JPH0143770B2 - - Google Patents

Info

Publication number
JPH0143770B2
JPH0143770B2 JP5843181A JP5843181A JPH0143770B2 JP H0143770 B2 JPH0143770 B2 JP H0143770B2 JP 5843181 A JP5843181 A JP 5843181A JP 5843181 A JP5843181 A JP 5843181A JP H0143770 B2 JPH0143770 B2 JP H0143770B2
Authority
JP
Japan
Prior art keywords
weight
epoxy resin
parts
acid anhydride
equivalent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP5843181A
Other languages
Japanese (ja)
Other versions
JPS57174314A (en
Inventor
Hideo Watanabe
Tsutomu Kobayashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokohama Rubber Co Ltd
Original Assignee
Yokohama Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokohama Rubber Co Ltd filed Critical Yokohama Rubber Co Ltd
Priority to JP5843181A priority Critical patent/JPS57174314A/en
Publication of JPS57174314A publication Critical patent/JPS57174314A/en
Publication of JPH0143770B2 publication Critical patent/JPH0143770B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Epoxy Resins (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、硬化した場合に高強度、高弾性率を
有する硬化物が得られると共に比較的大型の含
浸・注型品や浮力材等複合材用のエポキシ樹脂組
成物に関する。 従来、エポキシ樹脂で注型品や含浸成型品を製
造するに際して液状のエポキシ樹脂と硬化剤とを
組み合せて用いており、この場合、得られる製品
の強度・弾性率をともに向上させるためにエポキ
シ樹脂として多官能エポキシ樹脂等のエポキシ当
量の小さい樹脂を用いるか又は硬化剤として多官
能の酸無水物や水酸基含有化合物などを使用して
いる。多官能の水酸基含有化合物のエポキシ樹脂
硬化剤としての利用例としては、フエノール樹
脂、ポリ−p−ビニルフエノール(丸善石油、レ
ジンM)、ビスフエノールAなどが公知であるが、
これらをエポキシ樹脂に配合した場合、得られる
配合物が高粘度のものであるので、含浸・注型等
を行なうに際して作業性が良好でなく、また、得
られる製品も高強度、高弾性率のものではない。
さらに、ビスフエノールAやFタイプのエポキシ
樹脂のアミン硬化の促進剤としてレゾルシンを用
いる場合もあるが(Adhesive Age、April、
1967、第20〜27頁)、この場合に得られる製品も
また高強度、高弾性率のものではない。 本発明は、このような事情にかんがみてなされ
たものであつて、作業性が良くて含浸・注型等に
適すると共に高強度、高弾性率の製品を得ること
ができるエポキシ樹脂組成物を提供することを目
的とする。 このため、本発明のエポキシ樹脂組成物は、脂
環式エポキシ樹脂、ジヒドロキシベンゼン類、お
よび酸無水物から成り、 R=B+C/A f=C/B+C×100 (上記式中、A:エポキシ樹脂の重量部で表わし
た配合量/エポキシ当量、B:酸無水物の重量部
で表わした配合量/酸無水物当量、C:ジヒドロ
キシベンゼン類の重量部で表わした配合量/ジヒ
ドロキシベンゼンの水酸基当量)の場合に、0.7
≦R≦1.5および50≦f≦100であることを特徴と
する。 本発明におけるエポキシ当量、酸無水物当量お
よび水酸基当量は下記の通りである。 エポキシ当量:エポキシ基1個当りの分子量。た
とえば、下記(1)に示す3,4−エポキシシクロ
ヘキシルメチル−(3,4−エポキシ)シクロ
ヘキシサンカルボキシレート(分子量252)の
場合、エポキシ当量は126である。 酸無水物当量:酸無水物基1個当りの分子量。例
えば、無水メチルナジツク酸の場合178である。 水酸基当量:水酸基1個当りの分子量。例えば、
ハイドロキノンの場合55である。 以下、本発明の構成について詳しく説明する。 本発明において用いる脂環式エポキシ樹脂は、
内部エポキサイドを有するエポキシ樹脂であつ
て、特に限定されるものではないが常温で液状の
ものであり、例えば、下記のものから構成され
る。 (1) CY−179(CIBA) ERL−4221(UCC) 3,4−エポキシシクロヘキシルメチル−
(3,4−エポキシ)シクロヘキサンカルボキ
シレート (2) ERL−4229(UCC) ビス(3,4−エポキシシクロヘキシルメチ
ル)アジペート (3) CY−175(CIBA) ERL−4234(UCC) ジシクロアリフアテイツクジエーテルジエポ
キシド (4) ERL−4206(UCC) ビニルシクロヘキセンジオキサイド また、本発明において用いるジヒドロキシベン
ゼン類は、下記式、 を有する化合物であつて(式中、R1、R2は同一
又は異なる基で、H、炭素数1〜3のアルキル
基、Clを表わす)、例えば、下記のようなジヒド
ロキシベンゼンおよびその誘導体である。 (1) ジヒドロキシベンゼン: (2) 誘導体: 上記ジヒドロキシベンゼンのメチル、エチ
ル、プロピル、およびクロル化合物である。 さらに、本発明において用いる酸無水物は、特
定されるものではなく、取扱い上の便利さなどを
考慮して常温で液状のものであればよい。この液
状酸無水物としては、例えば、下記のものが挙げ
られる。 (1) 無水メチルナジツク酸 (無水メチルハイミツク酸(日立化成)) (2) メチルヘキサヒドロ無水フタル酸 リカシツドMH−700(新日本理化) エピクロンB−650(大日本インキ) HN−5500(日立化成) (3) メチルテトラヒドロ無水フタル酸 HN−2200(日立化成) エピクロンB−570(大日本インキ) (4) この他、固形の酸無水物をブレンドして混融
