JPH0143304B2 - - Google Patents

Info

Publication number
JPH0143304B2
JPH0143304B2 JP54019920A JP1992079A JPH0143304B2 JP H0143304 B2 JPH0143304 B2 JP H0143304B2 JP 54019920 A JP54019920 A JP 54019920A JP 1992079 A JP1992079 A JP 1992079A JP H0143304 B2 JPH0143304 B2 JP H0143304B2
Authority
JP
Japan
Prior art keywords
charging
image forming
current
image
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54019920A
Other languages
Japanese (ja)
Other versions
JPS55111954A (en
Inventor
Tsukasa Kuge
Yasuyuki Tamura
Koichi Tanigawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP1992079A priority Critical patent/JPS55111954A/en
Publication of JPS55111954A publication Critical patent/JPS55111954A/en
Publication of JPH0143304B2 publication Critical patent/JPH0143304B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Control Or Security For Electrophotography (AREA)

Description

【発明の詳細な説明】 本発明は適正像を安定に形成するための像形成
装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an image forming apparatus for stably forming a proper image.

例えば感光体に像形成するのに一般には露光
源、コロナ帯電器、現像器が使用されている。コ
ロナ帯電は空気中で放電が行なわれるために環境
変化、例えば湿度・温度・気圧・又空気中の浮遊
物等による放電ワイヤーの汚染等によつてコロナ
放電状態が変化し、したがつて被帯電部材に向う
電流量が変化することにより被帯電部材の電位が
変化する。このことは被帯電部材に静電潜像を形
成しかつこれを可視像化する電子写真において
は、現像された画像が著しく変化する。したがつ
て画像状態を安定化するためには、コロナ放電に
よる被帯電部材上の帯電を安定にするか、さもな
ければ被帯電部材上の帯電の変化による潜像電位
の変化を補償する何らかの方法をとらなければな
らない。
For example, an exposure source, a corona charger, and a developer are generally used to form an image on a photoreceptor. Since corona charging occurs in the air, the state of corona discharge changes due to environmental changes, such as humidity, temperature, atmospheric pressure, or contamination of the discharge wire by floating objects in the air. A change in the amount of current directed toward the member changes the potential of the member to be charged. This means that in electrophotography in which an electrostatic latent image is formed on a charged member and visualized, the developed image changes significantly. Therefore, in order to stabilize the image state, it is necessary to stabilize the charge on the charged member due to corona discharge, or otherwise compensate for changes in the latent image potential due to changes in the charge on the charged member. must be taken.

安定像を得るための方法としてUSP2956487に
よるものが知られている。又コロナ帯電器の電源
として定電流電源を用いて、材に対して一定量の
コロナ放電電流を与えることが従来より知られて
いる(定電流制御)。
A method described in USP 2956487 is known as a method for obtaining a stable image. Furthermore, it is conventionally known to use a constant current power source as a power source for a corona charger to apply a constant amount of corona discharge current to the material (constant current control).

しかしながら被帯電部材の該帯電を行なう以前
の表面電位が一定でない場合もしくは被帯電部材
と接地との間の静電容量が一定でない場合等に
は、被帯電部材を一定の電位に帯電することはで
きない。
However, if the surface potential of the charged member before the charging is not constant, or if the capacitance between the charged member and the ground is not constant, it is not possible to charge the charged member to a constant potential. Can not.

その理由を述べると、一般に被帯電部材の静電
容量をC、帯電による被帯電部材の表面電位の変
化を△V、帯電によつて被帯電部材に与えられる
電荷を△Qとすれば△Q=C△Vと表わすことが
できる。又被帯電部材に対して、一定量の有効な
コロナ放電電流を与える帯電方法に於ては△Qは
帯電時間と有効なコロナ放電電流によつて定まる
一定の値になる。
To explain the reason, in general, if the capacitance of the charged member is C, the change in surface potential of the charged member due to charging is △V, and the charge given to the charged member due to charging is △Q, then △Q It can be expressed as =C△V. Further, in a charging method in which a fixed amount of effective corona discharge current is applied to the member to be charged, ΔQ becomes a constant value determined by the charging time and the effective corona discharge current.

ここで経時変化等により被帯電部材の静電容量
Cが変化した場合△Qが一定であるから帯電によ
つて生じる被帯電部材の表面電位の変化量△Vが
変化し、帯電を施した後の被帯電部材の表面電位
は、一定にならない。又、帯電による表面電位の
変化量△Vが一定であつても帯電を行なう以前の
被帯電体の表面電位が一定でなければ、帯電を施
した後の被帯電体の表面電位は一定にならない。
Here, if the capacitance C of the charged member changes due to changes over time, etc., since △Q is constant, the amount of change △V in the surface potential of the charged member caused by charging changes, and after charging The surface potential of the charged member is not constant. Furthermore, even if the amount of change in surface potential due to charging △V is constant, if the surface potential of the charged object before charging is not constant, the surface potential of the charged object after charging will not be constant. .

従つて被帯電部材に対して、一定量の有効なコ
ロナ放電電流を与える帯電方法(定電流制御)
は、被帯電部材の静電容量及び帯電を施す以前の
表面電位が、一定でない場合には、一定の表面電
位に帯電を行なうことができず、適正な画像を得
ることはできない。
Therefore, a charging method (constant current control) that applies a certain amount of effective corona discharge current to the charged member
In this case, if the capacitance of the member to be charged and the surface potential before charging are not constant, charging cannot be performed to a constant surface potential, and a proper image cannot be obtained.

又、コロナ放電装置の電源として定電圧電源を
用いることにより被帯電部材に対し、コロナ放電
を行なつた場合、定電圧で被帯電体を一定時間以
上帯電すれば、帯電前の被帯電体の表面電位に拘
らず、被帯電体の表面電位を一定にすることがで
きる(定電圧制御)。
In addition, when corona discharge is performed on a charged member by using a constant voltage power supply as the power source of a corona discharge device, if the charged member is charged with a constant voltage for a certain period of time, the charged member before charging is Regardless of the surface potential, the surface potential of the charged object can be made constant (constant voltage control).

しかしながら、帯電電圧を一定にしてもコロナ
抵抗は、例えば湿度等の環境条件によつて変動す
るので帯電電流も変動する。例えば高湿の場合、
コロナ抵抗は大きくなるので帯電電流は減少し、
低湿の場合はコロナ抵抗は小さくなり、帯電電流
は増大する。
However, even if the charging voltage is kept constant, the corona resistance varies depending on environmental conditions such as humidity, so the charging current also varies. For example, in the case of high humidity,
As the corona resistance increases, the charging current decreases,
In the case of low humidity, corona resistance decreases and charging current increases.

従つて、帯電電圧を一定にしても、帯電後の被
帯電体の表面電位は、環境条件の変動によつて変
わつてしまい、適正な画像を得ることはできな
い。
Therefore, even if the charging voltage is kept constant, the surface potential of the charged object after charging changes due to fluctuations in environmental conditions, making it impossible to obtain a proper image.

本発明は上記点に鑑みてなされたもので、その
目的とするところは、環境条件の変動等に拘らず
高品質の画像を得ることを可能にし、しかも簡単
な構成で取扱いも容易な画像形成装置を提供する
ことにある。
The present invention has been made in view of the above points, and its purpose is to form an image that makes it possible to obtain high-quality images regardless of changes in environmental conditions, and that has a simple configuration and is easy to handle. The goal is to provide equipment.

