JPH0143685B2 - - Google Patents

Info

Publication number
JPH0143685B2
JPH0143685B2 JP14162781A JP14162781A JPH0143685B2 JP H0143685 B2 JPH0143685 B2 JP H0143685B2 JP 14162781 A JP14162781 A JP 14162781A JP 14162781 A JP14162781 A JP 14162781A JP H0143685 B2 JPH0143685 B2 JP H0143685B2
Authority
JP
Japan
Prior art keywords
dispersion
imogolite
film
aqueous solution
ηsp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP14162781A
Other languages
Japanese (ja)
Other versions
JPS5845108A (en
Inventor
Yataro Ichikawa
Yoshuki Yamanaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP14162781A priority Critical patent/JPS5845108A/en
Publication of JPS5845108A publication Critical patent/JPS5845108A/en
Publication of JPH0143685B2 publication Critical patent/JPH0143685B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Silicates, Zeolites, And Molecular Sieves (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、公知のものより重合度の大きいイモ
ゴライトとその製造法、並びにそれを主成分とす
る可撓性フイルムに関する。 イモゴライトは、天然に産出する又は合成可能
なアルミノケイ酸塩鉱物の一種である。従来アル
ミノケイ酸塩の代表的なものとしてカオリン(粘
土)、酸性白土、ゼオライトがあり、これらは陶
磁器や耐火レンガ、セメント等の窯業原料とし
て、あるいは医薬品、吸着剤、硬水軟化剤、化学
反応の触媒支持体、モレキユラーシーブ等に利用
されているが、その使用形態は通常粉末又は粒状
に限られている。一方、アルミノケイ酸塩を繊維
化し耐熱性繊維として利用する方法も知られてい
る。例えば、高純度の仮焼カオリンに、必要に応
じて少量の添加剤を加え、電気炉で溶融してから
細孔を通して流出させ、それに水蒸気を噴射して
繊維化させたものは、バルクフアイバー(綿状)
で使用されるほかにケイ酸ゲルなどの結合材を配
合してブランケツト(毛布状)、フエルト、ペー
パー、ロープ、織布、ブロツク、ボードなどに成
形したり、コーテイングセメントとして使用され
る。これらの繊維製品は1250℃付近の温度で安全
に連続使用でき、もろくなく、軽量で断熱性や施
行性に優れているので、耐火断熱材をはじめとし
て、膨張個所の断熱シール、ジヨイント部の充て
ん、侵食保護コーテイング用など広い用途があ
る。しかしながら、アルミノケイ酸塩は高融点で
かつ通常の溶剤に不溶であるので、その繊維化は
電気炉での溶融法によるしかなく、工業的には不
利であり、特にその均一なフイルム化は実用的に
極めて困難であつた。また、アルミノケイ酸塩鉱
物の中でイモゴライトはその構造が繊維状であ
り、水等に分散させた分散液からキヤステイング
によつてフイルム状の小片を形成し得ることも知
られている(例えば、特開昭53−124199号、55−
10498号参照)。しかしながら、従来公知の天然又
は合成イモゴライトは、種々の重合度のものの混
合物であるので、キヤステイングによつて自己支
持性でかつ可撓性のあるフイルムを形成すること
はできなかつた。 本発明者らは、アルミノケイ酸塩鉱物から工業
的に容易な方法で成形加工品を作ることに関し鋭
意研究を行なつた結果、重合度の大きいイモゴラ
イトを知見し、かつこれを用いれば、自己支持性
のある可撓性フイルム等が工業的に容易に得られ
ることを知見し本発明に到達した。 即ち、本発明は、PH=3.5の酢酸水溶液を分散
溶媒とし、30℃でかつ0.2重量%濃度で測定した
分散液粘度(ηsp/c)の値が5.0以上、好ましく
は9.0以上、特に好ましくは12.0以上である重合
度の大きいイモゴライトである。 イモゴライトは、天然には火山灰土や風化軽石
層中に見出される外径が約20Å、内径が約7Åの
中空繊維状のアルミノケイ酸塩重合体であり、そ
の化学組成はほぼSiO2・Al2O3・2〜3H2Oで表
わされるものである。かかるイモゴライトは、公
知の方法、例えば、イモゴライトを含む土壌を水
に分散させ、イモゴライトを主とする浮遊物を集
め、この浮遊物を粘土ハンドブツク(日本粘土学
会編)の方法に準じた方法で精製して得られる。
即ち、Jackson法(クエン酸ナトリウム−ハイド
ロサルフアイトナトリウム−重炭酸ナトリウム抽
出法)により鉄分を除き、H2O2水で加熱して不
純物として含まれる有機物を分解除去し、2%
Na2CO3で煮沸して遊離のアルミニウム、ケイ酸
を除去してゲル状のイモゴライトの精製物が得ら
れる。 あるいはまた、このイモゴライトを塩酸等の酸
性の水溶液に分散させ、その後アルカリや食塩等
で沈殿ゲル化させて、より精製されたゲル状のイ
モゴライトとしてもよい。 本発明において用いられるイモゴライトは、合
成されたものであつてもよい。合成法としては、
水酸化アルミニウム、ケイ酸塩錯体を酸性水溶液
中で加熱還流下にイモゴライトを合成する方法
(特開昭53−124199号)と、アルミニウムアルコ
キシドとテトラアルキルケイ酸を酸中で加水分解
した水酸化アルミニウムケイ酸塩を、酸性水溶液
中で加熱還流してイモゴライトを合成する方法
(特開昭55−10498号)が知られている。この様に
精製して得られた天然イモゴライト又は合成イモ
ゴライトは、種々の重合度のものの混合物であつ
て、その分散液粘度(ηsp/c)は、PH=3.5の酢
酸水溶液を分散溶媒とし、30℃でかつ0.2重量%
濃度で測定した場合に5.0未満である。 本発明においては、かくして得られたイモゴラ
イトを酸性水溶液で処理し、重合度の比較的小さ
いイモゴライト及びアロフエン等の夾雑物を抽出
除去する。用いられる酸としては、酢酸、トリフ
ルオロ酢酸等の有機酸と塩酸等の無機酸がある
が、酢酸とトリフルオロ酢酸が好ましい。これら
の酸は通常PH=2〜6、好ましくはPH=3〜5の
水溶液として用いられる。酸性水溶液でイモゴラ
イトを処理する方法は、重合度の比較的小さいイ
モゴライトが抽出除去できる方法であれば格別に
限定されるものではないが、ゲル状のイモゴライ
トを、加熱還流抽出機例えばソツクスレー抽出器
を用いて熱酸性水溶液で抽出する方法を採用する
ことができる。抽出時間は一般に数時間〜数十時
間であり、用いたイモゴライトの約10重量%程度
が抽出されるのが好ましい。かかる処理によつて
重合度の比較的小さいイモゴライト及びアロフエ
ン等の夾雑物は抽出除去され、抽出残査として比
較的重合度の大きいイモゴライトが得られる。 上記のごとくして得られる比較的重合度の大き
いイモゴライトは、適当な分散媒に分散せしめら
れ、分散液が調整される。分散に際しては、加熱
や超音波処理を行なつても良いが、超音波処理の
場合にはイモゴライト分子の切断が起こるので、
超音波強度にもよるがせいぜい10分以内の処理に
とどめるのが適当である。分散せしめられたイモ
ゴライトは遠心分離等の手段により未分散物を沈
降除去した後、分散液粘度(ηsp/c)、即ち、
PH=3.5の酢酸水溶液を分散溶媒とし、30℃でか
つ0.2重量%濃度で測定した場合に5.0以上の分散
液粘度を有している場合には、このまゝ、フイル
ム等の作成に利用できる。 更に本発明によれば、前記抽出操作を行なつた
後調整された分散液を静置することにより、乳濁
層(上層)と透明層(下層)の2層に分離し、透
明層(下層)の方に分散液粘度(ηsp/c)の高
い成分が得られる。分散液によつては、静置の代
りに高速遠心分離(10000〜30000G)によつて加
速分離することが出来る。一方、前記抽出操作を
行なわない分散液の場合には、分散液粘度
(ηsp/c)が低いばかりでなく、1ケ月以上静
置しても2層に分離することは稀であつた。折曲
げ強度の大きいフイルムを必要とする場合には、
分散液粘度(ηsp/c)が9.0以上、5回折曲げて
も破断しないような折曲げに強いフイルムを必要
とする場合には、ηsp/cが12.0以上のものが必
要である。かかる場合には、2層に分離した下層
のηsp/cが9.0以上であることが多いので、両層
を分離した後、下層のみを用いることによつて、
折曲げ強度の大きいフイルムを作成することがで
きる。また、分散条件をマイルドにした場合に
は、例えば、Branson製超音波分散装置350形を
使用してOut Put Control5、Duty Cycle50%で
5分間分散させた場合には、ηsp/cが12.0以上
のものも得られる。 本発明のイモゴライトを主成分とする可撓性フ
イルムは、前記の如くイモゴライトを主成分とす
る分散質を分散させた分散液を作成し、これをキ
ヤステイングし、その後分散液から分散媒を除去
することによつて得られる。分散媒としては水や
ジメチルホルムアミド、ジメチルスルホキシド等
の有機溶媒があるが、好ましいのは酸性の特にPH
が3〜5の水である。PH調節用の酸としては、塩
酸、硝酸、過塩素酸、硫酸等の無機酸、ギ酸、酢
酸、プロピオン酸、モノクロル酢酸、トリフルオ
ロ酢酸等の有機酸及びこれらの酸の混合物がある
が、酢酸、モノクロル酢酸、トリフルオロ酢酸等
のハロゲン酢酸がイモゴライトの分散性の点で好
ましい。本発明においては、全分散質の20重量%
以下の範囲でイモゴライト以外の分散質、例え
ば、カオリン、酸性白土、マイカ、合成マイカ、
ガラス繊維、水ガラス等の無機分散質あるいは、
シリコーン、ポリビニルアルコール、フツ素樹脂
等の重合体をイモゴライトと併用することもでき
る。分散液の濃度は0.2〜4重量%、好ましくは
0.5〜2重量%の範囲にあるのが好ましい。なお、
本発明における分散液とは、懸濁液、コロイド
液、エマルジヨン等、真の溶液以外のもの及び真
の溶液を意味する。 かくして得られた分散液は、次いでキヤステイ
ングされる。キヤステイング面としては、従来公
知のものが用いられるが、特にフツ素樹脂、ポリ
エステル、アクリル樹脂、ポリカーボネート板及
びこれらの樹脂をコーテイングした金属板が適当
であり、必要ならばシリコーン系の離型剤を塗布
しても良い。キヤステイング後、分散液から減圧
又は常圧下、必要に応じ加熱することによつて分
散媒が除去される。 かくして本発明のイモゴライトを主成分とする
可撓性フイルムが得られるが、このフイルムに
は、その後適当な条件で熱処理を施してもよい。 本発明においてフイルムとは、厚さが約2mm以
下のフイルム又はシート状物をいうが、かかる本
発明のフイルムは自己支持性であり、かつ十分な
可撓性を有する。製法にもよるが、一般にフイル
ムは透明または半透明で、引張強度5〜10Kg/
mm2、ヤング率500〜800Kg/mm2あるいはそれ以上の
可撓性の良好なフイルムが得られる。分散液粘度
が9.0以上の分散液を用いたフイルムの場合には
折曲げても破断しないフイルムが得られ、特に分
散液粘度が12.0以上の分散液を用いた場合には5
回折曲げても破断しない折曲げ強度の大きいフイ
ルムが得られる。 本発明のイモゴライトを主成分とする可撓性フ
イルムはその耐熱性や耐炎性という性質を利用し
て、耐熱・耐炎性フイルム材料として、またフイ
ルム形態の吸着剤や脱色剤、フイルム形態の化学
反応の触媒又は触媒支持体、更にはフイルム状の
モレキユラーシーブとして利用され得る。 以下実施例により本発明を詳述する。 なお、イモゴライトの分散液粘度(ηsp/c)
の測定は、PH=3.5の酢酸水溶液を分散溶媒とし、
30℃でかつ約0.2重量%濃度で、ウベローデ型粘
度計を使用して行なつた。なお、分散液は、ブラ
ンソニツク超音波洗浄器220型で30分間超音波処
理した後測定に供した。また精確な測定濃度は15
mlの磁製坩堝に分散液を採取し、50℃で水分を蒸
発させた後、電気炉で500℃で2時間焼いた残留
物重量より求め、測定粘度を0.2重量%濃度の
ηsp/cに換算した。 実施例中の%はすべて重量%である。 実施例 1 採集したイモゴライトの多い風化した軽石層
に、水を加えて充分撹拌した後、水浮遊物をフル
イ(10〜20mesh)で分離した。木の根等の夾雑
物を除いた後、wetベースで7%のイモゴライト
ゲルが得られた。分離したイモゴライトゲルは従
来公知の精製法、即ちイモゴライトゲル400部に
クエン酸ナトリウム80部、NaHCO32部及びイオ
ン交換水500部を加えて80℃の温浴中で加熱溶解
し、Na2S2O5粉末5部を加えて撹拌し、15分間保
つた後吸引過して鉄分を除き、次に2%
Na2CO3を加えて5分間煮沸して脱Al、ケイ酸処
理し、次いで30%H2O2で加熱して不純物として
含まれる有機物を除き精製した。 かくして得られた精製イモゴライトゲルを、酢
酸酸性水溶液(PH3.5)で60時間ソツクスレー抽
出した。抽出液からは少量の鉄分を含んだ微粉末
の析出物(重合度の比較的小さいイモゴライト)
が認められた。ソツクスレー抽出残査のイモゴラ
イトゲルを久保田製超音波分散装置200M型(発
振周波数9KHz)を使用して、酢酸酸性水溶液
(PH3.5)中で出力60W、6分間分散させた。 未分散物を高速遠心分離機(16000rpm、30分)
で沈降分離し、上澄液をロータリーエバポレータ
ーで濃縮し、濃度が0.77%の分散液を得た。PH=
3.5の酢酸酸性水溶液での分散液粘度(ηsp/c)
は6.2であつた。分散液をシリコン系の離型剤を
塗布したポリエステルフイルム上に流し、室温で
乾燥した結果、約20μのわずかに乳濁した可撓性
のあるフイルムが得られた。 実施例 2 実施例1の分散液を1週間放置すると2層に分
離し、上層はわずかに乳濁しているのに対して、
下層は無色透明であつた。それぞれの層に含まれ
るイモゴライトの分散液粘度(ηsp/c)の測定
結果は第1表に示すように、分散液下層の方に粘
度の高い成分の分別が認められた。電子顕微鏡に
よる観察結果も分散液上層の方は夾雑物が多いの
に対して、下層の方は夾雑物が少なく、重合度の
大きいイモゴライトの存在が認められた。
The present invention relates to imogolite having a higher degree of polymerization than known imogolite, a method for producing the same, and a flexible film containing the same as a main component. Imogolite is a type of aluminosilicate mineral that can occur naturally or synthetically. Typical aluminosilicates include kaolin (clay), acid clay, and zeolite, which are used as raw materials for ceramics, firebricks, cement, etc., or as pharmaceuticals, adsorbents, water softeners, and catalysts for chemical reactions. Although it is used for supports, molecular sieves, etc., its usage form is usually limited to powder or granule form. On the other hand, a method is also known in which aluminosilicate is made into fibers and used as heat-resistant fibers. For example, high-purity calcined kaolin, with a small amount of additives added as necessary, is melted in an electric furnace and then flowed out through pores, and steam is injected into it to make it into fibers. flocculent)
