からとるような場合には、周辺電源ライン2が有
限な抵抗値を持つため周辺電源ライン2自体のイ
ンピーダンスによるフイルタ効果を十分に利用す
ることができず、ラツチアツプ対策としての効果
は薄い。つまりN型拡散抵抗3に印加されるノイ
ズの電圧値はVCC端子1のそれに比べ十分に低く
なることはなく、周辺電源ライン2に付随するイ
ンピーダンス等によつてVCC端子1に印加された
ノイズ電圧が吸収される前に、該ノイズ電圧がN
型拡散抵抗3に印加されてしまい、そのためN型
拡散抵抗3の出力側に接続された内部電源ライン
5の電位が変動し、ラツチアツプ電圧が十分に改
善されることはなかつた。
Also, as a component that absorbs the noise voltage applied to the V CC terminal 1, there is a capacitance attached to the peripheral power supply line 2, but when the power supply line 4 is taken from near the V CC terminal 1, the peripheral power supply Since the line 2 has a finite resistance value, the filter effect due to the impedance of the peripheral power supply line 2 itself cannot be fully utilized, and the effect as a countermeasure against latchup is weak. In other words, the voltage value of the noise applied to the N-type diffused resistor 3 will not be sufficiently lower than that of the V CC terminal 1, and the voltage value of the noise applied to the V CC terminal 1 will not be sufficiently lower than that of the V CC terminal 1 due to the impedance attached to the peripheral power supply line 2. Before the noise voltage is absorbed, the noise voltage becomes N
Therefore, the potential of the internal power supply line 5 connected to the output side of the N-type diffused resistor 3 fluctuated, and the latch-up voltage was not sufficiently improved.

また内部回路におけるラツチアツプを起こりに
くくして電源端子より見たラツチアツプ電圧を改
善するもう1つの方法としては、上述のようにソ
ース電位をウエルもしくは基板を介して供給する
方法がある。この場合、P型基板N型ウエル方式
の回路ではNチヤネルMOSFETのソース電位を
基板より供給することが一般的であり、これは相
補型半導体集積回路の製造プロセスによつて生じ
る寄生トランジスタのうちラテラル方向に存在す
るNPNトランジスタのエミツタに、抵抗を付加
したことと等価であり、これによりNPNトラン
ジスタを能動状態になりにくくすることにより、
ラツチアツプを発生させにくくするものである。
しかるにこの方式では、電源端子から見た内部回
路のラツチアツプ電圧は改善できるが、回路の動
作スピードが低下したり、回路の伝搬特性が急峻
でなくなるために誤動作を招き易くなつたりする
といつた欠点があつた。
Another method for making latch-up less likely to occur in the internal circuit and improving the latch-up voltage seen from the power supply terminal is to supply the source potential through the well or substrate as described above. In this case, in P-type substrate N-well type circuits, the source potential of the N-channel MOSFET is generally supplied from the substrate, and this is because the lateral This is equivalent to adding a resistor to the emitter of the NPN transistor that exists in the direction, and by making it difficult for the NPN transistor to become active,
This prevents latch-up from occurring.
However, although this method can improve the latch-up voltage of the internal circuit as seen from the power supply terminal, it has drawbacks such as a reduction in the operating speed of the circuit and a tendency to cause malfunctions because the circuit propagation characteristics are no longer steep. It was hot.

〔発明の概要〕[Summary of the invention]

本発明は以上の点に鑑みてなされたもので、相
補型半導体集積回路内において、周辺電源系の電
圧を内部電源系によつて内部回路に給電するよう
にするとともに、上記周辺電源系の電圧をそのノ
イズ電圧を積極的に減衰させて上記内部電源系に
供給する減衰手段を設けることにより、内部回路
におけるラツチアツプの発生を抑制できる相補型
半導体集積回路を提供することを目的としてい
る。
The present invention has been made in view of the above points, and is configured to supply power from the peripheral power supply system to the internal circuitry by the internal power supply system in a complementary semiconductor integrated circuit, and to supply power to the internal circuit by the internal power supply system. It is an object of the present invention to provide a complementary semiconductor integrated circuit which can suppress the occurrence of latch-up in an internal circuit by providing attenuation means for actively attenuating the noise voltage and supplying the noise voltage to the internal power supply system.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の実施例を図について説明する。 Embodiments of the present invention will be described below with reference to the drawings.