即ち本発明は、帯電手段を有し回転体上に静電
潜像を形成し現像した後転写することにより転写
紙上に画像を形成する画像形成装置にいおいて、
交流入力電圧が印加される1次巻線と、前記帯電
手段の帯電電極に結合された2次巻線と、前記2
次巻線と磁気的に結合した3次巻線とを備えた変
成器、像形成の開始を指令する指令手段、前記指
令手段による像形成開始指令に応答し像形成開始
前に前記回転体の準備回転を1回転させ、前記回
転体を一様電位にし、前記準備回転完了後、引き
続き前記回転体を停止することなく像形成動作の
ための回転をさせる駆動手段、前記準備回転の間
に前記帯電手段による帯電電流の正成分と負成分
の差分を検出する検出手段、前記準備回転の間に
前記検出出力と基準値とを比較し比較結果に応じ
て前記3次巻線に流れる電流又は前記3次巻線に
印加される電圧を制御することにより前記差分を
所定値にする制御手段、前記制御手段の制御動作
により得られた、前記差分を前記所定値にするた
めの制御値を記憶し、像形成動作中保持する記憶
手段、を有し、前記準備回転後引き続いて行なわ
れる前記回転体の回転中に像形成動作を開始し、
像形成動作中前記記憶手段に保持された制御値に
基づいて前記3次巻線に流れる電流値又は前記3
次巻線に印加される電圧値を前記記憶手段に保持
された制御値に対応する一定の値に維持すること
により、前記帯電手段の帯電電極に印加する帯電
電圧を像形成動作中一定に維持することを特徴と
する画像形成装置を提供するものである。
That is, the present invention provides an image forming apparatus that has a charging means and forms an image on a transfer paper by forming an electrostatic latent image on a rotating body, developing it, and then transferring it.
a primary winding to which an AC input voltage is applied; a secondary winding coupled to a charging electrode of the charging means;
a transformer comprising a tertiary winding magnetically coupled to a secondary winding; command means for commanding the start of image formation; a driving means for performing one preparatory rotation to bring the rotating body to a uniform potential, and after the completion of the preparatory rotation, continuing to rotate the rotating body for an image forming operation without stopping the rotating body; a detection means for detecting a difference between a positive component and a negative component of a charging current generated by the charging means; a detection means for comparing the detection output with a reference value during the preparatory rotation; and a current flowing through the tertiary winding or the A control means for setting the difference to a predetermined value by controlling a voltage applied to a tertiary winding, and storing a control value for setting the difference to the predetermined value obtained by a control operation of the control means. , a storage means for storing data during the image forming operation, and starts the image forming operation during the rotation of the rotating body that is performed subsequent to the preparatory rotation;
During the image forming operation, the current value flowing through the tertiary winding or the third
By maintaining the voltage value applied to the next winding at a constant value corresponding to the control value held in the storage means, the charging voltage applied to the charging electrode of the charging means is maintained constant during the image forming operation. The present invention provides an image forming apparatus characterized by:

具体的な一例として、第1段階として静電容量
及び表面電位を基準の状態に保つた被帯電部材を
配置し、この時帯電に有効なコロナ放電電流を予
め定められた値に為すように高圧電源の出力電圧
又は出力電圧波形の状態を自動的に調整する。こ
こに帯電に有効なコロナ放電電流は、交流コロナ
放電に於ては正の電流及び負の電流の絶対値の差
で表わされ、直流コロナ放電に於てはその電流値
で表わされる。基準状態は被帯電部材の所定値を
一様露光、一様しや光、一様除電又は一様帯電し
た場合に相当する。
As a specific example, in the first step, a member to be charged is placed whose capacitance and surface potential are maintained at a standard state, and at this time, a high voltage is applied so as to bring the corona discharge current effective for charging to a predetermined value. Automatically adjust the state of the output voltage or output voltage waveform of the power supply. In AC corona discharge, the corona discharge current effective for charging is expressed by the difference between the absolute values of the positive current and negative current, and in DC corona discharge, it is expressed by the current value. The reference state corresponds to a case where the member to be charged is uniformly exposed to light, uniformly dimmed, uniformly neutralized, or uniformly charged to a predetermined value.

次いで第2段階として第1段階で成就された高
圧電源の状態又はその高圧電源の状態に対応する
制御信号を記憶する手段により記憶し、該高圧電
源の状態を固定する。
Next, as a second step, the state of the high voltage power source achieved in the first step or a control signal corresponding to the state of the high voltage power source is stored by the storage means, and the state of the high voltage power source is fixed.

第1段階及び第2段階を終えた後に目的とする
任意の被帯電部材に対して帯電を行なえば高圧出
力電圧又は高圧出力電圧波形は環境条件に対応し
て自動的に調整されるにもかかわらず、目的とす
る被帯電部材に対しては、一定の高圧出力電圧又
は、高圧出力電圧波形で帯電される。その結果、
環境条件の変動や被帯電部材の状態にかかわらず
実質的に一定かつ一様な表面電位をプロセス速度
を落さずに得ることが可能となる。
Although the high-voltage output voltage or the high-voltage output voltage waveform will be automatically adjusted in accordance with the environmental conditions if the desired charged member is charged after completing the first and second stages. First, the target member to be charged is charged with a constant high-voltage output voltage or high-voltage output voltage waveform. the result,
It becomes possible to obtain a substantially constant and uniform surface potential without reducing the process speed, regardless of changes in environmental conditions or the state of the member to be charged.

以下、電子写真を例にして説明する。 This will be explained below using electrophotography as an example.

現在、広く用いられている代表的な電子写真方
法として次の二つの方法がある。
The following two methods are currently widely used as typical electrophotographic methods.

第一の方法は、光導電層と導電性基体より成る
二層感光体上に正極性又は負極性の一次帯電を行
ない、引続き画像露光をして静電潜像を形成し、
さらに現像のプロセスを経て可視像を得るもので
ある。
The first method is to perform primary charging of positive or negative polarity on a two-layer photoconductor consisting of a photoconductive layer and a conductive substrate, and then imagewise expose it to form an electrostatic latent image.
A visible image is obtained through a further development process.

第二の方法は、透明絶縁層光導電層及び導電性
基体より成る三層感光体上に正極性又は負極性の
一次帯電を行ない。引続き画像露光及び2次帯電
を行ない、さらに一様に露光する事によつて静電
潜像を形成し、次に現像のプロセスを経て可視像
を得るものである。
In the second method, a three-layer photoreceptor consisting of a transparent insulating layer, a photoconductive layer, and a conductive substrate is primarily charged to a positive or negative polarity. Subsequently, image exposure and secondary charging are performed, and by further uniform exposure, an electrostatic latent image is formed, and then a visible image is obtained through a development process.

第1図は後者のプロセスを示したもので、1は
感光体で矢印方向に回転する。2は一次帯電器、
3はオリジナル12をランプ10で露光したとき
の光像の光軸、光像は、感光体の回転に同期した
ミラー13,14の往復動によりオリジナルをス
キヤンすることで得られる。4は二次帯電器、5
は全面露光源、6は現像器、7は転写帯電器で可
視像を転写紙8に転写した。9はブレードクリー
ナで可視像を転写紙8に転写した後の感光体をク
リーニングする。
FIG. 1 shows the latter process, where 1 is a photoreceptor which rotates in the direction of the arrow. 2 is a primary charger,
3 is the optical axis of a light image when the original 12 is exposed with the lamp 10, and the light image is obtained by scanning the original by reciprocating mirrors 13 and 14 in synchronization with the rotation of the photoreceptor. 4 is a secondary charger, 5
A visible image was transferred to transfer paper 8 using a full-surface exposure source, 6 a developing device, and a transfer charger 7. A blade cleaner 9 cleans the photoreceptor after the visible image has been transferred to the transfer paper 8.