した液状物がある。 本発明のエポキシ樹脂組成物は、上述した脂環
式エポキシ樹脂、ジヒドロキシベンゼン類、およ
び酸無水物から成るもので、 R=B+C/A f=C/B+C×100 の場合に、0.7≦R≦1.5(好ましくは0.9<R<
1.2)および50≦f≦100の値を有する。Aはエポ
キシ樹脂の重量部で表わした配合量/エポキシ当
量、Bは酸無水物の重量部で表わした配合量/酸
無水物当量、Cはジヒドロキシベンゼン類の重量
部で表わした配合量/ジヒドロキシベンゼンの水
酸基当量を夫々表わす。 上記式において、Rが0.7より小さければ未反
応のエポキシ基が多く残り、これが可塑剤として
作用して強度・弾性率ともに低いものしか得られ
ず、一方、1.5より大であれば未反応の硬化剤が
残り、弾性率は高くても強度の極めて低い、もろ
い硬化物となり、物性的によい製品を最終的に得
るのが困難となる。また、fについては、f=
100(すなわちB=0の場合、換言すれば酸無水物
を使用しない場合である)の場合が物性的には良
いものが得られるが、一般にはジヒドロキシベン
ゼン類は常温で固体であるためにこれをエポキシ
樹脂に溶解すると粘度が高くなり、作業性がわる
くなる。そこで、本発明においては、この作業性
を改善するために酸無水物を併用することが好ま
しい。なお、fが50よりも小さいとジヒドロキシ
ベンゼンの使用の効果(すなわち、高強度、高弾
性率)はあまり期待できない。このため、本発明
においては、50≦f≦100としたのである。なお、
f=100を含めたのは、最も高い強度、弾性率が
得られるからである。 本発明のエポキシ樹脂組成物は、上記のように
して成るものであるが、この組成物は必要に応じ
て第3アミン等の促進剤を包含していてもよい。
なお、この促進剤は、例えば、下記のものであ
る。 (1) 第3アミン (イ) トリエタノールアミン N(CH2−CH2−OH)3 (ロ) ベンジルジメチルアミン (ハ) 2,4,6−トリス(ジメチルアミノメチ
ル)フエノール(DMP−30) (2) イミダゾール エチルメチルイミダゾール 以下に実施例を例示して本発明をさらに具体的
に説明する。 実施例 1 脂環式エポキシ樹脂としてのERL−4221
(UCC)100重量部(A=0.79)に対して11〜16
(C=0.2〜1.2)重量部のレゾルシンを加熱溶解
後、冷却し、0〜107(B=0〜0.6)重量部の無
水メチルハイミツク酸(日立化成)を加えた。R
=0.5〜1.5、f=50〜100であつた。これに、促
進剤としてトリエタノールアミンを0.5phr添加し
て配合物を作成し、これを120℃、16時間+180
℃、16時間で硬化させ、この硬化物をASTM−
D−695に準拠して圧縮強度、弾性率を測定した。
その結果を下記第1表および第1図、第2図、第
3図および第4図に黒丸印で示す。 実施例 2 実施例1におけるジヒドロキシベンゼンとして
のレゾルシンの代りにハイドロキノン、クロルレ
ゾルシン、ジクロルレゾルシンを夫々36、47.1、
58.6(Cは夫々0.65)重量部用い(R=1.1、f=
75)、実施例1と同様な方法でテストした結果を
下記表−1に示す。
The present invention relates to an epoxy resin composition which, when cured, yields a cured product having high strength and high modulus of elasticity, and which is used for relatively large impregnated and cast products and composite materials such as buoyancy materials. Conventionally, when producing cast or impregnated molded products using epoxy resin, a combination of liquid epoxy resin and a curing agent has been used. As the curing agent, a resin having a small epoxy equivalent such as a polyfunctional epoxy resin is used, or as a curing agent, a polyfunctional acid anhydride or a compound containing a hydroxyl group is used. As examples of the use of polyfunctional hydroxyl group-containing compounds as epoxy resin curing agents, phenol resin, poly-p-vinylphenol (Maruzen Sekiyu, Resin M), bisphenol A, etc. are known.
When these are blended into epoxy resins, the resulting mixture has a high viscosity, resulting in poor workability during impregnation, casting, etc., and the resulting products also have high strength and high elastic modulus. It's not a thing.
Furthermore, resorcinol is sometimes used as an amine curing accelerator for bisphenol A and F type epoxy resins (Adhesive Age, April,