第2図は本発明の一実施例による相補型半導体
集積回路を示し、これはP型基板N型ウエル構造
を持つ相補型半導体集積回路に適用した例であ
り、又その基板は該相補型半導体集積回路の
GNDラインと電気的に接続されているものとす
る。図において、第1図と同一符号は同図と同一
のものを示し、7はNチヤネルMOSFETで、そ
のドレインは電気的にVCC端子1に接続され、そ
のソースは該相補型半導体集積回路のGNDライ
ンに接続され、又そのゲートは電気的に自らのソ
ースに接続されている。8は周辺電源ライン2と
内部電源ライン5とを電気的に接続する抵抗成分
である。9はそのドレインが抵抗成分8の内部電
源ライン5側に電気的に接続されたNチヤネル
MOSFETであり、これは上記Nチヤネル
MOSFET7と同様に、そのソースが電気的に
GNDラインに接続され、又そのゲートが電気的
に自らのソースに接続されている。
FIG. 2 shows a complementary semiconductor integrated circuit according to an embodiment of the present invention, and this is an example applied to a complementary semiconductor integrated circuit having a P-type substrate and an N-type well structure, and the substrate is a complementary semiconductor integrated circuit. integrated circuit
Assume that it is electrically connected to the GND line. In the figure, the same reference numerals as in FIG. 1 indicate the same elements as in the same figure, and 7 is an N-channel MOSFET, the drain of which is electrically connected to V CC terminal 1, and the source of the complementary semiconductor integrated circuit. It is connected to the GND line, and its gate is electrically connected to its source. Reference numeral 8 denotes a resistance component that electrically connects the peripheral power supply line 2 and the internal power supply line 5. 9 is an N channel whose drain is electrically connected to the internal power supply line 5 side of the resistance component 8.
MOSFET, which is the N channel mentioned above.
Similar to MOSFET7, its source is electrically
It is connected to the GND line, and its gate is electrically connected to its source.

次に動作について説明する。 Next, the operation will be explained.

本回路においては、4通りの手段によりノイズ
を減衰させるようになつている。
In this circuit, noise is attenuated using four methods.

即ち、第2図において、ノイズを減衰させる働
きをもつ第1の回路は、NチヤネルMOSFET7
であり、これは主に該相補型半導体集積回路の
VCC端子1に外部から印加されるノイズ電圧を減
衰させるものである。即ち、VCC端子1に正の値
をもつノイズ電圧が印加され、Nチヤネル
MOSFET7において、そのドレイン・ソース間
の電圧がそのブレークダウン電圧以上になつた場
合には該NチヤネルMOSFET7はブレークダウ
ンし、これにより周辺電源ライン2に乗つたノイ
ズ電圧は減衰される。
That is, in FIG. 2, the first circuit that functions to attenuate noise is the N-channel MOSFET 7.
This is mainly due to the complementary semiconductor integrated circuit.
This is to attenuate the noise voltage applied to the V CC terminal 1 from the outside. That is, a noise voltage with a positive value is applied to V CC terminal 1, and the N channel
In MOSFET 7, when the voltage between its drain and source exceeds its breakdown voltage, N-channel MOSFET 7 breaks down, thereby attenuating the noise voltage on peripheral power supply line 2.

ここでこの働きをさせるために第1図に示した
N型拡散抵抗3を用いない理由は、Nチヤネル
MOSFET7のゲート長を短くすることにより、
そのブレークダウン電圧をN型拡散抵抗3におけ
る寄生ダイオード6を利用したブレークダウン電
圧よりも低くすることができることにある。また
ブレークダウン時のNチヤネルMOSFET7のイ
ンピーダンスはこれを低くすることが望ましい
が、そのためにはNチヤネルMOSFET7のゲー
ト幅を長くすればよく、このことにより副次的に
より大きな主にドレイン・ゲート間容量を周辺電
源ライン2に付加することができる。
The reason why the N-type diffused resistor 3 shown in FIG. 1 is not used to perform this function is that the N-channel
By shortening the gate length of MOSFET7,
The reason is that the breakdown voltage can be made lower than the breakdown voltage using the parasitic diode 6 in the N-type diffused resistor 3. Also, it is desirable to lower the impedance of the N-channel MOSFET 7 during breakdown, but to do so, the gate width of the N-channel MOSFET 7 can be made longer, and this will result in a larger drain-to-gate capacitance. can be added to the peripheral power supply line 2.