In addition to being used in silicic acid gel and other binding materials, it can be formed into blankets, felt, paper, rope, woven fabric, blocks, boards, etc., or used as coating cement. These fiber products can be used safely and continuously at temperatures around 1250℃, are not brittle, are lightweight, and have excellent insulation and workability, so they can be used as fireproof insulation materials, insulation seals for expansion parts, and filling of joints. It has a wide range of uses, including for erosion protection coatings. However, since aluminosilicate has a high melting point and is insoluble in ordinary solvents, the only way to make it into fibers is by melting it in an electric furnace, which is disadvantageous industrially, and in particular, making it into a uniform film is not practical. It was extremely difficult. It is also known that among the aluminosilicate minerals, imogolite has a fibrous structure and can form small film-like pieces by casting from a dispersion in water etc. (for example, JP-A-53-124199, 55-
(See No. 10498). However, since the conventionally known natural or synthetic imogolites are mixtures of different degrees of polymerization, it has not been possible to form a self-supporting and flexible film by casting. The inventors of the present invention have conducted extensive research into producing molded products from aluminosilicate minerals using an industrially easy method, and have discovered imogolite with a high degree of polymerization. The inventors have discovered that a flexible film and the like can be easily obtained industrially, and have arrived at the present invention. That is, the present invention uses an acetic acid aqueous solution with pH=3.5 as a dispersion solvent, and the value of the dispersion liquid viscosity (ηsp/c) measured at 30°C and a concentration of 0.2% by weight is 5.0 or more, preferably 9.0 or more, particularly preferably It is imogolite with a high degree of polymerization of 12.0 or higher. Imogolite is a hollow fibrous aluminosilicate polymer with an outer diameter of approximately 20 Å and an inner diameter of approximately 7 Å, which is naturally found in volcanic ash soil and weathered pumice layers, and its chemical composition is approximately SiO 2 Al 2 O. It is expressed by 3.2 ~3H 2 O. Such imogolite can be obtained by a known method, for example, by dispersing soil containing imogolite in water, collecting floating matter mainly composed of imogolite, and refining this floating matter in accordance with the method described in the Clay Handbook (edited by the Clay Society of Japan). It can be obtained by
That is, the iron content was removed by the Jackson method (sodium citrate-sodium hydrosulfite-sodium bicarbonate extraction method), and the organic matter contained as impurities was decomposed and removed by heating with H 2 O 2 water, and 2%
By boiling with Na 2 CO 3 to remove free aluminum and silicic acid, a gel-like purified product of imogolite is obtained. Alternatively, this imogolite may be dispersed in an acidic aqueous solution such as hydrochloric acid, and then precipitated and gelled with an alkali, common salt, etc. to obtain a more purified gel-like imogolite. The imogolite used in the present invention may be synthetic. As a synthesis method,
A method for synthesizing imogolite by heating refluxing aluminum hydroxide and a silicate complex in an acidic aqueous solution (Japanese Patent Application Laid-Open No. 124199/1982), and aluminum hydroxide obtained by hydrolyzing aluminum alkoxide and tetraalkyl silicic acid in acid. A method is known in which imogolite is synthesized by heating and refluxing a silicate in an acidic aqueous solution (Japanese Unexamined Patent Publication No. 10498/1983). The natural imogolite or synthetic imogolite obtained by purification in this way is a mixture of various degrees of polymerization, and the dispersion viscosity (η sp / c) is 30 °C and 0.2% by weight
Less than 5.0 when measured in concentration. In the present invention, the imogolite thus obtained is treated with an acidic aqueous solution to extract and remove imogolite having a relatively low degree of polymerization and impurities such as allofene. The acids used include organic acids such as acetic acid and trifluoroacetic acid, and inorganic acids such as hydrochloric acid, with acetic acid and trifluoroacetic acid being preferred. These acids are usually used as an aqueous solution having a pH of 2 to 6, preferably 3 to 5. The method of treating imogolite with an acidic aqueous solution is not particularly limited as long as imogolite with a relatively low degree of polymerization can be extracted and removed. A method of extraction with a hot acidic aqueous solution can be adopted. The extraction time is generally several hours to several tens of hours, and it is preferable that about 10% by weight of the imogolite used is extracted. By this treatment, impurities such as imogolite and allofene, which have a relatively low degree of polymerization, are extracted and removed, and imogolite, which has a relatively high degree of polymerization, is obtained as an extraction residue. The imogolite having a relatively high degree of polymerization obtained as described above is dispersed in a suitable dispersion medium to prepare a dispersion liquid. For dispersion, heating or ultrasonication may be used, but ultrasonication causes cleavage of imogolite molecules, so
Although it depends on the ultrasonic intensity, it is appropriate to limit the treatment to 10 minutes at most. After removing the undispersed matter by sedimentation of the dispersed imogolite by means such as centrifugation, the viscosity of the dispersion liquid (ηsp/c), that is,
If the dispersion has a viscosity of 5.0 or more when measured at 30°C and a concentration of 0.2% by weight using an acetic acid aqueous solution with a pH of 3.5 as a dispersion solvent, it can be used as is for making films, etc. . Furthermore, according to the present invention, by allowing the prepared dispersion to stand after performing the extraction operation, it is separated into two layers, an emulsion layer (upper layer) and a transparent layer (lower layer). ), a component with a higher dispersion viscosity (ηsp/c) is obtained. Depending on the dispersion liquid, accelerated separation can be performed by high-speed centrifugation (10,000 to 30,000 G) instead of standing still. On the other hand, in the case of a dispersion liquid that was not subjected to the extraction operation, not only did the dispersion liquid viscosity (ηsp/c) be low, but it also rarely separated into two layers even after being allowed to stand for more than one month. If you need a film with high bending strength,
When a dispersion liquid viscosity (ηsp/c) of 9.0 or more is required, and a film that is resistant to bending and does not break even after being bent five times is required, a film with ηsp/c of 12.0 or more is required. In such cases, the ηsp/c of the lower layer separated into two layers is often 9.0 or more, so by separating both layers and using only the lower layer,
