JPH0143409B2 - - Google Patents

Info

Publication number
JPH0143409B2
JPH0143409B2 JP54081136A JP8113679A JPH0143409B2 JP H0143409 B2 JPH0143409 B2 JP H0143409B2 JP 54081136 A JP54081136 A JP 54081136A JP 8113679 A JP8113679 A JP 8113679A JP H0143409 B2 JPH0143409 B2 JP H0143409B2
Authority
JP
Japan
Prior art keywords
compound
superconducting wire
manufacturing
alloy
compound superconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54081136A
Other languages
Japanese (ja)
Other versions
JPS566320A (en
Inventor
Takuya Suzuki
Hitoshi Terai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP8113679A priority Critical patent/JPS566320A/en
Publication of JPS566320A publication Critical patent/JPS566320A/en
Publication of JPH0143409B2 publication Critical patent/JPH0143409B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Description

【発明の詳細な説明】 本発明は多芯状の化合物超電導体層を形成した
化合物超電導線の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a compound superconducting wire in which a multicore compound superconductor layer is formed.

従来、化合物超電導線の製造方歩としては、例
えば第1図乃至第3図に示すいわゆるブロンズ法
が行なわれており、ここではNb3Sn化合物超電導
体を製造する場合について説明する。
Conventionally, as a manufacturing method for compound superconducting wires, for example, the so-called bronze method shown in FIGS. 1 to 3 has been used, and here, the case of manufacturing a Nb 3 Sn compound superconductor will be described.

() 第1図Aに示すように平角棒状のNb1の
表面にSn2を鍍金した後、この複合体3を拡
散熱処理して同図Bに示すように表面にNb3Sn
化合物超電導体層4を形成し、更に同図Cに示
すように安定化金属5を鍍金または貼合接合す
る方法。
() After plating the surface of rectangular rod-shaped Nb1 with Sn2 as shown in Figure 1A, this composite 3 is subjected to diffusion heat treatment to coat the surface with Nb 3 Sn as shown in Figure 1B.
A method of forming a compound superconductor layer 4 and further plating or bonding a stabilizing metal 5 as shown in FIG.

() 第2図Aに示すようにCu−Sn合金棒6中
にNb1を複数本埋込んだ複合体3を、同図B
に示すように拡散熱処理してNb1の周りに
Nb3Sn化合物超電導体層4を形成する方法。
() As shown in Fig. 2A, a composite 3 in which multiple Nb1 particles are embedded in a Cu-Sn alloy rod 6 is constructed as shown in Fig. 2B.
As shown in the figure, diffusion heat treatment is applied to the area around Nb1.
A method of forming a Nb 3 Sn compound superconductor layer 4.

() 第3図Aに示すようにCu−Sn合金棒6中
にNb1を複数本埋込み、外側にNb、Taなど
の隔壁材7を介して安定化金属5を設けた複合
体3を拡散熱処理して同図Bに示すようにNb
1の周りにNb3Sn化合物超電導体層4を形成す
る方法。
() As shown in Fig. 3A, a composite body 3 in which a plurality of Nb 1 are embedded in a Cu-Sn alloy rod 6 and a stabilizing metal 5 is provided on the outside via a partition material 7 such as Nb or Ta is subjected to diffusion heat treatment. As shown in Figure B, Nb
1. A method of forming a Nb 3 Sn compound superconductor layer 4 around the Nb 3 Sn compound superconductor layer 4.

しかしながら第1図に示す方法では基材となる
Nb1の表面に単一のNb3Sn化合物超電導体層4
が形成されているため、幅方向に電流分布が生
じ、印加磁界の方向に対する異方性があり、高均
質なマグネツトを作ることができない。またこの
化合物超電導線8は所謂る単芯線であるため、本
質的安定化条件を満足できず、使い易いマグネツ
トが得られない。
However, in the method shown in Figure 1, the base material
A single Nb 3 Sn compound superconductor layer 4 on the surface of Nb1
As a result, a current distribution occurs in the width direction, and there is anisotropy with respect to the direction of the applied magnetic field, making it impossible to create a highly homogeneous magnet. Furthermore, since this compound superconducting wire 8 is a so-called single core wire, it cannot satisfy essential stabilization conditions, and an easy-to-use magnet cannot be obtained.