一方、VCC端子1に相補型半導体集積回路の
GND電位に対して負の値をもつノイズ電圧が印
加され、その値がNチヤネルMOSFET7を導通
させるのに十分な値に達すると、Nチヤネル
MOSFET7は導通し、VCC端子1に印加された
ノイズ電圧は減衰される。この時、Nチヤネル
MOSFET7は通常のMOSトランジスタの働きを
するため、短時間で導通状態となる。Nチヤネル
MOSFET7はこのようにVCC端子7に印加され
るノイズ電圧を吸収させる目的で付加されたもの
であるため、VCC端子1から見てインピーダンス
が小さい位置に付加することが望ましい。
On the other hand, a complementary semiconductor integrated circuit is connected to V CC terminal 1.
When a noise voltage having a negative value with respect to the GND potential is applied and its value reaches a value sufficient to make the N-channel MOSFET 7 conductive, the N-channel MOSFET 7 becomes conductive.
MOSFET 7 becomes conductive, and the noise voltage applied to V CC terminal 1 is attenuated. At this time, N channel
Since MOSFET 7 functions as a normal MOS transistor, it becomes conductive in a short time. N channel
Since the MOSFET 7 is added for the purpose of absorbing the noise voltage applied to the V CC terminal 7 in this way, it is desirable to add it at a position where the impedance is small when viewed from the V CC terminal 1.

また第2図において、VCC端子1に印加された
ノイズを減衰させる働きをもつ第2の回路は、周
辺電源ライン2にある。即ち、周辺電源ライン2
には一般的に出力バツフア、入出力バツフアある
いは入力保護ダイオードといつた大きなN型のウ
エルを持つた回路が接続され、必然的にそのウエ
ルと基板間の容量が周辺電源ライン2に付加され
ることになる。また一般的に周辺電源ライン2は
アルミニウム等を主体とする低抵抗の金属配線に
より作られ、それ自体有限な抵抗値をもつ。そこ
で抵抗成分8と周辺電源ライン2との接続箇所を
VCC端子1から見てインピーダンスが大きくなる
箇所に定めることにより、周辺電源ライン2自体
の持つ抵抗と容量とからなるフイルタ回路を構成
することができる。
Further, in FIG. 2, a second circuit having the function of attenuating the noise applied to the V CC terminal 1 is located on the peripheral power supply line 2. That is, peripheral power line 2
Generally, circuits with large N-type wells such as output buffers, input/output buffers, or input protection diodes are connected to the circuit, and the capacitance between the well and the board is inevitably added to the peripheral power supply line 2. It turns out. Further, the peripheral power supply line 2 is generally made of a low-resistance metal wiring mainly made of aluminum or the like, and has a finite resistance value itself. Therefore, the connection point between the resistance component 8 and the peripheral power supply line 2 is
By setting it at a location where the impedance is large when viewed from the V CC terminal 1, a filter circuit consisting of the resistance and capacitance of the peripheral power supply line 2 itself can be constructed.

さらに第2図において、ノイズを減衰させる働
きをもつ第3の回路は、抵抗成分8である。即
ち、抵抗成分8は、周辺電源ライン2に乗つたノ
イズ成分をその電圧降下によつて減衰させる働き
をもつものである。一般的に周辺電源ライン2の
もつ容量成分は大きいが、抵抗成分が小さいた
め、抵抗成分8はこれを補足する働きをさせるも
のである。抵抗成分8を構成する方法としては、
例えばポリシリコンやN型拡散等を用いることが
できる。ポリシリコンの場合には、例えばN型拡
散による抵抗を用いた場合のようなそれ自身のブ
レークダウンによるキヤリアの注入は起こらな
い。また例えばN型拡散のように拡散により抵抗
成分を構成した場合には接合部分の接合容量を更
に付加することができる。
Furthermore, in FIG. 2, the third circuit having the function of attenuating noise is the resistive component 8. That is, the resistance component 8 has the function of attenuating the noise component riding on the peripheral power supply line 2 by its voltage drop. Generally, the peripheral power supply line 2 has a large capacitance component, but a small resistance component, so the resistance component 8 serves to supplement this. As a method of configuring the resistance component 8,
For example, polysilicon, N-type diffusion, etc. can be used. In the case of polysilicon, carrier injection due to its own breakdown does not occur, as occurs, for example, with N-type diffused resistors. Furthermore, when the resistance component is formed by diffusion, such as N-type diffusion, it is possible to further add junction capacitance to the junction portion.