この電子写真プロセスに於て用いられる帯電方
法は、直流コロナ放電もしくは交流コロナ放電を
利用するもので、例えば第1図に於て、一次帯電
器2、転写帯電器7、として直流コロナ放電を又
二次帯電器として交流コロナ放電を利用する方法
が一般的である。
The charging method used in this electrophotographic process utilizes DC corona discharge or AC corona discharge. For example, in FIG. A common method is to use AC corona discharge as a secondary charger.

最も簡単な構成の帯電器の従来例は、第2図イ
に示されたもので、21は高圧電源22はコロナ
放電線11は感光体を示す。
A conventional example of a charger having the simplest structure is shown in FIG. 2A, in which 21 represents a high-voltage power source 22, and corona discharge wire 11 represents a photoreceptor.

高圧電源21として交流電源もしくは直流電源
が用いられコロナ放電開始電圧Vcより大なる電
圧をコロナ放電電極22に印加することにより、
コロナ放電電流を生じさせて感光体表面に電荷を
付与するものである。
By using an AC power supply or a DC power supply as the high voltage power supply 21 and applying a voltage higher than the corona discharge starting voltage Vc to the corona discharge electrode 22,
It generates a corona discharge current to impart charge to the surface of the photoreceptor.

電子写真に於ては、その画像に応じて一定の表
面電位の静電潜像を常に良好な再現性をもつて得
ることが重要である。コロナ帯電が静電潜像に及
ぼす影響は大きく、従つて表面電位安定化の為
に、第2図イの帯電器ではコロナ放電器ではコロ
ナ放電器のシールドケースの開口幅、コロナ放電
線と感光体との距離、等を一定にしなければなら
ないだけでなく、温度、湿度等の環境条件が一定
の状態で使用しなければならない。
In electrophotography, it is important to always obtain electrostatic latent images with a constant surface potential depending on the image with good reproducibility. Corona charging has a large effect on the electrostatic latent image, and therefore, in order to stabilize the surface potential, the charger shown in Figure 2A, the corona discharger, the opening width of the shield case of the corona discharger, the corona discharge line and the photosensitive Not only must the distance from the body be kept constant, but also the environmental conditions such as temperature and humidity must be kept constant.

又第2図ロ,ハは、上記条件が変動したとき表
面電位の変化を少なくしようとした従来の帯電装
置で、ロは高圧電源21の高圧出力側に抵抗24
を直列に挿入したものであり、ハはコロナ放電線
と感光体1との間に、グリツド25を配位したも
のであるが、いずれも雰囲気の状態の変動、ある
いはコロナ放電線と感光体表面との距離のばらつ
き等によるコロナ抵抗の変動は十分に補償され
ず、得られる表面電位の安定性、引いては最終的
に得られる可視像の安定性は不満足なものであ
る。例えば常温常湿から高温多湿への雰囲気変動
による表面電位の変動は、現像後の可視像にかぶ
りを生じさせる等の不都合を生ずる。
Figure 2 (b) and (c) show a conventional charging device that attempts to reduce changes in surface potential when the above conditions fluctuate;
are inserted in series, and C is one in which a grid 25 is arranged between the corona discharge wire and the photoreceptor 1, but in both cases, changes in the atmospheric condition or the corona discharge wire and the photoreceptor surface Fluctuations in corona resistance due to variations in the distance between the two surfaces are not sufficiently compensated for, and the stability of the obtained surface potential and, by extension, the stability of the finally obtained visible image are unsatisfactory. For example, a change in surface potential due to a change in the atmosphere from normal temperature and humidity to high temperature and humidity causes problems such as fogging in the visible image after development.

そこで感光体表面を帯電するに当り、感光体表
面に対して一定量の有効なコロナ放電電流を与え
る帯電方法を適用すれば感光体の表面電位は、温
度、湿度、気圧等の環境の変化に依らず、きわめ
て安定して、一定の表面電位を得ることができ
る。
Therefore, when charging the surface of the photoreceptor, if a charging method is applied that applies a certain amount of effective corona discharge current to the surface of the photoreceptor, the surface potential of the photoreceptor will be able to change easily due to environmental changes such as temperature, humidity, and atmospheric pressure. It is possible to obtain a constant surface potential in an extremely stable manner.

しかし一定量の有効なコロナ放電電流をあたえ
る帯電方法を、前述の第1、第2の電子写真方法
の一次帯電に適用した場合について考える。一次
帯電を施す時には感光体の静電容量は一定である
と考えられる。しかし、一次帯電を施す以前の該
感光体の表面電位は一般にはきわめて不均一であ
る。例えば、第1図に示した電子写真装置に於て
は感光体1は一次帯電器2により帯電を受ける以
前に転写帯電器7による帯電を受けている。とこ
ろが転写帯電器7によるコロナ電流は転写を行な
う時には転写紙8によりさえぎられ、感光体1に
は、微量のコロナ電流しか達しないのに対し転写
紙8が転写帯電器7の正面に供給されていない時
には転写帯電器7によるコロナ電流の大部分が感
光体1に達する。転写は一般に必要に応じて断続
的に行なわれるため転写帯電器7の正面を通過し
た感光体1の表面には、きわめて不均一な電位の
ムラを生じている。
However, a case will be considered in which a charging method that applies a certain amount of effective corona discharge current is applied to the primary charging of the first and second electrophotographic methods described above. When primary charging is applied, the capacitance of the photoreceptor is considered to be constant. However, the surface potential of the photoreceptor before primary charging is generally extremely non-uniform. For example, in the electrophotographic apparatus shown in FIG. 1, the photoreceptor 1 is charged by the transfer charger 7 before being charged by the primary charger 2. However, the corona current generated by the transfer charger 7 is blocked by the transfer paper 8 during transfer, and while only a small amount of corona current reaches the photoreceptor 1, the transfer paper 8 is supplied in front of the transfer charger 7. When there is no charger, most of the corona current from the transfer charger 7 reaches the photoreceptor 1. Since the transfer is generally performed intermittently as necessary, the surface of the photoreceptor 1 that has passed in front of the transfer charger 7 has extremely non-uniform potential unevenness.

一例として、転写紙8が転写帯電器7の正面に
あつた時、該部分の次回の一次帯電を施す以前の
電位は+300Vであつたのに対し転写紙8が転写
帯電器7の正面にない時該部分の次回の一次帯電
を施す以前の電位は+800Vであつた。
As an example, when the transfer paper 8 is in front of the transfer charger 7, the potential of that part before the next primary charging is +300V, but the transfer paper 8 is not in front of the transfer charger 7. At this time, the potential of that part before the next primary charging was +800V.

その他、一次帯電を施す以前の電位は、前回の
静電潜像等の影響によつて変化する。
In addition, the potential before primary charging changes depending on the influence of the previous electrostatic latent image and the like.

従つて前述のごとき一定量の有効なコロナ放電
電流を被帯電体に与える帯電方法を該電子写真方
法の一次帯電に用いた場合一次帯電後の表面電位
はきわめて不均一なものとなる。
Therefore, when the above-mentioned charging method of applying a certain amount of effective corona discharge current to the charged object is used for the primary charging in the electrophotographic method, the surface potential after the primary charging becomes extremely non-uniform.

又かかる一定量の有効なコロナ放電電流をあた
える帯電方法を前述の第2の電子写真方法の画像
露光と同時に行なう除電に適用した場合、十分な
コントラストを有する静電潜像を形成することが
困難である。
Furthermore, when a charging method that applies such a certain amount of effective corona discharge current is applied to charge removal that is performed simultaneously with image exposure in the second electrophotographic method, it is difficult to form an electrostatic latent image with sufficient contrast. It is.