A film with high bending strength can be created. In addition, when the dispersion conditions are mild, for example, when dispersion is performed for 5 minutes using Branson's ultrasonic dispersion device type 350 with Out Put Control 5 and Duty Cycle 50%, ηsp/c is 12.0 or more. You can also get things. The flexible film containing imogolite as a main component of the present invention is produced by preparing a dispersion liquid in which a dispersoid containing imogolite as a main component is dispersed as described above, casting this, and then removing the dispersion medium from the dispersion liquid. obtained by doing. Dispersion media include water, dimethylformamide, dimethyl sulfoxide, and other organic solvents, but acidic solvents, especially PH
is 3 to 5 water. Acids for pH adjustment include inorganic acids such as hydrochloric acid, nitric acid, perchloric acid, and sulfuric acid, organic acids such as formic acid, acetic acid, propionic acid, monochloroacetic acid, and trifluoroacetic acid, and mixtures of these acids. , monochloroacetic acid, trifluoroacetic acid, and other halogenated acetic acids are preferred from the viewpoint of dispersibility of imogolite. In the present invention, 20% by weight of the total dispersoids
Dispersoids other than imogolite within the following ranges, such as kaolin, acid clay, mica, synthetic mica,
Inorganic dispersoids such as glass fiber and water glass, or
Polymers such as silicone, polyvinyl alcohol, and fluorine resins can also be used in combination with imogolite. The concentration of the dispersion is between 0.2 and 4% by weight, preferably
Preferably, it is in the range of 0.5 to 2% by weight. In addition,
The dispersion in the present invention means anything other than a true solution, such as a suspension, a colloidal liquid, or an emulsion, and a true solution. The dispersion thus obtained is then casted. Conventionally known materials can be used as the casting surface, but fluororesin, polyester, acrylic resin, polycarbonate plates, and metal plates coated with these resins are particularly suitable, and if necessary, a silicone-based mold release agent is used. may be applied. After casting, the dispersion medium is removed from the dispersion by heating if necessary under reduced pressure or normal pressure. In this way, a flexible film containing imogolite as a main component of the present invention is obtained, and this film may then be subjected to heat treatment under appropriate conditions. In the present invention, the film refers to a film or sheet having a thickness of about 2 mm or less, and the film of the present invention is self-supporting and has sufficient flexibility. Depending on the manufacturing method, the film is generally transparent or translucent and has a tensile strength of 5 to 10 kg/
mm 2 and Young's modulus of 500 to 800 Kg/mm 2 or more, a film with good flexibility can be obtained. In the case of a film using a dispersion liquid with a dispersion liquid viscosity of 9.0 or more, a film that does not break even when bent can be obtained, and in particular, when a dispersion liquid with a dispersion liquid viscosity of 12.0 or more is used, a film with a dispersion liquid of 5.
A film with high bending strength that does not break even when bent by diffraction can be obtained. The flexible film containing imogolite as a main component of the present invention can be used as a heat-resistant and flame-resistant film material by taking advantage of its heat-resistant and flame-resistant properties. It can be used as a catalyst or catalyst support, and also as a film-like molecular sieve. The present invention will be explained in detail with reference to Examples below. In addition, the viscosity of the dispersion of imogolite (ηsp/c)
For the measurement, use acetic acid aqueous solution with pH = 3.5 as the dispersion solvent.
It was carried out using an Ubbelohde viscometer at 30° C. and at a concentration of about 0.2% by weight. The dispersion liquid was subjected to ultrasonic treatment for 30 minutes using a Bransonique ultrasonic cleaner model 220 before being subjected to measurement. Also, the accurate measurement concentration is 15
The dispersion was collected in a 1ml porcelain crucible, the water was evaporated at 50°C, and then baked at 500°C for 2 hours in an electric furnace.The viscosity was calculated from the weight of the residue, and the measured viscosity was set to 0.2% by weight of ηsp/c. Converted. All percentages in the examples are percentages by weight. Example 1 Water was added to the collected weathered pumice layer containing a large amount of imogolite, and the mixture was sufficiently stirred, and then water suspended matter was separated using a sieve (10 to 20 mesh). After removing impurities such as tree roots, a 7% imogolite gel was obtained on a wet basis. The separated imogolite gel was purified using a conventionally known purification method, that is, 80 parts of sodium citrate, 2 parts of NaHCO 3 and 500 parts of ion-exchanged water were added to 400 parts of imogolite gel, heated and dissolved in a hot bath at 80°C, and Na 2 S 2 Add 5 parts of O5 powder, stir, hold for 15 minutes, remove iron by suction, then add 2%
Na 2 CO 3 was added and the mixture was boiled for 5 minutes to remove Al and undergo silicic acid treatment, and then heated with 30% H 2 O 2 to remove organic substances contained as impurities and purify. The thus obtained purified imogolite gel was subjected to Soxhlet extraction with an acetic acid aqueous solution (PH3.5) for 60 hours. The extract contains a fine powder precipitate containing a small amount of iron (imogolite with a relatively low degree of polymerization).
was recognized. The imogolite gel of the Soxhlet extraction residue was dispersed in an acetic acid aqueous solution (PH3.5) for 6 minutes at an output of 60 W using a Kubota ultrasonic dispersion device model 200M (oscillation frequency 9 KHz). High-speed centrifuge (16000 rpm, 30 minutes) undispersed material
The supernatant was concentrated using a rotary evaporator to obtain a dispersion with a concentration of 0.77%. PH=
Dispersion viscosity in acetic acid acidic solution of 3.5 (ηsp/c)
was 6.2. The dispersion was poured onto a polyester film coated with a silicone-based mold release agent and dried at room temperature, resulting in a slightly opaque, flexible film of about 20 microns. Example 2 When the dispersion of Example 1 was left for one week, it separated into two layers, and the upper layer was slightly milky.
The lower layer was colorless and transparent. As shown in Table 1, the measurement results of the viscosity (ηsp/c) of the imogolite dispersion contained in each layer showed that components with higher viscosity were separated in the lower layer of the dispersion. Observation results using an electron microscope also showed that the upper layer of the dispersion had more impurities, while the lower layer had fewer impurities and the presence of imogolite with a high degree of polymerization was observed.