またさらに第2図において、ノイズを減衰させ
る働きをもつ第4の回路は、Nチヤネル
MOSFET9である。このNチヤネルMOSFET
9の第1の働きは、そのドレイン・ゲート間の容
量により、抵抗成分8とともに主として抵抗と容
量とによるフイルタを構成することである。Nチ
ヤネルMOSFET9の第2の働きは、該相補型半
導体集積回路に外部から印加されるノイズがVCC
端子1からだけではなく、例えば出力端子、入出
力端子あるいは入力端子からも入つてくるため
に、例えば抵抗成分8に近い周辺電源ライン2
に、上記端子に印加されたノイズが乗つてくるこ
とがあり、これをNチヤネルMOSFET7と同様
の動作によつて減衰させることである。
Furthermore, in FIG. 2, the fourth circuit that functions to attenuate noise is an N-channel
It is MOSFET9. This N-channel MOSFET
The first function of element 9 is to configure a filter mainly consisting of resistance and capacitance together with resistance component 8 due to its drain-gate capacitance. The second function of the N-channel MOSFET 9 is to prevent noise applied externally to the complementary semiconductor integrated circuit from V CC
For example, the peripheral power supply line 2 near the resistance component 8 comes in not only from the terminal 1 but also from the output terminal, input/output terminal, or input terminal.
In addition, the noise applied to the above-mentioned terminal may be added to the MOSFET 7, and this is attenuated by the same operation as the N-channel MOSFET 7.

以上の回路により、主として電源端子1に印加
されたノイズ電圧に起因する周辺電源ライン2の
電位変動は内部電源ライン5では十分に減衰さ
れ、従つて電源端子のラツチアツプ電圧は十分改
善されることとなる。
With the above circuit, potential fluctuations on the peripheral power line 2 caused mainly by noise voltage applied to the power supply terminal 1 are sufficiently attenuated in the internal power supply line 5, and therefore the latch-up voltage at the power supply terminal is sufficiently improved. Become.

以上のような本回路では、相補型半導体集積回
路自体が持つ抵抗や容量成分を活用し、かつノイ
ズを減衰させる回路を付加したので、相補型半導
体集積回路においてVCC端子に印加されるノイズ
に起因するラツチアツプ電圧を改善させることが
できる。
In this circuit as described above, the resistance and capacitance components of the complementary semiconductor integrated circuit itself are utilized, and a circuit for attenuating noise is added, so that the noise applied to the V CC pin in the complementary semiconductor integrated circuit is reduced. The resulting latch-up voltage can be improved.

また本回路では、ラツチアツプの発生を抑制す
るために、内部電源ラインに乗るノイズを減衰す
るようにしたので、内部回路において例えばソー
ス電位をウエルまたは基板から供給するといつた
ような、内部回路の特性を悪化させるラツチアツ
プ対策をとらなくてもよいことになる。
In addition, in this circuit, in order to suppress the occurrence of latch-up, the noise on the internal power supply line is attenuated. This means that there is no need to take measures against latch-up, which worsens the situation.

なお上記実施例ではP型基板Nウエル方式の回
路について述べたが、本発明は例えばN型基板P
ウエル方式などのいかなる相補型半導体集積回路
にも用いることができる。
In the above embodiment, a P-type substrate N-well type circuit was described, but the present invention is applicable to, for example, an N-type substrate P.
It can be used in any complementary semiconductor integrated circuit such as a well type semiconductor integrated circuit.

また上記実施例では4通りの手段の組合せによ
り、主にVCC端子に加わるノイズに起因するラツ
チアツプ電圧を改善する方法を示したが、本発明
はこの全ての手段を使う必要はなく、任意の組合
せで実施することも可能であり、従つて抵抗成分
8を用いない場合も当然本発明に含まれる。
Furthermore, in the above embodiment, a method of improving the latch-up voltage mainly caused by noise applied to the V CC terminal was shown by combining four methods, but the present invention does not require the use of all of these methods, and any combination of four methods can be used. It is also possible to implement it in combination, and therefore, the present invention naturally includes the case where the resistance component 8 is not used.