即ちこの電子写真方法に於ては画像露光と同時
に除電を行なうが、画像光の明暗に応じて感光体
中の光導電層が実質的に導体又は絶縁体としては
たらき、見かけの静電容量が変化する。電子写真
方法は除電時に画像光の明暗にかかわらず感光体
を一様な電位にすることによつて画像光の明暗に
応じて感光体表面に電荷量の差異を形成し、次い
で感光体に一様に光を照視して、感光体中の光導
電層を導電化し、感光体表面に存在する電荷に応
じてコントラストの高い静電潜像を形成するもの
である。従つて除電後の状態としては、画像光の
明暗に応じた電荷量の差異が大きく画像光の明
暗、即ち感光体の見かけの静電容量の差異にかか
わらず、表面電位が一定であることが望ましい。
That is, in this electrophotographic method, static electricity is removed at the same time as image exposure, but the photoconductive layer in the photoreceptor essentially acts as a conductor or insulator depending on the brightness of the image light, and the apparent capacitance changes. do. The electrophotographic method creates a difference in the amount of charge on the surface of the photoreceptor depending on the brightness or darkness of the image light by setting the photoreceptor at a uniform potential regardless of the brightness or darkness of the image light during charge removal, and then applying a uniform charge to the photoreceptor. The photoconductive layer in the photoreceptor is irradiated with light in a similar manner to make the photoconductive layer in the photoreceptor conductive, and an electrostatic latent image with high contrast is formed depending on the charge present on the surface of the photoreceptor. Therefore, in the state after charge removal, there is a large difference in the amount of charge depending on the brightness and darkness of the image light, and the surface potential remains constant regardless of the brightness and darkness of the image light, that is, the difference in the apparent capacitance of the photoreceptor. desirable.

前述のごとき一定量の有効なコロナ放電電流を
あたえる帯電方法を適用した場合には、感光体の
見かけの静電容量の変化に依らず一定量の電荷が
感光体表面に与えられるため、除電後の状態で、
画像光の明暗に応じた電荷量の差異を形成するこ
とが困難であり、従つてコントラストの高い静電
潜像を得ることができない。
When applying a charging method that applies a certain amount of effective corona discharge current as described above, a certain amount of charge is applied to the surface of the photoreceptor regardless of changes in the apparent capacitance of the photoreceptor, so that In the state of
It is difficult to form a difference in the amount of charge depending on the brightness and darkness of the image light, and therefore it is impossible to obtain an electrostatic latent image with high contrast.

第3〜9図により具体例を説明する。 A specific example will be explained with reference to FIGS. 3 to 9.

第3図は帯電制御装置のブロツクダイアグラム
である。
FIG. 3 is a block diagram of the charge control device.

高圧発生部31で発生した高圧出力は、放電電
極22に導かれ被帯電体37にコロナ放電電荷を
付与する。
The high voltage output generated by the high voltage generator 31 is guided to the discharge electrode 22 and applies a corona discharge charge to the charged body 37 .

一方、有効なコロナ放電電流は、電流検出部3
2で検出され、検出された信号は比較増巾部33
で基準信号と比較され制御信号を発生する。制御
信号は、スイツチ34を介して記憶部35に送ら
れ記憶部35において記憶される。
On the other hand, the effective corona discharge current is determined by the current detection unit 3
2, and the detected signal is sent to the comparison amplification section 33.
is compared with a reference signal to generate a control signal. The control signal is sent to the storage section 35 via the switch 34 and stored in the storage section 35.

同時に制御信号は制御部36に送られ、制御部
36はコロナ放電電流が適正となる様制御信号に
応じて高圧出力を制御する。
At the same time, the control signal is sent to the control section 36, and the control section 36 controls the high voltage output according to the control signal so that the corona discharge current is appropriate.

ここで帯電に当つては、第1段階として、まず
被帯電部材37として基準の状態に保つた部材を
配置してコロナ放電を行ない電流検出部32で検
出されるコロナ放電電流が予め定められた値にな
つた後第2段階に進む。第2段階としてスイツチ
34をオフして検出部32による制御信号を断
ち、記憶部35に記憶された所定のコロナ放電を
行なわしめる制御信号によつて高圧出力電圧レベ
ル、あるいは高圧出力電圧波形を一定に保ち、そ
れによつてコロナ放電を行ない任意の電位にある
被帯電部材を一定帯電することができる。そして
検出部32が高圧部31の低圧側に設けたことか
ら、共通の感光体に高圧部の異なる複数のチヤー
ジヤが設けられ、それらが同時に作動していても
各独立に制御ができ正確である。
In charging, as a first step, a member kept in a standard state is placed as the member to be charged 37 and corona discharge is performed, and the corona discharge current detected by the current detection unit 32 is determined in advance. After reaching the value, proceed to the second stage. In the second step, the switch 34 is turned off to cut off the control signal from the detection unit 32, and the high voltage output voltage level or high voltage output voltage waveform is kept constant by the control signal stored in the storage unit 35 for performing a predetermined corona discharge. This allows corona discharge to be carried out and a member to be charged at an arbitrary potential to be charged to a constant value. Since the detection section 32 is provided on the low-pressure side of the high-pressure section 31, multiple chargers with different high-pressure sections are provided on a common photoreceptor, and even if they are operating simultaneously, they can be controlled independently and accurately. .

第4〜8図に第3図の帯電制御装置を各種のコ
ロナ放電器に利用した帯電装置の回路構成を示
す。
4 to 8 show circuit configurations of charging devices in which the charging control device shown in FIG. 3 is used in various corona dischargers.

第4図はプラスコロナ放電に応用した例であ
る。同様にしてマイナスコロナ放電に応用するこ
とも可能である。
Figure 4 shows an example of application to positive corona discharge. It is also possible to apply to negative corona discharge in the same way.

第4図中、38は入力電圧に応じ発振出力電圧
が変化する周知の発振器、311は昇圧トラン
ス、312は正の帯電をさせるための整流器、3
21はコロナ放電による帯電に有効な電流を電圧
降下として検出する抵抗、331は降下電圧を基
準電圧源332と比較しその差に応じた出力をす
る演算増巾器、351は増巾器331による出力
をサンプルホールドするコンデンサ、362はそ
のホールド値により制御用トランジスタ361の
通電量を制御する増巾器である。
In FIG. 4, 38 is a well-known oscillator whose oscillation output voltage changes depending on the input voltage, 311 is a step-up transformer, 312 is a rectifier for positively charging, 3
21 is a resistor that detects the current effective for charging due to corona discharge as a voltage drop; 331 is an operational amplifier that compares the voltage drop with a reference voltage source 332 and outputs an output according to the difference; and 351 is the amplifier 331. A capacitor 362 that samples and holds the output is an amplifier that controls the amount of current flowing through the control transistor 361 based on its hold value.