1967, pp. 20-27), the products obtained in this case are also not of high strength and high modulus. The present invention has been made in view of these circumstances, and provides an epoxy resin composition that has good workability and is suitable for impregnation, casting, etc., and can yield products with high strength and high elastic modulus. The purpose is to Therefore, the epoxy resin composition of the present invention consists of an alicyclic epoxy resin, dihydroxybenzenes, and an acid anhydride, and R=B+C/A f=C/B+C×100 (in the above formula, A: epoxy resin Amount expressed in parts by weight/Epoxy equivalent, B: Amount expressed in parts by weight of acid anhydride/Acid anhydride equivalent, C: Amount expressed in parts by weight of dihydroxybenzenes/Equivalent of hydroxyl group of dihydroxybenzene ), then 0.7
It is characterized in that ≦R≦1.5 and 50≦f≦100. The epoxy equivalent, acid anhydride equivalent, and hydroxyl equivalent in the present invention are as follows. Epoxy equivalent: molecular weight per epoxy group. For example, in the case of 3,4-epoxycyclohexylmethyl-(3,4-epoxy)cyclohexanecarboxylate (molecular weight 252) shown in (1) below, the epoxy equivalent is 126. Acid anhydride equivalent: molecular weight per acid anhydride group. For example, it is 178 for methylnadic anhydride. Hydroxyl group equivalent: Molecular weight per hydroxyl group. for example,
In the case of hydroquinone, it is 55. Hereinafter, the configuration of the present invention will be explained in detail. The alicyclic epoxy resin used in the present invention is
It is an epoxy resin having an internal epoxide, and is liquid at room temperature, although it is not particularly limited, and is composed of, for example, the following. (1) CY−179 (CIBA) ERL−4221 (UCC) 3,4-Epoxycyclohexylmethyl-
(3,4-epoxy)cyclohexanecarboxylate (2) ERL-4229 (UCC) Bis(3,4-epoxycyclohexylmethyl)adipate (3) CY-175 (CIBA) ERL-4234 (UCC) Dicycloaliphatic diether diepoxide (4) ERL-4206 (UCC) Vinyl cyclohexene dioxide Furthermore, the dihydroxybenzenes used in the present invention have the following formula: (wherein R 1 and R 2 are the same or different groups and represent H, an alkyl group having 1 to 3 carbon atoms, Cl), such as the following dihydroxybenzenes and derivatives thereof. be. (1) Dihydroxybenzene: (2) Derivatives: Methyl, ethyl, propyl, and chloro compounds of the above dihydroxybenzene. Further, the acid anhydride used in the present invention is not particularly limited, but may be one that is liquid at room temperature in consideration of convenience in handling. Examples of the liquid acid anhydride include the following. (1) Methyl nadic anhydride (Methyl haimic anhydride (Hitachi Chemical)) (2) Methylhexahydrophthalic anhydride Rikaside MH-700 (New Japan Chemical) Epicron B-650 (Dainippon Ink) HN-5500 (Hitachi Chemical) (3) Methyltetrahydrophthalic anhydride HN-2200 (Hitachi Chemical) Epicron B-570 (Dainippon Ink) (4) In addition, there are liquid products that are made by blending and melting solid acid anhydrides. The epoxy resin composition of the present invention is composed of the above-mentioned alicyclic epoxy resin, dihydroxybenzenes, and acid anhydride, and when R=B+C/A f=C/B+C×100, 0.7≦R≦ 1.5 (preferably 0.9<R<