また上記実施例では周辺電源ラインのもつ抵抗
成分と容量成分とを利用したが、新たに例えば容
量成分を付加するために容量負荷を作つてもよ
い。また上記実施例では周辺電源ラインを利用し
たが、新たにこれに相当する抵抗または容量成分
をもつ回路を付加してもよい。
Further, in the above embodiment, the resistance component and capacitance component of the peripheral power supply line are used, but a capacitance load may be created to add a new capacitance component, for example. Furthermore, although the peripheral power supply line is used in the above embodiment, a new circuit having a corresponding resistance or capacitance component may be added.

さらに上記実施例ではNチヤネルMOSFET7
を1つだけ付加したが、これは周辺電源ライン上
に1つ以上付加してもよい。また上記実施例では
NチヤネルMOSFET9を1つだけ付加したが、
これは内部電源ライン上に1つ以上付加してもよ
い。
Furthermore, in the above embodiment, N-channel MOSFET 7
Although only one is added to the peripheral power supply line, one or more may be added to the peripheral power supply line. In addition, in the above embodiment, only one N-channel MOSFET 9 was added, but
One or more of these may be added on the internal power supply line.

〔発明の効果〕〔Effect of the invention〕

以上のように、本発明に係る相補型半導体集積
回路によれば、周辺電源系からの電圧を内部回路
に給電するように内部電源系を設け、峰周辺電源
系の電圧をそのノイズ電圧を積極的に減衰させて
内部電源系に供給する減衰手段を設けるようにし
たので、内部回路におけるラツチアツプの発生を
十分に防止できる効果がある。
As described above, according to the complementary semiconductor integrated circuit according to the present invention, the internal power supply system is provided to feed the voltage from the peripheral power supply system to the internal circuit, and the voltage of the peak peripheral power supply system is actively reduced by the noise voltage. Since the attenuation means is provided to attenuate the power and supply it to the internal power supply system, it is possible to sufficiently prevent the occurrence of latch-up in the internal circuit.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の相補型半導体集積回路の構成
図、第2図は本発明の一実施例による相補型半導
体集積回路の構成図である。 1……VCC端子(電源端子)、2……周辺電源
ライン(周辺電源系)、5……内部電源ライン
(内部電源系)、7……NチヤネルMOSFET、8
……抵抗成分、9……NチヤネルMOSFET。な
お図中同一符号は同一又は相当部分を示す。
FIG. 1 is a block diagram of a conventional complementary semiconductor integrated circuit, and FIG. 2 is a block diagram of a complementary semiconductor integrated circuit according to an embodiment of the present invention. 1...V CC terminal (power supply terminal), 2...Peripheral power supply line (peripheral power supply system), 5...Internal power supply line (internal power supply system), 7...N-channel MOSFET, 8
...Resistance component, 9...N-channel MOSFET. Note that the same reference numerals in the figures indicate the same or equivalent parts.

Claims (1)

【特許請求の範囲】 1 内部回路と周辺回路とからなる相補型半導体
集積回路において、外部から電源端子に印加され
た電圧を上記周辺回路に給電する周辺電源系と、
該周辺電源系の電圧を上記内部回路に給電する内
部電源系と、上記周辺電源系の電圧をその電圧変
動を減衰させて上記内部電源系に供給する減衰手
段とを備えたことを特徴とする相補型半導体集積
回路。 2 上記減衰手段は、上記周辺電源系とその帰線
間に電気的に接続された通常カツトオフ状態であ
るMOSFETであることを特徴とする特許請求の
範囲第1項記載の相補型半導体集積回路。 3 上記減衰手段は、上記電源端子から見て上記
周辺電源系のインピーダンスが高くなる箇所に設
けられた抵抗成分であることを特徴とする特許請
求の範囲第1項記載の相補型半導体集積回路。 4 上記減衰手段は、上記内部電源系と帰線間に
電気的に接続された通常カツトオフ状態である
MOSFETであることを特徴とする特許請求の範
囲第1項記載の相補型半導体集積回路。
[Scope of Claims] 1. In a complementary semiconductor integrated circuit comprising an internal circuit and a peripheral circuit, a peripheral power supply system that supplies voltage applied to a power supply terminal from the outside to the peripheral circuit;
The device is characterized by comprising: an internal power supply system that supplies the voltage of the peripheral power supply system to the internal circuit; and attenuation means that attenuates voltage fluctuations in the voltage of the peripheral power supply system and supplies the voltage to the internal power supply system. Complementary semiconductor integrated circuit. 2. The complementary semiconductor integrated circuit according to claim 1, wherein the attenuation means is a normally cut-off MOSFET electrically connected between the peripheral power supply system and its return line. 3. The complementary semiconductor integrated circuit according to claim 1, wherein the attenuation means is a resistance component provided at a location where the impedance of the peripheral power supply system becomes high when viewed from the power supply terminal. 4 The attenuation means is electrically connected between the internal power supply system and the return line and is in a normally cut-off state.
The complementary semiconductor integrated circuit according to claim 1, which is a MOSFET.
JP59086829A 1984-04-27 1984-04-27 Complementary type semiconductor integrated circuit Granted JPS60231355A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59086829A JPS60231355A (en) 1984-04-27 1984-04-27 Complementary type semiconductor integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59086829A JPS60231355A (en) 1984-04-27 1984-04-27 Complementary type semiconductor integrated circuit