また第2図および第3図に示すブロンズ法によ
るものは構造が複雑なためフイラメントの断線が
生じ易い。またCu−Sn合金中のSn量に制限があ
るため生成されるNb3Sn化合物超電導体層4が十
分でなく、また最終的に残るCu−Sn合金は特性
に関与しないため超電動線8の臨界電流値(Ic
が低くなる問題がある。特に第3図に示すように
隔壁材7を設けた構造のものは、これが加工中に
破れる虞れがあり、このままの状態で拡散熱処理
すると不良材となり、また隔壁材7は特性に無関
係なため、その分だけ特性が低下し、しかも外部
からSn2を供給できないなどの欠点があつた。
Furthermore, the bronze method shown in FIGS. 2 and 3 has a complicated structure, so that filament breakage is likely to occur. In addition, because the amount of Sn in the Cu-Sn alloy is limited, the Nb 3 Sn compound superconductor layer 4 that is generated is not sufficient, and the Cu-Sn alloy that ultimately remains does not affect the characteristics of the superelectric wire 8. Critical current value (I c )
There is a problem that the value becomes low. Particularly, as shown in Fig. 3, there is a risk that the partition wall material 7 will be broken during processing, and if it is subjected to diffusion heat treatment in this state, it will become a defective material, and the partition wall material 7 is irrelevant to the properties. , the characteristics deteriorated accordingly, and there were also drawbacks such as the inability to supply Sn2 from the outside.

本発明は、かかる点に鑑み種々研究を行なつた
結果、基材が単一でありながら、この表面に形成
される化合物超電導体層を複数に分割して多芯状
に形成することにより、本質的安定化と電流分布
の均一化を図ると共に、臨界電流を向上させ、し
かも加工性に優れた化合物超電導線の製造方法を
見い出したものである。
As a result of conducting various studies in view of the above points, the present invention has been developed by dividing the compound superconductor layer formed on the surface of a single base material into a plurality of layers to form a multicore structure. We have discovered a method for manufacturing a compound superconducting wire that achieves essential stability and uniformity of current distribution, improves critical current, and has excellent workability.

即ち、本発明方法は化合物超電導体を形成する
元素のうち、融点の高い棒状金属の表面に周方向
に沿つて所定の間隔で、長手方向に沿つた複数本
のスリツトを形成し、超電導作用に寄与しない金
属条からなる隔壁材を前記スリツトに嵌入した
後、これを化合物超電導体を形成する融点の低い
他方の元素を含む金属管内に挿入し、次いでこの
複合体の両端を密閉した後、減面加工して所望の
形状とし、しかる後熱処理を行なつて前記隔壁材
によつて多芯状に隔離された化合物超電導体層を
形成することを特徴とするものである。
That is, in the method of the present invention, a plurality of slits are formed along the longitudinal direction at predetermined intervals along the circumferential direction on the surface of a rod-shaped metal having a high melting point among the elements forming the compound superconductor. After fitting the partition material consisting of a non-contributing metal strip into the slit, it is inserted into a metal tube containing the other element with a lower melting point that forms a compound superconductor, and then after sealing both ends of this composite, a reduction The method is characterized in that the surface is processed into a desired shape, and then heat treated to form compound superconductor layers isolated in a multicore manner by the partition material.

以下本発明を図面を参照して詳細に説明する。 The present invention will be explained in detail below with reference to the drawings.

第4図はNb3Sn化合物超電導線を製造する場合
の本発明の一方法を示すものである。
FIG. 4 shows one method of the present invention for manufacturing a Nb 3 Sn compound superconducting wire.

第4図Aに示すようにNb3Sn化合物超電導体を
形成する元素のうち、融点の高い丸棒状のNb1
を用意し、この表面の周方向に沿つて所定の間隔
で、長手方向に沿つた複数本のスリツト9を形成
する。
As shown in Figure 4A, among the elements that form the Nb 3 Sn compound superconductor, Nb1, which has a high melting point and has a round bar shape,
is prepared, and a plurality of slits 9 are formed along the longitudinal direction at predetermined intervals along the circumferential direction of this surface.