1.2) and has a value of 50≦f≦100. A is the amount expressed in parts by weight of epoxy resin/epoxy equivalent, B is the amount expressed in parts by weight of acid anhydride/acid anhydride equivalent, and C is the amount expressed in parts by weight of dihydroxybenzenes/dihydroxy. Each represents the hydroxyl equivalent of benzene. In the above formula, if R is smaller than 0.7, many unreacted epoxy groups remain and this acts as a plasticizer, resulting in low strength and elastic modulus.On the other hand, if R is larger than 1.5, unreacted epoxy groups remain. The agent remains, resulting in a brittle cured product with high elastic modulus but extremely low strength, making it difficult to obtain a final product with good physical properties. Also, regarding f, f=
100 (that is, when B = 0, in other words, when no acid anhydride is used), good physical properties can be obtained, but in general, dihydroxybenzenes are solid at room temperature, so this is not possible. When dissolved in epoxy resin, the viscosity becomes high and workability becomes poor. Therefore, in the present invention, it is preferable to use an acid anhydride together in order to improve this workability. Note that if f is smaller than 50, the effects of using dihydroxybenzene (ie, high strength and high elastic modulus) cannot be expected much. Therefore, in the present invention, 50≦f≦100. In addition,
The reason why f=100 was included is that the highest strength and elastic modulus can be obtained. The epoxy resin composition of the present invention is prepared as described above, but this composition may contain an accelerator such as a tertiary amine, if necessary.
In addition, this promoter is, for example, the following. (1) Tertiary amine (a) Triethanolamine N(CH 2 -CH 2 -OH) 3 (b) Benzyldimethylamine (c) 2,4,6-tris(dimethylaminomethyl)phenol (DMP-30) (2) Imidazole Ethylmethylimidazole The present invention will be explained in more detail with reference to Examples below. Example 1 ERL-4221 as a cycloaliphatic epoxy resin
(UCC) 11 to 16 per 100 parts by weight (A = 0.79)
(C=0.2-1.2) parts by weight of resorcin were dissolved by heating, cooled, and 0-107 (B=0-0.6) parts by weight of methyl hymic acid anhydride (Hitachi Chemical) were added. R
= 0.5 to 1.5, and f = 50 to 100. To this, 0.5phr of triethanolamine was added as an accelerator to create a formulation, which was heated at 120℃ for 16 hours + 180 hours.
℃ for 16 hours, and the cured product was ASTM-
Compressive strength and elastic modulus were measured in accordance with D-695.
The results are shown in Table 1 below and in Figures 1, 2, 3, and 4 with black circles. Example 2 In place of resorcinol as dihydroxybenzene in Example 1, hydroquinone, chlorresorcinol, and dichlorresorcinol were used at 36, 47.1, and 47.1, respectively.
58.6 (C is 0.65 each) parts by weight used (R = 1.1, f =
75), the results of testing in the same manner as in Example 1 are shown in Table 1 below.