今通常より環境が低温、高湿のとき放電電流2
2によるコロナ放電電流は低下し帯電電位が所定
よりも下がる。被帯電体が基準状態のとき検出抵
抗321がその変化を検出し増巾器331により
その変化に応じてスイツチ34を介してコンデン
サ351を充電しかつ増巾器362の出力を増大
せしめるのでトランジスタ361の通電量を多く
し、発振器38の入力電圧を増加させる。従つて
高圧トランス31の出力を増大して放電電流を増
加し所定の帯電電位に復帰せしめる。そして被帯
電体が基準状態でなくなる前にスイツチ34をオ
フし、その後はコンデンサ351の充電電位によ
り増巾器362の出力を保持し、先のトランジス
タ361による通電量によりコロナ放電を続け
る。更にトランジスタ361の出力はアンプ36
2に帰かんするので、一定出力を保持し、保持効
果を更に高める。
Discharge current 2 when the environment is lower temperature and higher humidity than usual
2, the corona discharge current decreases and the charging potential drops below a predetermined value. When the object to be charged is in the reference state, the detection resistor 321 detects the change, and the amplifier 331 charges the capacitor 351 via the switch 34 and increases the output of the amplifier 362 according to the change. The input voltage of the oscillator 38 is increased by increasing the amount of current supplied to the oscillator. Therefore, the output of the high voltage transformer 31 is increased to increase the discharge current and return to the predetermined charging potential. Then, the switch 34 is turned off before the charged object is no longer in the standard state, and thereafter the output of the amplifier 362 is held by the charging potential of the capacitor 351, and corona discharge is continued by the amount of current supplied by the transistor 361. Furthermore, the output of the transistor 361 is connected to the amplifier 36.
Since this returns to step 2, a constant output is maintained and the holding effect is further enhanced.

第5図は交流電源と直流電源を組み合せた電源
を用いたコロナ帯電に適用した例である。39は
38と独立に一定出力を発生する発振回路、31
3は交流波形に負の成分を多くするためのダイオ
ードである。
FIG. 5 shows an example of application to corona charging using a power source that combines an AC power source and a DC power source. 39 is an oscillation circuit that generates a constant output independently of 38; 31
3 is a diode for increasing the negative component in the AC waveform.

これは放電電極22に対する総電流により帯電
電位を決定するものでなく、電極に流れるACコ
ロナによる電流の+成分と−成分の差(以下電流
差と称する)によつて帯電性向(極性方向)及び
表面電位を決定する。
This method does not determine the charging potential based on the total current to the discharge electrode 22, but rather determines the charging tendency (polar direction) and Determine the surface potential.

ここでは電流差はダイオード313によつて負
の帯電性向を有し、被帯電体を負に帯電する。そ
してACコロナ放電による電流差を交流の差分検
出させる検出抵抗321により検出し、比較器3
31により検出した差分を電源332による基準
値と比較し、増巾器331は検出値に応じスイツ
チ34を介してコンデンサ351を充電し、かつ
増巾器362に制御信号を出力する。
Here, the current difference has a negative charging tendency due to the diode 313, and charges the object to be charged negatively. Then, the current difference due to the AC corona discharge is detected by the detection resistor 321 that detects the AC difference, and the comparator 3
The difference detected by the amplifier 31 is compared with a reference value by the power supply 332, and the amplifier 331 charges the capacitor 351 via the switch 34 according to the detected value, and outputs a control signal to the amplifier 362.

そして増巾器362を介して制御トランジスタ
361により発振器38の入力を制御して電流差
を予め定めた一定値となる様にしている。次に外
部からのタイミング信号によりスイツチ34を開
く、そして電流差が一定となる様な記憶回路35
による記憶信号をもとに発振器38に直流信号を
付与して一定の電流差でコロナ放電を続ける。
Then, the input of the oscillator 38 is controlled by the control transistor 361 via the amplifier 362 so that the current difference becomes a predetermined constant value. Next, the switch 34 is opened by an external timing signal, and the memory circuit 35 is configured so that the current difference becomes constant.
Based on the stored signal, a DC signal is applied to the oscillator 38 to continue corona discharge with a constant current difference.

第6図は交流コロナ放電による帯電装置に適用
した例である。もつぱら表面電荷の一様除去に使
用できる。
FIG. 6 shows an example of application to a charging device using AC corona discharge. It can also be used to uniformly remove surface charges.

第7図は本発明の一実施例を示すもので、交流
コロナ放電に適用した例であるが高圧トランスの
高圧出力発生用巻線40と磁気的に結合した出力
制御用巻線41を発振器39の出力巻線とは別に
有することに特徴がある。出力制御用巻線41に
流れる電流によつて高圧出力発生用巻線40に発
生する電圧の波形が歪みこれによつて正及び負の
コロナ放電の効率が変化するのである。
FIG. 7 shows an embodiment of the present invention, in which the present invention is applied to AC corona discharge. It is characterized by having a separate output winding. The current flowing through the output control winding 41 distorts the waveform of the voltage generated in the high voltage output generation winding 40, thereby changing the efficiency of positive and negative corona discharge.

従つて本図の回路は出力制御用巻線41に流れ
る電流を検出回路32及び記憶回路35によつて
制御することによりコロナ放電電流の正負の絶対
値の差を制御するものである。
Therefore, the circuit shown in the figure controls the difference between the positive and negative absolute values of the corona discharge current by controlling the current flowing through the output control winding 41 using the detection circuit 32 and the memory circuit 35.

出力制御用巻線41は本図のごとく高圧出力発
生用巻線40と独立に設けても良いし、又、高圧
出力発生用巻線40の一部を出力制御用巻線41
と兼ねることも可能である。
The output control winding 41 may be provided independently from the high voltage output generation winding 40 as shown in this figure, or a part of the high voltage output generation winding 40 may be provided as the output control winding 41.
It is also possible to serve as

第8図は第7図と同様であるが、出力制御用巻
線41の電流制御ではなく出力制御用巻線41の
端子間電圧を制御するものである。従つて第7図
に示した回路に比べてスイツチ34を開いた後の
状態で定電圧特性に秀れた電源になる利点を有す
る。
FIG. 8 is similar to FIG. 7, but instead of controlling the current of the output control winding 41, the voltage between the terminals of the output control winding 41 is controlled. Therefore, compared to the circuit shown in FIG. 7, this has the advantage of providing a power supply with excellent constant voltage characteristics in the state after the switch 34 is opened.

尚、第7,8図においてトランジスタ366,
368の出力をアンプ367,369に帰かんす
るので更に制御出力が一定となる。
In addition, in FIGS. 7 and 8, the transistors 366,
Since the output of 368 is returned to amplifiers 367 and 369, the control output becomes constant.

次にスイツチ34の作動タイミングにつき説明
する。
Next, the operation timing of the switch 34 will be explained.

被帯電体が前述帯電の第1段階において基準状
態にあるか否かは帯電器が組込まれている装置例
えば複写機からの信号により間接的に分かる。従
つてスイツチ34をこの信号でオフすることによ
り制御モードの切換えができる。例えば感光体を
予め前露光、前帯電して一様電位にする場合、そ
の処理期間が終わるときオフするといい。
Whether or not the object to be charged is in the reference state in the first stage of charging can be indirectly known from a signal from a device in which the charger is installed, such as a copying machine. Therefore, the control mode can be changed by turning off the switch 34 using this signal. For example, when the photoreceptor is pre-exposed and pre-charged to a uniform potential, it is preferable to turn it off when the processing period ends.

第10図はその回路例で第11図はそのタイム
チヤートである。図中Vは第3〜9図の発振器3
8の電源となる直流電源、Mは感光ドラム(第1
図の1)を回転させるモータ、MS1はそのドラム
に設けたドラム位置に対応したカムでオンするス
イツチ、Kは電源スイツチSWでオンするリレ
ー、LはMS1でオンするリレー、CLは原稿台往
動クラツチである。
FIG. 10 is an example of the circuit, and FIG. 11 is a time chart thereof. In the figure, V is the oscillator 3 in Figures 3 to 9.
8 is the DC power supply, M is the photosensitive drum (first
The motor that rotates 1) in the figure, MS 1 is a switch that is turned on by a cam that corresponds to the drum position installed on the drum, K is a relay that is turned on by power switch SW, L is a relay that is turned on by MS 1 , and CL is a document It is a moving clutch.