次いで同図Bに示すように各スリツト9にTa
条からなる隔壁材10を嵌入する。この隔壁材1
0は超電導作用に寄与しない金属条、即ち拡散熱
処理によつて他の構成元素と超電導性を有する合
金や化合物を形成しない元素、あるいは超電導性
のある化合物を形成しても使用される条件下では
超電導特性を示さない合金や化合物となるもので
あり、上記Ta条に限らずNi条のようなものでも
良い。
Next, as shown in Figure B, each slit 9 is
A partition wall material 10 consisting of strips is inserted. This partition wall material 1
0 indicates a metal strip that does not contribute to superconductivity, that is, an element that does not form a superconducting alloy or compound with other constituent elements through diffusion heat treatment, or an element that does not form a superconducting compound under the conditions in which it is used. It is an alloy or compound that does not exhibit superconducting properties, and is not limited to the above-mentioned Ta strip, but may also be something like Ni strip.

このように隔壁材10を嵌込んだNb1を、第
4図Cに示すように、Nb3Sn化合物超電導体を形
成する元素のうち、融点の低いSnを含んだCu−
Sn合金管11内に挿入する。次いでこのCu−Sn
合金管11の両端に、これとほぼ熱膨張率が等し
い同種または異種の金属からなる蓋を被せて、真
空中で溶接して密閉し、複合体3を形成する。
As shown in FIG. 4C, the Nb1 in which the partition wall material 10 is fitted is made of Cu--Nb1, which contains Sn, which has a low melting point among the elements forming the Nb3Sn compound superconductor.
Insert into Sn alloy tube 11. Next, this Cu−Sn
Both ends of the alloy tube 11 are covered with lids made of the same or different metals having approximately the same coefficient of thermal expansion, and are welded and sealed in a vacuum to form the composite body 3.

次いで、この複合体3を圧縮加工して、同図D
に示すようにNb1とCu−Sn合金管11とを密着
させて加熱中における界面の酸化防止を行なう。
Next, this composite body 3 is compressed to form the shape D in the same figure.
As shown in FIG. 1, Nb1 and Cu-Sn alloy tube 11 are brought into close contact to prevent oxidation of the interface during heating.

次にこの複合体3を押出し、伸線などの減面加
工を行なつて、テープ状、あるいは平角状または
丸線に形成する。なおこの場合、適宜中間焼鈍を
行ないながら減面加工を行なう。
Next, this composite body 3 is extruded and subjected to area reduction processing such as wire drawing to form a tape shape, rectangular shape, or round wire. In this case, area reduction processing is performed while appropriately performing intermediate annealing.

なおSn量が不足する場合、減面加工した複合
体3の表面に、必要に応じて純Snを鍍金して、
Cu−Sn合金のSn量を増加させても良い。
In addition, if the amount of Sn is insufficient, the surface of the composite body 3 which has been subjected to surface reduction processing may be plated with pure Sn as necessary.
The amount of Sn in the Cu-Sn alloy may be increased.

このようにして複合体3をテープ状に成形した
場合、次にこの複合体3を拡散熱処理して、同図
Eに示すようにNb1とCu−Sn合金11aとの間
にNb3Sn化合物超電導体層4を形成させる。また
必要に応じて、更に表面にCuなど安定化金属5
を鍍金または半田により貼合接合して同図Fに示
す如きNb3Sn化合物超電導線8を製造する。
When the composite 3 is formed into a tape shape in this way, this composite 3 is then subjected to a diffusion heat treatment to form a superconducting Nb 3 Sn compound between the Nb 1 and the Cu-Sn alloy 11a, as shown in Figure E. A body layer 4 is formed. In addition, if necessary, the surface may be further coated with a stabilizing metal such as Cu.
The Nb 3 Sn compound superconducting wire 8 as shown in FIG. F is manufactured by bonding and bonding by plating or soldering.

このようにして得られたNb3Sn化合物超電導線
8は第5図に拡大して示す如く、形成された
Nb3Sn化合物超電導体層4がTa条からなる隔壁
材10により複数個に隔離されている。なお隔壁
材10の表面には反応生成物12が形成されてい
るが、これは超電導作用に寄与しない無害なもの
である。
The Nb 3 Sn compound superconducting wire 8 thus obtained was formed as shown in the enlarged view in FIG.
The Nb 3 Sn compound superconductor layer 4 is separated into a plurality of layers by a partition material 10 made of Ta strips. Although a reaction product 12 is formed on the surface of the partition wall material 10, this is harmless and does not contribute to superconductivity.