Publications (2)

Publication Number Publication Date
JPS60231355A JPS60231355A (en) 1985-11-16
JPH0144022B2 true JPH0144022B2 (en) 1989-09-25

Family

ID=13897698

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59086829A Granted JPS60231355A (en) 1984-04-27 1984-04-27 Complementary type semiconductor integrated circuit

Country Status (1)

Country Link
JP (1) JPS60231355A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1217104B (en) * 1987-03-03 1990-03-14 Sgs Microelettronica Spa TWO-POWER CMOS INTEGRATED CIRCUIT WITH AN INTEGRATED MOS TRANSISTOR FOR PROTECTION AGAINST THE <<LATCH-UP>>.
JP2615767B2 (en) * 1988-03-02 1997-06-04 富士通株式会社 Semiconductor storage device
JPH01169049U (en) * 1988-05-18 1989-11-29
JP2608944B2 (en) * 1988-12-12 1997-05-14 株式会社日立製作所 Integrated multiple signal processing circuit
JPH08288462A (en) * 1995-04-14 1996-11-01 Mitsubishi Electric Corp Semiconductor integrated circuit device
DE69521041T2 (en) * 1995-08-02 2001-11-22 St Microelectronics Srl Flash EEPROM with integrated arrangement to limit the deletion of the source voltage
WO2004053886A1 (en) * 2002-12-12 2004-06-24 Koninklijke Philips Electronics N.V. One-time programmable memory device

Also Published As

Publication number Publication date
JPS60231355A (en) 1985-11-16

Similar Documents

Publication Publication Date Title
US7924539B2 (en) Semiconductor integrated circuit
TWI485834B (en) Combination esd protection circuits and methods
EP0782192B1 (en) Electrostatic discharge structure of semiconductor device
US20040195629A1 (en) Electrostatic discharge protection circuit coupled on I/O pad
JPH0653407A (en) Static-electricity discharge protective circuit for integrated circuit
IE52929B1 (en) Inpit protection circuit for an mis transistor
KR100738153B1 (en) System and method for electrostatic discharge protection using lateral pnp or pmos or both for substrate biasing
US7323752B2 (en) ESD protection circuit with floating diffusion regions
US5036215A (en) Pass gate multiplexer receiver circuit
KR0166509B1 (en) Electrostatic protection circuit
JPH0144022B2 (en)
US5760447A (en) Semiconductor device having pull-up or pull-down resistance
US5521415A (en) Semiconductor device having a circuit for protecting the device from electrostatic discharge
US6218881B1 (en) Semiconductor integrated circuit device
US7408209B2 (en) Semiconductor device with noise control
JP4892143B2 (en) Semiconductor device
JPH044755B2 (en)
US5499152A (en) Protection circuit
JPS6143468A (en) Protective circuit
KR100240274B1 (en) Input protection circuit for semiconductor memory material
KR100245089B1 (en) Semiconductor circuit for preventing the latch up
KR100333688B1 (en) Semiconductor device having diode between input pad and esd protection circuit
JPH08111506A (en) Semiconductor device
JPH0945853A (en) Semiconductor device
JP2538621B2 (en) CMOS type integrated circuit device

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term