電源スイツチSWをオンするとリレーKにより
オンする接点k1,k2,k3によりドラムを回転し、
ドラム1を前露光、前帯電するための準備回転を
行い、ドラム表面を一様電位にする。この間にコ
ロナ放電を開始させ検出部22においてコロナ放
電電流の正負の差分を検出し、この検出値を基準
値と比較し、比較出力に応じて高圧制御部36を
制御する。ドラムが略1回転するとMS1がオンし
て、リレーLによりオンする接点l1,l2により原
稿台往動クラツチCLをオンしオリジナル像を露
光走査開始させ複写プロセスを開始する。これと
同時にオン状態にあつたスイツチ34をオフす
る。これにより複写プロセス中は記憶部35に記
憶された制御信号に基づいて高圧制御部36が動
作し、一定電圧でコロナ放電を行い、前露光、前
帯電はランプ、チヤージヤを更に設けて行うこと
もあるが、既設の像露光ランプ、チヤージヤを用
いて行うと簡単になる。
When the power switch SW is turned on, the drum is rotated by contacts k1 , k2 , and k3 , which are turned on by relay K.
The drum 1 is rotated in preparation for pre-exposure and pre-charging to bring the drum surface to a uniform potential. During this time, corona discharge is started, and the detection section 22 detects the difference between positive and negative corona discharge currents, compares this detected value with a reference value, and controls the high voltage control section 36 according to the comparison output. When the drum rotates approximately one revolution, MS 1 is turned on, and contacts l 1 and l 2 turned on by relay L turn on document table reciprocating clutch CL to start exposure scanning of the original image and start the copying process. At the same time, the switch 34 that was in the on state is turned off. As a result, during the copying process, the high voltage control section 36 operates based on the control signal stored in the storage section 35 to perform corona discharge at a constant voltage, and pre-exposure and pre-charging can also be performed by further providing a lamp and a charger. However, it is easier to do this using an existing image exposure lamp and charger.

複写終了の信号ENDが出力されるとリレーK,
Lがオフされ、従つて複写プロセス開始から終る
までは記憶部35において記憶された制御信号に
よりコロナ放電をするのである。
When the copy end signal END is output, relay K,
L is turned off, and accordingly, corona discharge is performed according to the control signal stored in the storage section 35 from the start to the end of the copying process.

尚このスイツチ34としてサイリスタ等による
接点スイツチを使用することも可能である。
It is also possible to use a contact switch such as a thyristor as the switch 34.

又スイツチ34は必ずしも外部から与えられた
信号に依つて動作するものである必要はない。
Further, the switch 34 does not necessarily need to be operated in response to an externally applied signal.

例えば前述の帯電の第1段階に於る被帯電部材
37の基準の状態として有効なコロナ電流が最大
あるいは最小となるような状態を選ぶならばスイ
ツチ34は単に整流器によつて機能をはたすこと
ができる。第9図にかかる例を示す。
For example, if a state in which the effective corona current is maximized or minimized is selected as the reference state of the charged member 37 in the first stage of charging, the switch 34 can simply function as a rectifier. can. An example according to FIG. 9 is shown.

第9図に示した例では第5図において被帯電部
材37が基準の状態にある時、正負のコロナ電流
の絶対値の差が最大となる場合に適用したもので
ある。
The example shown in FIG. 9 is applied when the difference in the absolute values of positive and negative corona currents is maximum when the charged member 37 is in the standard state in FIG. 5.

又、抵抗43は記憶部35に記憶された制御信
号を自動的に放電させ消去するものである抵抗4
3及び44コンデンサ45によつて決まる記憶部
35に於る記憶の持続時間はこの帯電装置が1回
の記憶によつて動作する時間に比べて十分長く、
又、温度、湿度、気圧等の環境の変化がコロナ帯
電に影響を及ぼすに要する時間に比べて十分短く
することが必要である。
Further, the resistor 43 is a resistor 4 that automatically discharges and erases the control signal stored in the storage section 35.
The duration of storage in the storage unit 35 determined by the 3 and 44 capacitors 45 is sufficiently long compared to the time that this charging device operates with one storage.
Further, it is necessary to make the time sufficiently shorter than the time required for environmental changes such as temperature, humidity, and atmospheric pressure to affect corona charging.

第14図は第3〜8図のワイア22を囲むシー
ルド23を導電性にしてそれをアースした場合で
あり、第15図は検出器32にシールド電流が流
れないよう図の如く接続した場合である。ワイア
22と感光体間にグリツドを有する場合でもグリ
ツドを図の如く接続することができる。尚シール
ド23が絶縁材のときAC成分をコロナ電流が含
むなら第3図でよく、簡単な構成ですむ。
Fig. 14 shows the case where the shield 23 surrounding the wires 22 in Figs. 3 to 8 is made conductive and is grounded, and Fig. 15 shows the case where the shield 23 surrounding the wire 22 in Figs. 3 to 8 is connected as shown in the figure so that no shield current flows. be. Even when a grid is provided between the wire 22 and the photoreceptor, the grid can be connected as shown in the figure. If the shield 23 is made of an insulating material and the corona current contains an AC component, then the configuration shown in FIG. 3 is sufficient and the configuration is simple.

以上の例において検出電流をデジタル量に変換
するA−D変換器、その変換信号と基準量とを比
較する比較器、所定の帯電電位にすべき比較器の
出力制御量をデジタル量で記憶するメモリ。その
制御量を直流電位量に変換するインバータを有
し、そしてスイツチ34を設け前述の如き方式で
基準状態における一定電流制御とその電位の保持
をすることも可能である。
In the above example, an A-D converter that converts the detected current into a digital quantity, a comparator that compares the conversion signal with a reference quantity, and an output control quantity of the comparator that is to achieve a predetermined charging potential are stored as digital quantities. memory. It is also possible to have an inverter that converts the controlled amount into a DC potential amount, and to provide a switch 34 to control the current at a constant level and maintain the potential in the reference state using the method described above.

又発振器の入力を制御する代りに、トランス3
11の一次タツプを摺動するサーボモータもしく
は一次ラインに接続の抵抗を摺動するサーボモー
タを設けこのモータを制御信号により作動して所
定の帯電電位を得ることも可能である。
Also, instead of controlling the input of the oscillator, transformer 3
It is also possible to provide a servo motor that slides the primary tap 11 or a servo motor that slides a resistor connected to the primary line, and to operate this motor with a control signal to obtain a predetermined charging potential.

本発明の帯電方法を第1図に示した3層構成の
感光体を用いる電子写真装置の原画像光の照射と
同時に行なう除電プロセスに適用する場合感光体
1を基準状態にするためには、一次帯電を行なつ
た後、原画像光の照射に代えて、暗部で除電を行
なえば良い。
When the charging method of the present invention is applied to a static elimination process that is performed simultaneously with irradiation of original image light in an electrophotographic apparatus using a three-layered photoreceptor shown in FIG. 1, in order to bring the photoreceptor 1 into a reference state, After performing the primary charging, instead of irradiating with the original image light, static electricity may be removed in a dark area.

前回転、1回転中に検出し適正出力をセツトす
るので、所望感光体面をチエツクできかつ続く像
形成を安定制御するのでプロセス速度を著しく損
うことがない。
Since the detection is performed during the pre-rotation and one rotation and the appropriate output is set, the desired photoreceptor surface can be checked and the subsequent image formation can be stably controlled without significantly reducing the process speed.