従つて、化合物超電導体層4が多芯状に形成さ
れていることから本質的安定化が得られ、また幅
方向における電流分布の均一化が図れるため磁場
に対する異方性がなく、特に超電導マグネツトを
製造する場合に、特性の安定したものが得られ
る。また隔壁材10は間隔をおいて化合物超電導
体層4と垂直に設けられているので、第3図に示
す従来方法に比べて表面の損失を数割低減でき、
その分臨界電流密度の向上を図れると共に、外部
からのSnの供給を行なえるため、生成される
Nb3Sn化合物超電導体層4も多くでき、この結
果、特性の向上を図ることができる。
Therefore, since the compound superconductor layer 4 is formed in a multicore shape, essential stability can be obtained, and since the current distribution in the width direction can be made uniform, there is no anisotropy with respect to the magnetic field. When manufacturing, products with stable characteristics can be obtained. Furthermore, since the partition wall material 10 is provided perpendicularly to the compound superconductor layer 4 at intervals, surface loss can be reduced by several percent compared to the conventional method shown in FIG.
As a result, the critical current density can be improved, and Sn can be supplied from the outside, so the generated
The number of Nb 3 Sn compound superconductor layers 4 can be increased, and as a result, the characteristics can be improved.

また基材となるNbは単一体でありながら、一
連の減面加工によつてNb3Sn化合物超電導体層4
を多芯化できるため、従来のブロンズ法に比べ
て、フイラメントの断線や隔壁材10の破れがな
く極めて加工性に優れている。
In addition, although Nb, which is the base material, is a single substance, a series of surface reduction processes are performed to form the Nb 3 Sn compound superconductor layer 4.
Since it is possible to use multiple filaments, there is no breakage of the filament or tearing of the partition material 10, and the workability is extremely excellent compared to the conventional bronze method.

なお本発明は、Nb3Sn化合物超電導線を製造す
る方法に限らず例えばV3Ga、Nb3Alなどの固相
間の熱拡散により形成される化合物超電導線を製
造する場合にも適用することができる。なお、
V3Ga化合物超電導線を製造する場合には、融点
の高い棒状金属としてVを用い、融点の低い元素
を含む金属管として例えばCu−Ga合金管を用い
る。またNb3Al化合物超電導線を製造する場合に
は、融点の高い棒状金属としてNbを用い、融点
の低い元素を含む金属管として、例えばCu−Al
合金管などを用いる。
Note that the present invention is not limited to the method for manufacturing Nb 3 Sn compound superconducting wires, but can also be applied to manufacturing compound superconducting wires formed by thermal diffusion between solid phases such as V 3 Ga and Nb 3 Al. Can be done. In addition,
When manufacturing a V 3 Ga compound superconducting wire, V is used as a rod-shaped metal with a high melting point, and a Cu-Ga alloy tube, for example, is used as a metal tube containing an element with a low melting point. In addition, when manufacturing Nb 3 Al compound superconducting wire, Nb is used as a rod-shaped metal with a high melting point, and metal tubes containing elements with a low melting point are made of, for example, Cu-Al.
Use alloy tubes, etc.

次に本発明の具体的な実施例について説明す
る。
Next, specific examples of the present invention will be described.

第4図Aに示すように直径150mmの純Nb1の表
面に10mmおきに、長手方向に沿つて深さ3mm、幅
1mmのスリツト9を47本形成し、このスリツトに
幅6mm、厚さ1mmのTa条からなる隔壁材10を
嵌込んで同図Bのように形成した。次いでこれを
同図Cに示すように外径198mm、内径157mmのCu
−13.5重量%Sn合金管11内に挿入し、この両端
をCu−13.5重量%Sn合金板で蓋をして、これを
真空中で溶接して内部を密閉した。次にこの複合
体3を700℃で1時間加熱した後、外径25mmに押
出し加工して複合体3の内部を密着させ、しかる
後、減面率65%加工毎に中間焼鈍を入れながら、
厚さ100μ×幅5mmのテープ状に加工した。
As shown in Figure 4A, 47 slits 9 with a depth of 3 mm and a width of 1 mm are formed along the longitudinal direction at intervals of 10 mm on the surface of pure Nb1 with a diameter of 150 mm. A partition wall material 10 made of Ta strips was fitted and formed as shown in Figure B. Next, as shown in Fig.
-13.5% by weight Sn alloy tube 11, both ends of which were covered with Cu-13.5% by weight Sn alloy plates, and these were welded in a vacuum to seal the inside. Next, this composite 3 was heated at 700°C for 1 hour, and then extruded to an outer diameter of 25 mm to make the inside of the composite 3 adhere tightly.After that, intermediate annealing was performed every time the area reduction rate was 65%.
It was processed into a tape shape with a thickness of 100μ and a width of 5mm.