【表】 分散液上層及び下層について実施例1の方法で
フイルム化した結果、下層の方は透明で折曲げて
も破断しない約20μのフイルムが得られたのに対
して、上層の方は折曲げると容易に破断するフイ
ルムが得られた。 比較例 1 実施例1において精製イモゴライトゲルを酢酸
酸性水溶液(PH3.5)でソツクスレー抽出する操
作を省略した実験を行なつた。イモゴライトゲル
の酢酸水溶液を分散液とする分散液は乳濁してお
り、分散液の濃度は0.82%で、ηsp/cは4.5であ
つた。分散液は1ケ月放置しても2層に分離は認
められなかつた。これから得られたフイルムは乳
濁しており、脆く、折曲げると容易に破断した。 比較例 2 実施例1において精製イモゴライトゲルを酢酸
酸性水溶液(PH3.5)でソツクスレー抽出する操
作を省略し、イモゴライトを直接塩酸酸性水溶液
(PH3.2)を用いて実施例1と同様に分散させた。
塩酸酸性水溶液を使用した場合には、酢酸酸性水
溶液に比べて分散性が幾分悪く、分散液も乳濁し
ており、ηsp/cも4.1と低かつた。また、分散液
は1ケ月放置しても2層に分離は認められなかつ
た。成型フイルムは乳濁しており、脆く折曲げる
と容易に破断した。 実施例 3 採集したイモゴライトの多い火山礫を、実施例
1と同様に分離してwetベースで5%のイモゴラ
イトゲルが得られた。分離したイモゴライトゲル
を実施例1と同様に精製し、分散した結果、該イ
モゴライトゲルは分散し易く、且つ2日間放置す
ると第2表に示すごとく2層に分離した。分散液
下層が透明な可撓性のあるフイルムを生成するの
に対して、分散液上層はフイルムの製膜時に割れ
を生じ良好なフイルムが得られなかつた。
[Table] As a result of forming the upper and lower layers of the dispersion into a film using the method of Example 1, the lower layer was transparent and did not break even when folded, and a film of approximately 20 μm was obtained, whereas the upper layer did not break when folded. A film was obtained that easily broke when bent. Comparative Example 1 An experiment was conducted in which the Soxhlet extraction of the purified imogolite gel with an acetic acid aqueous solution (PH3.5) in Example 1 was omitted. A dispersion of imogolite gel in an acetic acid aqueous solution was emulsified, the concentration of the dispersion was 0.82%, and ηsp/c was 4.5. Even after the dispersion was left for one month, no separation into two layers was observed. The resulting film was milky, brittle, and easily broke when bent. Comparative Example 2 The Soxhlet extraction of the purified imogolite gel with an acetic acid aqueous solution (PH3.5) in Example 1 was omitted, and imogolite was directly dispersed in a hydrochloric acid aqueous solution (PH3.2) in the same manner as in Example 1. Ta.
When an acidic aqueous solution of hydrochloric acid was used, the dispersibility was somewhat poorer than that of an aqueous acetic acid solution, the dispersion was also milky, and ηsp/c was as low as 4.1. Further, even when the dispersion was left for one month, no separation into two layers was observed. The molded film was milky and brittle and easily broke when bent. Example 3 The collected lapilli containing a large amount of imogolite was separated in the same manner as in Example 1 to obtain a 5% imogolite gel on a wet basis. The separated imogolite gel was purified and dispersed in the same manner as in Example 1. As a result, the imogolite gel was easily dispersed, and when left for 2 days, it separated into two layers as shown in Table 2. While the lower layer of the dispersion produced a transparent and flexible film, the upper layer of the dispersion produced cracks during film formation and a good film could not be obtained.