【表】【table】

【表】 比較例 1 脂環式エポキシ樹脂ERL−4221(UCC)100重
量部(A=0.79)、無水メチルハイミツク酸(日
立化成)127重量部(B=0.71)を用い、かつレ
ゾルシンを用いずに実施例1と同様にして硬化物
を得た(R=0.9、f=0(レゾルシンなし)。 また、ERL−4221(UCC)100重量部(A=
0.79)、無水メチルハイミツク酸44〜126重量部
(B=0.53〜0.71)、レゾルシン10〜13.2重量部
(C=0.18〜0.24)から実施例1と同様にして硬
化物を得た(R=0.9〜1.2、f=25)。これら硬
化物を実施例と同様にして圧縮弾性率および圧縮
強度を測定した。R=0.9、f=0およびR=0.9
〜1.2でf=25の場合の測定結果を第1図、第2
図、第3図および第4図に×印で示す。また、R
=1.7、f=50、100の場合の測定結果は第1図と
第3図に△印で示す。 比較例 2 液状の高強度樹脂の例としてEpikote−152(シ
エン化学、ノボラツク型エポキシ樹脂)100重量
部(A=0.57)に対し、無水メチルナジツク酸
(無水メチルハイミツク酸、日立化成)87重量部
(B=0.49)、トリエタノールアミン0.5重量部の
配合物(R=0.49/0.57=0.86、f=0/0.49=0)は
、 圧縮強度1500Kg/cm2、弾性率43100Kg/cm2のもの
が得られるが、反応が早く発熱も大きいので、大
きいものの成型が出来ない。
[Table] Comparative Example 1 Using 100 parts by weight (A = 0.79) of alicyclic epoxy resin ERL-4221 (UCC), 127 parts by weight (B = 0.71) of methyl hymic anhydride (Hitachi Chemical), and using resorcinol. A cured product was obtained in the same manner as in Example 1 (R = 0.9, f = 0 (no resorcinol). Also, 100 parts by weight of ERL-4221 (UCC) (A =
A cured product was obtained in the same manner as in Example 1 from 0.79), 44 to 126 parts by weight of methyl hymic anhydride (B = 0.53 to 0.71), and 10 to 13.2 parts by weight of resorcinol (C = 0.18 to 0.24) (R = 0.9-1.2, f=25). The compressive elastic modulus and compressive strength of these cured products were measured in the same manner as in the examples. R=0.9, f=0 and R=0.9
~1.2 and f=25 measurement results are shown in Figures 1 and 2.
It is indicated by an x mark in the figures, FIGS. 3 and 4. Also, R
The measurement results for f = 1.7, f = 50, and 100 are shown in Figs. 1 and 3 with △ marks. Comparative Example 2 As an example of liquid high-strength resin, 100 parts by weight (A = 0.57) of Epikote-152 (Cien Kagaku, novolak type epoxy resin) and 87 parts by weight of methyl nadixic anhydride (methyl highmic acid anhydride, Hitachi Chemical) were used. (B=0.49), triethanolamine 0.5 parts by weight (R=0.49/0.57=0.86, f=0/0.49=0) has a compressive strength of 1500 Kg/cm 2 and an elastic modulus of 43100 Kg/cm 2 . However, because the reaction is fast and the heat generated is large, it is not possible to mold large items.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は圧縮弾性率とRとの関係を示す図、第
2図は圧縮弾性率とfとの関係を示す図、第3図
は圧縮強度とRとの関係を示す図、第4図は圧縮
強度とfとの関係を示す図である。
Figure 1 is a diagram showing the relationship between compressive elastic modulus and R, Figure 2 is a diagram showing the relationship between compressive elastic modulus and f, Figure 3 is a diagram showing the relationship between compressive strength and R, and Figure 4 is a diagram showing the relationship between compressive elastic modulus and R. is a diagram showing the relationship between compressive strength and f.