次にこのテープ状の複合体3の表面に、不活性
雰囲気中で鈍Snを鍍金後、直ちに拡散熱処理し
て表層のCu−Sn合金11aのSn量を増加させ
た。次いでこれを650℃×80時間の拡散熱処理を
行ない同図Eに示すようにCu−Sn合金11aと
Nb1との界面に、隔壁材10で隔離された多芯
状のNb3Sn化合物超電導体層4を形成した。更に
Cu−Sn合金11aの表面に安定化金属5として
厚さ60μmのCu箔を半田で貼合接合して、同図F
に示す如きNb3Sn化合物超電導線8を製造した。
Next, the surface of this tape-shaped composite 3 was plated with dull Sn in an inert atmosphere and immediately subjected to diffusion heat treatment to increase the Sn content of the Cu-Sn alloy 11a in the surface layer. This was then subjected to diffusion heat treatment at 650°C for 80 hours to form Cu-Sn alloy 11a as shown in Figure E.
A multicore Nb 3 Sn compound superconductor layer 4 isolated by a partition material 10 was formed at the interface with Nb1. Furthermore
F
A Nb 3 Sn compound superconducting wire 8 as shown in FIG.

このようにして得られた化合物超電導線8につ
いて電流容量を測定したところ12T(テスラー)
で200Aであり、数サンプルの測定のバラツキも
±5%以内であり、またこれを用いて作成した超
電導マグネツトも、磁場に対する異方性が少ない
ため従来のものに比べて、高い磁場の均質化を図
ることができた。
The current capacity of the compound superconducting wire 8 thus obtained was measured to be 12T (Tesler).
The current is 200A, and the variation in measurement of several samples is within ±5%. Also, the superconducting magnet created using this magnet has less anisotropy with respect to the magnetic field, so it has a higher homogenization of the magnetic field than conventional magnets. We were able to achieve this goal.

以上説明した如く本発明に係る化合物超電導線
の製造方法によれば化合物超電導体層を隔壁材に
より複数に分割して多芯状に形成されているの
で、超電導特性の本質的安定化と電流分布の均一
化を図ることができると共に高い臨界電流が得ら
れ、しかも一連の減面加圧によつて多芯状に形成
できるので従来のブロンズ法に比べて加工性にも
優れているなどの顕著な効果を有するものであ
る。
As explained above, according to the method for manufacturing a compound superconducting wire according to the present invention, the compound superconductor layer is divided into a plurality of layers by the partition material and formed into a multicore shape, thereby essentially stabilizing the superconducting properties and improving the current distribution. It is possible to achieve uniformity of the metal and obtain a high critical current, and it is also possible to form a multi-core shape by a series of surface reduction pressurization, so it has remarkable advantages such as superior workability compared to the conventional bronze method. It has a great effect.

【図面の簡単な説明】[Brief explanation of drawings]

第1図乃至第3図は従来方法を示すもので、第
1図A乃至同図Cは単芯型の化合物超導線を製造
する工程に従つて順次示した断面図、第2図Aお
よび同図Bはブロンズ型の化合物超電導線を製造
する工程に従つて示した断面図、第3図Aおよび
同図Bは安定化金属を設けたブロンズ型の化合物
超電導線を製造する工程に従つて示した断面図、
第4図A乃至同図Fは本発明方法により化合物超
電導線を製造する工程に従つて順次示した断面
図、第5図は第4図Fの要部を拡大して示す断面
図である。 1……Nb、2……Sn、3……複合体、4……
化合物超電導体層、5……安定化金属、8……化
合物超電導線、9……スリツト、10……隔壁
材、11……Cu−Sn合金管、11a……Cu−Sn
合金。
1 to 3 show the conventional method, and FIGS. 1A to 3C are cross-sectional views sequentially shown according to the steps of manufacturing a single-core compound superconducting wire, and FIGS. Figure B is a cross-sectional view showing the process of manufacturing a bronze-type compound superconducting wire, and Figures 3A and 3B are cross-sectional views showing the process of manufacturing a bronze-type compound superconducting wire provided with a stabilizing metal. cross-sectional view,
4A to 4F are cross-sectional views sequentially shown in steps of manufacturing a compound superconducting wire according to the method of the present invention, and FIG. 5 is a cross-sectional view showing an enlarged main part of FIG. 4F. 1...Nb, 2...Sn, 3...complex, 4...
Compound superconductor layer, 5... Stabilizing metal, 8... Compound superconducting wire, 9... Slit, 10... Partition material, 11... Cu-Sn alloy tube, 11a... Cu-Sn
alloy.