【表】 比較のために、精製イモゴライトゲルを酢酸酸
性水溶液で加熱抽出する操作を省略する以外、同
一条件で分散、フイルム化を行なつた。分散液は
乳濁しており、ηsp/cは3.7と低く、1ケ月放置
しても2層に分離は認められなかつた。成型フイ
ルムも脆かつた。 実施例 4 実施例1において超音波分散条件のみを出力
20W、10分に変更して分散させた。分散性はかな
り低下したが、分散液を1週間放置すると2層に
分離し、第3表に示すようにηsp/cの向上が認
められた。成型フイルムは分散液下層の方が、可
撓性が良く、数回折曲げても破断しないフイルム
が得られた。
[Table] For comparison, the purified imogolite gel was dispersed and formed into a film under the same conditions except that the heating extraction operation with an acetic acid aqueous solution was omitted. The dispersion was milky, had a low ηsp/c of 3.7, and no separation into two layers was observed even after being left for one month. The molded film was also brittle. Example 4 Outputting only the ultrasonic dispersion conditions in Example 1
I changed it to 20W, 10 minutes and dispersed it. Although the dispersibility decreased considerably, when the dispersion was left for one week, it separated into two layers, and as shown in Table 3, an improvement in ηsp/c was observed. The formed film had better flexibility in the lower layer of the dispersion, and a film that did not break even when bent several times was obtained.