Claims (1)

【特許請求の範囲】 1 脂環式エポキシ樹脂、ジヒドロキシベンゼン
類、および酸無水物から成り、 R=B+C/A f=C/B+C×100 (上記式中、A:エポキシ樹脂の重量部で表わし
た配合量/エポキシ当量、B:酸無水物の重量部
で表わした配合量/酸無水物当量、C:ジヒドロ
キシベンゼン類の重量部で表わした配合量/ジヒ
ドロキシベンゼンの水酸基当量)の場合に、0.7
≦R≦1.5および50≦f≦100であることを特徴と
するエポキシ樹脂組成物。
[Scope of Claims] 1 Consists of an alicyclic epoxy resin, dihydroxybenzenes, and acid anhydride, R=B+C/A f=C/B+C×100 (in the above formula, A: expressed in parts by weight of the epoxy resin) B: Blend amount expressed in parts by weight of acid anhydride/Acid anhydride equivalent, C: Blend amount expressed in parts by weight of dihydroxybenzenes/Hydroxyl group equivalent of dihydroxybenzene), 0.7
An epoxy resin composition characterized in that ≦R≦1.5 and 50≦f≦100.
JP5843181A 1981-04-20 1981-04-20 Epoxy resin composition Granted JPS57174314A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5843181A JPS57174314A (en) 1981-04-20 1981-04-20 Epoxy resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5843181A JPS57174314A (en) 1981-04-20 1981-04-20 Epoxy resin composition

Publications (2)

Publication Number Publication Date
JPS57174314A JPS57174314A (en) 1982-10-27
JPH0143770B2 true JPH0143770B2 (en) 1989-09-22

Family

ID=13084188

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5843181A Granted JPS57174314A (en) 1981-04-20 1981-04-20 Epoxy resin composition

Country Status (1)

Country Link
JP (1) JPS57174314A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60123526A (en) * 1983-12-06 1985-07-02 Mitsubishi Electric Corp Epoxy resin composition
JP5651959B2 (en) * 2010-01-22 2015-01-14 横浜ゴム株式会社 Resin composition for syntactic foam
WO2016088540A1 (en) * 2014-12-05 2016-06-09 三井金属鉱業株式会社 Conductive composition, wiring board and method for producing same
CN111978506B (en) * 2019-05-23 2022-08-09 珠海瑞杰包装制品有限公司 Preparation method of aqueous hyperbranched polyurethane acrylate emulsion, UV (ultraviolet) curing coating and preparation method and application thereof

Also Published As

Publication number Publication date
JPS57174314A (en) 1982-10-27

Similar Documents

Publication Publication Date Title
US4593056A (en) Epoxy/aromatic amine resin systems containing aromatic trihydroxy compounds as cure accelerators
US4517321A (en) Preimpregnated reinforcements and high strength composites therefrom
US5599856A (en) Epoxy resin systems containing modifiers
US5091474A (en) Epoxy resin curing agent based on blends containing disecondary aromatic diamines
JPS6274923A (en) Novel epoxy resin
JPH0143770B2 (en)
EP0761709B1 (en) 1-Imidazolylmethyl-2-naphthols as catalysts for curing epoxy resins
EP0132853B1 (en) Preimpregnated reinforcements and high strength composites therefrom
US5128425A (en) Epoxy resin composition for use in carbon fiber reinforced plastics, containing amine or amide based fortifiers
CA1182948A (en) Curable epoxy resins
JPH0379624A (en) Epoxy resin composition and cured material
JPH069752A (en) Epoxy resin composition and cured product thereof
JPS6338049B2 (en)
US4307212A (en) Curable epoxy resins
JPH10324733A (en) Epoxy resin composition, production of epoxy resin and semiconductor-sealing material
US4297459A (en) Curable epoxy resins
JPS6331492B2 (en)
US5596050A (en) High modulus epoxy resin systems
DE3852099T2 (en) Glycidylsulfonamide compounds.
KR910006332B1 (en) Epoxy resin composition
JPH03243619A (en) Epoxy resin composition
JPH0848747A (en) Epoxy resin, epoxy resin composition, and its cured item
JPH043405B2 (en)
JPS63152616A (en) Novel curing agent for epoxy resin
JPH0559157A (en) Epoxy resin composition