Claims (1)

【特許請求の範囲】 1 化合物超電導体を形成する元素のうち、融点
の高い棒状金属の表面に周方向に沿つて所定の間
隔で、長手方向に沿つた複数本のスリツトを形成
し、超電導作用に寄与しない金属条からなる隔壁
材を前記スリツトに嵌入した後、これを化合物超
電導体を形成する融点の低い他方の元素を含む金
属管内に挿入し、次いでこの複合体の両端を密閉
した後、減面加工して所望の形状とし、しかる
後、熱処理を行なつて前記隔壁材によつて多芯状
に隔離された化合物超電導体層を形成することを
特徴とする化合物超電導線の製造方法。 2 複合材を熱処理した後、この表面に安定化金
属を鍍金または貼合接合することを特徴とする特
許請求の範囲第1項記載の化合物超電導線の製造
方法。
[Scope of Claims] 1 A plurality of longitudinal slits are formed at predetermined intervals along the circumferential direction on the surface of a rod-shaped metal having a high melting point among the elements forming a compound superconductor, and superconducting action is achieved. After fitting a partition material made of a metal strip that does not contribute to A method for manufacturing a compound superconducting wire, which comprises reducing the area to a desired shape, and then heat-treating it to form a compound superconductor layer separated in a multicore manner by the partition material. 2. The method for producing a compound superconducting wire according to claim 1, which comprises heat-treating the composite material and then plating or bonding a stabilizing metal onto the surface of the composite material.
JP8113679A 1979-06-27 1979-06-27 Method of manufacturing compound superconductor Granted JPS566320A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8113679A JPS566320A (en) 1979-06-27 1979-06-27 Method of manufacturing compound superconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8113679A JPS566320A (en) 1979-06-27 1979-06-27 Method of manufacturing compound superconductor

Publications (2)

Publication Number Publication Date
JPS566320A JPS566320A (en) 1981-01-22
JPH0143409B2 true JPH0143409B2 (en) 1989-09-20

Family

ID=13737978

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8113679A Granted JPS566320A (en) 1979-06-27 1979-06-27 Method of manufacturing compound superconductor

Country Status (1)

Country Link
JP (1) JPS566320A (en)

Also Published As

Publication number Publication date
JPS566320A (en) 1981-01-22

Similar Documents

Publication Publication Date Title
US3905839A (en) Liquid sintered cobalt-rare earth intermetallic product
US4161062A (en) Method for producing hollow superconducting cables
US3838503A (en) Method of fabricating a composite multifilament intermetallic type superconducting wire
US6543123B1 (en) Process for making constrained filament niobium-based superconductor composite
US4665611A (en) Method of fabricating superconductive electrical conductor
US3778894A (en) PROCESS FOR MAKING A V{11 Ga SUPERCONDUCTIVE COMPOSITE STRUCTURE
JPH06338228A (en) Compound superconducting wire and manufacture thereof
US3836404A (en) Method of fabricating composite superconductive electrical conductors
US4367102A (en) Method for the manufacture of a superconductor containing an intermetallic compounds
US4153986A (en) Method for producing composite superconductors
US3676577A (en) Superconductors containing flux traps
JPH0143409B2 (en)
US3857173A (en) Method of producing a composite superconductor
US3996662A (en) Method for the manufacture of a superconductor having an intermetallic two element compound
US3763553A (en) Method of fabricating intermetallic type superconductors
US4037313A (en) Method for the manufacture of a superconductor
JP2520877B2 (en) Method for producing compound superconducting wire
JP3505894B2 (en) Compound superconducting wire
JPH024931A (en) Manufacture of nb3x super conducting material
JPH02148620A (en) Manufacture of nb3al superconductive wire
JP2719155B2 (en) Superconducting stranded wire manufacturing method
JPH04277409A (en) Compound superconducting wire and manufacture thereof
JPS5837644B2 (en) Method for manufacturing compound superconducting wire
US6451742B1 (en) High temperature superconducting composite conductor and method for manufacturing the same
JP3716309B2 (en) Manufacturing method of Nb3Sn wire