【表】 実施例 5 実施例1で得られたソツクスレー抽出残査のイ
モゴライトゲルを、酢酸酸性水溶液(PH3.5)中
でBranson製超音波分散装置350形(発振周波数
20KHz)を使用して、Out Put Control5、Duty
Cycle50%で5分間分散させた。分散液を1週間
放置すると2層に分離し、上層はわずかに乳濁し
ているのに対して下層は透明であつた。ηsp/c
は第4表に示すように実施例1に比べて向上が認
められ、成型フイルムについても、分散液下層を
用いた場合は約15μの透明な折曲げ強度が大き
く、5回繰返し折曲げても破断しないフイルムが
得られた。
[Table] Example 5 The imogolite gel of the Soxhlet extraction residue obtained in Example 1 was dissolved in an acetic acid aqueous solution (PH3.5) using a Branson ultrasonic dispersion device type 350 (oscillation frequency
20KHz), Output Control5, Duty
Dispersion was performed for 5 minutes at Cycle 50%. When the dispersion was allowed to stand for one week, it separated into two layers, with the upper layer being slightly milky and the lower layer being transparent. ηsp/c
As shown in Table 4, an improvement was observed compared to Example 1, and the molded film also had a high transparent bending strength of about 15μ when the dispersion lower layer was used, and even after repeated bending five times. A film that did not break was obtained.