又感光体の一部に画像形成に使用しない部分を
設け該部分の感光体に代えて一定の電極又は絶縁
体を設け、該部分を周期的に帯電器に対向させる
ことにより該電極又は絶縁体を基準状態の被帯電
部材として用いることができる。
In addition, by providing a part of the photoreceptor that is not used for image formation, providing a certain electrode or insulator in place of the photoreceptor in that part, and periodically facing the charger, the electrode or insulator can be removed. can be used as a charged member in a reference state.

前者の場合の第1図各部の動作例を第12図の
タイムチヤートで示す。Mは感光ドラム1を回転
させるべくメインモータを作動する信号、VAC
ACチヤージヤ4を作動するための信号、LAはラ
ンプ5を点灯するための信号、VDCはDCチヤー
ジヤ2,7を作動するための信号、LI,CL1
CL2は各ランプ10、光学系前進クラツチ及び光
学系後進クラツチを作動するための信号、スイツ
チXはスイツチ34に相当し、検知信号をセツト
するためのスイツチ、BP,HDは光学系通路に
設けたスイツチを光学系の移動によつて作動する
とオンする信号で各光学系を反転、停止させるた
めのものである。MS1はドラム1回転毎に出力す
るパルス信号である。
An example of the operation of each part in FIG. 1 in the former case is shown in the time chart of FIG. 12. M is a signal to operate the main motor to rotate photosensitive drum 1, V AC is
A signal for operating AC charger 4, LA is a signal for lighting lamp 5, V DC is a signal for operating DC charger 2, 7, LI, CL 1 ,
CL 2 is a signal for operating each lamp 10, the optical system forward clutch, and the optical system reverse clutch. Switch X corresponds to switch 34, and switches BP and HD are provided in the optical system passage. When the switch is activated by the movement of the optical system, the signal that turns on is used to reverse and stop each optical system. MS 1 is a pulse signal output every rotation of the drum.

SWオンによりドラム回転するとACチヤージ
ヤ4、ランプ5をオンしてドラムを一様除電する
とともにブレード9でクリーニングする。コピー
ボタンCPBのオンによりランプ10を点灯して、
一様露光しつつ1回転しその後CL1をオンして走
査を開始する。このコピーボタンオンの後の前回
転中にスイツチXを閉じて検出動作を行なう。又
SWオン後の回転中にスイツチXを閉開すると、
暗部中の検出動作ができる。図は2枚コピーの場
合を示す。尚この動作は第13図の制御回路で実
行できる。61,62はアンドゲート、63,6
4はオアゲート、65〜69はSへの信号でセツ
トとしてQより1を出力し、rへの信号でリセツ
トするフリツプフロツプで、65〜68はアンプ
を介して各負荷ランプをオンするスイツチング素
子のトリガ部に接続され、69はアンプを介して
スイツチ34をオンするためのリレーに接続され
る。
When the drum is rotated by turning on the SW, the AC charger 4 and lamp 5 are turned on to uniformly eliminate static electricity from the drum and the blade 9 is used to clean the drum. Turn on the copy button CPB and turn on the lamp 10.
Rotate once while exposing uniformly, then turn on CL 1 and start scanning. During the forward rotation after turning on the copy button, switch X is closed to perform a detection operation. or
If switch X is closed or opened during rotation after SW is turned on,
Detection operation in dark areas is possible. The figure shows the case of two copies. Note that this operation can be executed by the control circuit shown in FIG. 61, 62 are and gates, 63, 6
4 is an OR gate, 65 to 69 are flip-flops that output 1 from Q as a set signal to S, and are reset by a signal to r; 65 to 68 are triggers for switching elements that turn on each load lamp via an amplifier. 69 is connected to a relay for turning on the switch 34 via an amplifier.

以上の様に本発明によれば、定電流による帯電
と定電圧による帯電の両方の長所を活かし、像形
成動作に先立ち回転体を一様電位にする準備回転
中に、帯電体の電位が均一化された状態で2次巻
線出力により帯電を行ない、この間に帯電電流の
正負の差分を検出し、検出値に応じて3次巻線の
電流又は電圧を制御して帯電量が所定量となる制
御値を求め、引き続き行なわれる像形成動作中こ
の制御値に基づいて3次巻線電流又は電圧を一定
に維持することにより帯電電圧を一定にするよう
にしたので、像形成の直前に環境条件等に応じた
帯電電圧を求めることができ、環境除件の変動等
に拘らず、高品位の画像を得ることが可能にな
る。
As described above, according to the present invention, by taking advantage of the advantages of both constant current charging and constant voltage charging, the potential of the charged body is uniformized during the preparatory rotation to bring the rotating body to a uniform potential prior to the image forming operation. In this state, charging is performed by the output of the secondary winding, and during this period, the difference between positive and negative charging currents is detected, and the current or voltage of the tertiary winding is controlled according to the detected value, so that the amount of charging reaches a predetermined amount. The charging voltage is kept constant by determining a control value and maintaining the tertiary winding current or voltage constant based on this control value during the subsequent image forming operation. It is possible to obtain a charging voltage according to conditions, etc., and it is possible to obtain a high-quality image regardless of fluctuations in environmental conditions, etc.

更に3次巻線の電流又は電圧制御により帯電電
圧を一定にするので、直流高圧電源を必要とせ
ず、構成が簡単になる。又、交流の半波毎に波形
を歪ませて2次巻線の出力制御を行なえるので、
2次巻線の交流出力のピーク−ピークを制御する
場合に比べ、総電流量を押さえることができ、
又、交流分に直流を重畳する場合に比べ帯電ムラ
が少ない。
Furthermore, since the charging voltage is made constant by current or voltage control of the tertiary winding, a DC high voltage power source is not required, and the configuration is simplified. In addition, the output of the secondary winding can be controlled by distorting the waveform every half wave of AC.
Compared to controlling the peak-to-peak of the AC output of the secondary winding, the total amount of current can be suppressed,
Furthermore, charging unevenness is less than when direct current is superimposed on alternating current.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の適用できる複写機のプロセス
説明図、第2図は従来のコロナ放電装置の略図、
第3図は本発明の基本構成を示すブロツク図、第
4図〜第6図及び第9図は各種帯電装置の回路構
成を示す図、第7図は本発明の一実施例を示す回
路図、第8図は本発明の別の実施例を示す回路
図、第10図は第4〜9図におけるスイツチ34
の作動回路図、第11図は第10図の動作タイム
チヤート図、第12図は第1図の動作例を示すタ
イムチヤート図、第13図は第12図の動作のた
めの回路図、第14,15図は他のチヤージヤの
断面図、図中1は感光ドラム、2は一次コロナ放
電器、32は放電電流検出器である。
FIG. 1 is a process explanatory diagram of a copying machine to which the present invention can be applied, and FIG. 2 is a schematic diagram of a conventional corona discharge device.
FIG. 3 is a block diagram showing the basic configuration of the present invention, FIGS. 4 to 6 and 9 are diagrams showing the circuit configurations of various charging devices, and FIG. 7 is a circuit diagram showing one embodiment of the present invention. , FIG. 8 is a circuit diagram showing another embodiment of the present invention, and FIG. 10 is a circuit diagram showing the switch 34 in FIGS. 4 to 9.
11 is an operation time chart of FIG. 10, FIG. 12 is a time chart showing an example of the operation of FIG. 1, FIG. 13 is a circuit diagram for the operation of FIG. 12, and FIG. 14 and 15 are cross-sectional views of other chargers, in which 1 is a photosensitive drum, 2 is a primary corona discharger, and 32 is a discharge current detector.