【表】 実施例 6 実施例5の分散液下層を使用してフイルムの製
膜を、離型剤を塗布したポリエステルフイルムの
代りに、テフロン板、ポリカーボネート板、ポリ
エステル板、アクリル樹脂板、ガラス板、ステン
レス板について行なつた。フイルムのはがれ易さ
はテフロンが最も大きく、離型剤を塗布したポリ
エステルフイルムがこれにつぎ、ポリエステル、
ポリカーボネート、アクリル樹脂の差違は認めら
れなかつた。 実施例 7 実施例1の酢酸酸性水溶液のかわりに
CF3COOH酸性水溶液(PH3.0)を用いて、ソツ
クスレー抽出及び分散を行なつた(但し、分散条
件は実施例5と同じ)。未分散物量は酢酸酸性水
溶液の場合に比べて少なく、分散性の向上が認め
られた。分散液は透明で、1週間放置すると2層
に分離し、第5表に示した如き、ηsp/cの高い
分散液が得られた。成型したフイルムは、約10μ
の透明で5回繰返し折曲げても破断しないフイル
ムであつた。
[Table] Example 6 A film was formed using the dispersion lower layer of Example 5, and instead of a polyester film coated with a release agent, a Teflon plate, a polycarbonate plate, a polyester plate, an acrylic resin plate, and a glass plate were used. , was conducted on a stainless steel plate. Teflon film has the highest peeling resistance, followed by polyester film coated with a release agent, followed by polyester film,
No difference was observed between polycarbonate and acrylic resin. Example 7 Instead of the acetic acid aqueous solution of Example 1
Soxhlet extraction and dispersion were performed using a CF 3 COOH acidic aqueous solution (PH3.0) (however, the dispersion conditions were the same as in Example 5). The amount of undispersed matter was smaller than that in the case of acetic acid acidic aqueous solution, and an improvement in dispersibility was observed. The dispersion was transparent and separated into two layers after standing for one week, yielding a dispersion with a high ηsp/c as shown in Table 5. The molded film is approximately 10μ
The film was transparent and did not break even after being repeatedly folded five times.

【表】 実施例 8 実施例1において分散液としてモノクロル酢酸
水溶液(PH3.3)を用い、超音波分散条件を出力
40W、6分に変更して分散させた。分散性は幾分
低下したが、分散液を1週間放置すると2層に分
離し、第6表に示すようにηsp/cの向上が認め
られた。成型フイルムは分散液下層の方が可撓性
が良く、折曲げても破断しないフイルムが得られ
た。また、引張試験機による引張強度及びヤング
率の測定結果も表6に示すようにηsp/cの大き
い分散液下層の方が良好であつた。
[Table] Example 8 In Example 1, a monochloroacetic acid aqueous solution (PH3.3) was used as the dispersion liquid, and the ultrasonic dispersion conditions were output.
I changed it to 40W and 6 minutes to disperse it. Although the dispersibility decreased somewhat, when the dispersion was allowed to stand for one week, it separated into two layers, and as shown in Table 6, an improvement in ηsp/c was observed. The formed film had better flexibility in the lower layer of the dispersion, and a film that did not break even when bent was obtained. Furthermore, as shown in Table 6, the results of measuring tensile strength and Young's modulus using a tensile tester were better in the dispersion lower layer having a larger ηsp/c.

【表】 実施例 9 分散液として硝酸酸性水溶液(PH3.2)を用い
る以外は実施例5と同様に分散を行なつた。未分
散物量は実施例5に比べて幾分多く、分散性の低
下が認められた。分散液は透明で、2週間放置す
ると2層に分離し、第7表に示した如きηsp/c
の高い分散液が得られた。また、成型フイルムも
実施例5と同様に分散液下層の方が可撓性が良好
であつた。 塩酸及び過塩素酸酸性水溶液についても、硝酸
酸性水溶液と同様な結果が得られた。
[Table] Example 9 Dispersion was carried out in the same manner as in Example 5 except that an acidic aqueous solution of nitric acid (PH3.2) was used as the dispersion liquid. The amount of undispersed matter was somewhat larger than in Example 5, and a decrease in dispersibility was observed. The dispersion was transparent and separated into two layers when left for two weeks, with ηsp/c as shown in Table 7.
A dispersion liquid with a high Further, in the molded film, as in Example 5, the lower layer of the dispersion had better flexibility. Similar results were obtained with hydrochloric acid and perchloric acid aqueous solutions as with nitric acid aqueous solutions.

【表】 実施例 10 実施例2の分散液下層200mlに、3mmに切断し
たガラス繊維0.3gを加え、アンモニア水を加え
てPH8に調整してゲル化させた後、ミキサーで充
分混合した。テフロン板上に流し、室温で乾燥し
たところ折曲げ強度の大きいフイルムが得られ
た。 比較例 3 イモゴライトを特開昭55−10498号の実施例3
の方法を用いて合成した。 即ち、AL(OC4H9315ミリモルをSi
(OC2H547.5ミリモルと混合し、この混合物を75
ミリモル濃度のHClO4100mlに激しく撹拌しなが
ら注ぎ、乳白色が消滅するまで1昼夜撹拌した。
遠心分離によつて固形物を除去した後、Al濃度
40ミリモル、Si濃度20ミリモルになる様に稀釈
し、加熱還流下に4日間反応させた。 反応液はロータリーエバポレーターで液量を約
1/3に濃縮し、高速遠心分離機(16000rpm、30
分)で沈降物を除いた後、セルローズ透析膜で水
を流しながら2日間透析した。透析によりゲルが
生成し、透析後のPHは7.6であつた。生成ゲルを
遠心分離により沈降分離し、酢酸酸性水溶液でPH
3.5に調整してゲルを分散させた。 このようにして得られた分散液のηsp/cは1.2
と低く、実施例1と同一条件で製膜したフイルム
は製膜時に割れを生じ、良好なフイルムは得られ
なかつた。
[Table] Example 10 0.3 g of glass fiber cut into 3 mm pieces was added to 200 ml of the lower layer of the dispersion of Example 2, and aqueous ammonia was added to adjust the pH to 8 to form a gel, followed by thorough mixing using a mixer. When poured onto a Teflon plate and dried at room temperature, a film with high bending strength was obtained. Comparative Example 3 Imogolite was used in Example 3 of JP-A-55-10498.
It was synthesized using the method of That is, 15 mmol of AL(OC 4 H 9 ) 3 is added to Si
(OC 2 H 5 ) 4 mixed with 7.5 mmol and this mixture 75
The mixture was poured into 100 ml of millimolar HClO 4 with vigorous stirring and stirred overnight until the milky white color disappeared.
After removing solids by centrifugation, Al concentration
The Si concentration was diluted to 40 mmol and the Si concentration was 20 mmol, and the mixture was reacted for 4 days under heating and reflux. The reaction solution was concentrated to about 1/3 using a rotary evaporator, and then transferred to a high-speed centrifuge (16,000 rpm, 30
After removing the precipitate for 2 minutes), the mixture was dialyzed for 2 days using a cellulose dialysis membrane while running water. A gel was produced by dialysis, and the pH after dialysis was 7.6. The resulting gel was sedimented by centrifugation, and the pH was adjusted with an acetic acid aqueous solution.
3.5 to disperse the gel. The dispersion obtained in this way has ηsp/c of 1.2
The film formed under the same conditions as in Example 1 cracked during film formation, and a good film could not be obtained.

Claims (1)

【特許請求の範囲】[Claims] 1 イモゴライトを酸性水溶液で処理し、重合度
の比較的小さいイモゴライトを抽出除去して得ら
れた比較的重合度の大きいイモゴライトを、酸性
の水に分散させ分散液とし、これを2層に分離さ
せ、その後透明層(下層)を採取することからな
る重合度の大きいイモゴライトの製造法。
1. Imogolite with a relatively high degree of polymerization obtained by treating imogolite with an acidic aqueous solution and extracting and removing imogolite with a relatively low degree of polymerization is dispersed in acidic water to form a dispersion liquid, and this is separated into two layers. A method for producing imogolite with a high degree of polymerization, which consists of subsequently collecting the transparent layer (lower layer).
JP14162781A 1981-09-10 1981-09-10 Imogolite with high polymerization degree, its manufacture and imogolite-base flexible film Granted JPS5845108A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14162781A JPS5845108A (en) 1981-09-10 1981-09-10 Imogolite with high polymerization degree, its manufacture and imogolite-base flexible film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14162781A JPS5845108A (en) 1981-09-10 1981-09-10 Imogolite with high polymerization degree, its manufacture and imogolite-base flexible film

Publications (2)

Publication Number Publication Date
JPS5845108A JPS5845108A (en) 1983-03-16
JPH0143685B2 true JPH0143685B2 (en) 1989-09-22

Family

ID=15296432

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14162781A Granted JPS5845108A (en) 1981-09-10 1981-09-10 Imogolite with high polymerization degree, its manufacture and imogolite-base flexible film

Country Status (1)

Country Link
JP (1) JPS5845108A (en)

Also Published As

Publication number Publication date
JPS5845108A (en) 1983-03-16

Similar Documents

Publication Publication Date Title
JPH04265278A (en) Insulating product containing inorganic fiber as base material and method of manufacture thereof
KR20190039400A (en) Method for producing a geopolymer or a geopolymer complex
JPS62226875A (en) Lightweight heat insulating board and manufacture
AU611232B2 (en) Non-dispersible vermiculite products
JPH0143685B2 (en)
Pietras et al. New approach to preparation of gelatine/SiO2 hybrid systems by the sol-gel process
JPS6328131B2 (en)
JP2571993B2 (en) Method for producing spherical secondary particles of tobermorite crystals
JPS63243169A (en) Aqueous suspension of outlier vermiculite
JP2009184839A (en) Silica nanosheet, method for producing the same and dispersion of silica nanosheet in organic solvent
JPS58104018A (en) Manufacture of calcium silicate and its product
CN108948658B (en) Preparation method of magnesium oxychloride whisker/epoxy resin composite material
JPS62108727A (en) Production of hydrophobic fine granular silica
CN111040355A (en) Random stripping type polymethyl methacrylate/montmorillonite nano composite material and preparation method thereof
JPH10176106A (en) Composite material of glass and polyamide and its preparation
JPS6049134B2 (en) Method for producing lithium-containing high molar ratio silicate soda
JP2019043783A (en) Method of producing inorganic weight-reducing material
IE912925A1 (en) Process for the preparation of metal hydroxides having low specific surface area
JPH07102560B2 (en) Method for manufacturing nonflammable molded body
SU996389A1 (en) Process for making ceramic material
JPS58190852A (en) Calcium silicate formed body and manufacture
JPS6213301B2 (en)
CN117779463A (en) Preparation method of flexible basalt fiber-based aerogel felt for fire resistance of bridge
RU2177921C2 (en) Method of preparing granular heat-insulating material
AU629112B2 (en) Non-dispersable vermiculite products