Claims (1)

【特許請求の範囲】 1 帯電手段を有し回転体上に静電潜像を形成し
現像した後転写することにより転写紙上に画像を
形成する画像形成装置にいおいて、 交流入力電圧が印加される1次巻線と、前記帯
電手段の帯電電極に結合された2次巻線と、前記
2次巻線と磁気的に結合した3次巻線とを備えた
変成器、 像形成の開始を指令する指令手段、 前記指令手段による像形成開始指令に応答し像
形成開始前に前記回転体の準備回転を1回転さ
せ、前記回転体を一様電位にし、前記準備回転完
了後、引き続き前記回転体を停止することなく像
形成動作のための回転をさせる駆動手段、 前記準備回転の間に前記帯電手段による帯電電
流の正成分と負成分の差分を検出する検出手段、 前記準備回転の間に前記検出出力と基準値とを
比較し比較結果に応じて前記3次巻線に流れる電
流又は前記3次巻線に印加される電圧を制御する
ことにより前記差分を所定値にする制御手段、 前記制御手段の制御動作により得られた、前記
差分を前記所定値にするための制御値を記憶し、
像形成動作中保持する記憶手段、 を有し、 前記準備回転後引き続いて行なわれる前記回転
体の回転中に像形成動作を開始し、像形成動作中
前記記憶手段に保持された制御値に基づいて前記
3次巻線に流れる電流値又は前記3次巻線に印加
される電圧値を前記記憶手段に保持された制御値
に対応する一定の値に維持することにより、前記
帯電手段の帯電電極に印加する帯電電圧を像形成
動作中一定に維持することを特徴とする画像形成
装置。
[Claims] 1. In an image forming apparatus that has a charging means and forms an image on a transfer paper by forming an electrostatic latent image on a rotating body, developing it, and then transferring it, an AC input voltage is applied. a secondary winding coupled to a charging electrode of the charging means; and a tertiary winding magnetically coupled to the secondary winding. a commanding means for instructing, in response to an image formation start command from the commanding means, the rotary body is rotated one preparatory rotation before the start of image formation, the rotary body is brought to a uniform potential, and after the preparatory rotation is completed, the preparatory rotation is made one rotation, and after the completion of the preparatory rotation, the a driving means for rotating a rotating body for an image forming operation without stopping; a detecting means for detecting a difference between a positive component and a negative component of a charging current by the charging means during the preparatory rotation; during the preparatory rotation a control means that compares the detection output with a reference value and sets the difference to a predetermined value by controlling the current flowing through the tertiary winding or the voltage applied to the tertiary winding according to the comparison result; storing a control value for making the difference the predetermined value obtained by the control operation of the control means;
storage means for holding during the image forming operation, the image forming operation is started during the rotation of the rotating body that is performed subsequent to the preparatory rotation, and the image forming operation is started based on the control value held in the storage means during the image forming operation. By maintaining the current value flowing through the tertiary winding or the voltage value applied to the tertiary winding at a constant value corresponding to the control value held in the storage means, the charging electrode of the charging means An image forming apparatus characterized in that a charging voltage applied to the image forming apparatus is maintained constant during an image forming operation.
JP1992079A 1979-02-22 1979-02-22 Method and apparatus for image formation Granted JPS55111954A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1992079A JPS55111954A (en) 1979-02-22 1979-02-22 Method and apparatus for image formation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1992079A JPS55111954A (en) 1979-02-22 1979-02-22 Method and apparatus for image formation

Publications (2)

Publication Number Publication Date
JPS55111954A JPS55111954A (en) 1980-08-29
JPH0143304B2 true JPH0143304B2 (en) 1989-09-20

Family

ID=12012650

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1992079A Granted JPS55111954A (en) 1979-02-22 1979-02-22 Method and apparatus for image formation

Country Status (1)

Country Link
JP (1) JPS55111954A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5012282A (en) * 1988-02-25 1991-04-30 Fujitsu Limited Brush contact type charging unit in an image forming apparatus
JP5038093B2 (en) * 2007-10-24 2012-10-03 キヤノン株式会社 Image forming apparatus or static eliminator for image forming apparatus

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4854946A (en) * 1971-11-08 1973-08-02
JPS5276042A (en) * 1975-12-22 1977-06-25 Canon Inc Electronic photographic method
JPS52143833A (en) * 1976-05-26 1977-11-30 Canon Inc Method and device for charging by corona discharge
JPS537236A (en) * 1976-07-08 1978-01-23 Ricoh Co Ltd Cleaning time control for copying machine for electronic photography
JPS5337025A (en) * 1976-09-17 1978-04-05 Canon Inc Stabilizing method for electrostatic latent
JPS53112743A (en) * 1977-03-13 1978-10-02 Ricoh Co Ltd Stabilization system of picture quality of recording picture image in transfer type recorder using photosensitive transfer recording medium
JPS53141046A (en) * 1977-05-16 1978-12-08 Ricoh Co Ltd Ac corona generator for electrostatic electrophotographic copier
JPS545436A (en) * 1977-06-14 1979-01-16 Ricoh Co Ltd Idling command circuit of copying machines
JPS5414241A (en) * 1977-07-05 1979-02-02 Canon Inc Image formation device

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4854946A (en) * 1971-11-08 1973-08-02
JPS5276042A (en) * 1975-12-22 1977-06-25 Canon Inc Electronic photographic method
JPS52143833A (en) * 1976-05-26 1977-11-30 Canon Inc Method and device for charging by corona discharge
JPS537236A (en) * 1976-07-08 1978-01-23 Ricoh Co Ltd Cleaning time control for copying machine for electronic photography
JPS5337025A (en) * 1976-09-17 1978-04-05 Canon Inc Stabilizing method for electrostatic latent
JPS53112743A (en) * 1977-03-13 1978-10-02 Ricoh Co Ltd Stabilization system of picture quality of recording picture image in transfer type recorder using photosensitive transfer recording medium
JPS53141046A (en) * 1977-05-16 1978-12-08 Ricoh Co Ltd Ac corona generator for electrostatic electrophotographic copier
JPS545436A (en) * 1977-06-14 1979-01-16 Ricoh Co Ltd Idling command circuit of copying machines
JPS5414241A (en) * 1977-07-05 1979-02-02 Canon Inc Image formation device

Also Published As

Publication number Publication date
JPS55111954A (en) 1980-08-29

Similar Documents

Publication Publication Date Title
US4683436A (en) Surface potential electrometer and image forming apparatus using the same
US4346986A (en) Image formation method and apparatus
US4136942A (en) Electrophotographic apparatus
US4607937A (en) Electrostatic recording apparatus
US5032870A (en) Electrophotographic apparatus
JPS588507B2 (en) Wet developing device
US4333124A (en) Electrically discharging method and device
US4247195A (en) Bias device for a copying machine
JPH0143304B2 (en)
JPS59182472A (en) Image forming device
JP2547218B2 (en) Reverse image forming device
JPS6129502B2 (en)
US4248518A (en) Electrophotographic copying apparatus
JPS60247267A (en) Image forming device
JPS61289375A (en) Negative and positive image forming device
JP3374906B2 (en) Blank exposure apparatus and image forming apparatus
JP3166940B2 (en) Image forming operation method and image forming apparatus of reversal development system
JPS58168063A (en) Copying machine
JPS60166971A (en) Electrostatic charge device
JPS6136781A (en) Image forming device
JPH0697357B2 (en) Image forming device
JPS6136782A (en) Image forming device
JPS59214052A (en) Image forming device
JP2604751B2 (en) Electrophotographic equipment
JPH08160826A (en) Image forming device