JPH0142673B2 - - Google Patents

Info

Publication number
JPH0142673B2
JPH0142673B2 JP58037530A JP3753083A JPH0142673B2 JP H0142673 B2 JPH0142673 B2 JP H0142673B2 JP 58037530 A JP58037530 A JP 58037530A JP 3753083 A JP3753083 A JP 3753083A JP H0142673 B2 JPH0142673 B2 JP H0142673B2
Authority
JP
Japan
Prior art keywords
plasmid
pykl
gene
cerevisiae
restriction enzyme
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58037530A
Other languages
Japanese (ja)
Other versions
JPS59162884A (en
Inventor
Koji Kobayashi
Koji Yoda
Masakari Yamazaki
Gakuzo Tamura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kojin Co Ltd
Original Assignee
Kojin Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kojin Co Ltd filed Critical Kojin Co Ltd
Priority to JP58037530A priority Critical patent/JPS59162884A/en
Publication of JPS59162884A publication Critical patent/JPS59162884A/en
Publication of JPH0142673B2 publication Critical patent/JPH0142673B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/80Vectors or expression systems specially adapted for eukaryotic hosts for fungi
    • C12N15/81Vectors or expression systems specially adapted for eukaryotic hosts for fungi for yeasts
    • C12N15/815Vectors or expression systems specially adapted for eukaryotic hosts for fungi for yeasts for yeasts other than Saccharomyces

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Biomedical Technology (AREA)
  • Organic Chemistry (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mycology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Microbiology (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Saccharide Compounds (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は酵母キヤンデイダ・ユテイリス
(Candida utilis以後C.utilisと略記する)に由来
する遺伝子を含有する新規な雑種プラスミドおよ
びそれを含有する微生物に関する。 一般に、遺伝子操作における宿主として大腸菌
が用いられているが高等生物の作る有用物質(イ
ンシユリンや生長ホルモンなど)の微生物生産に
は、酵母のような真核生物を宿主とする方が有利
だと考えられる。また、B型肝炎ウイルス表層抗
原遺伝子のように大腸菌では生産されず、酵母で
その生産が確認された例も報告されている。
(Atsushi Miyanohara等Proc.Natl.Acad.Sci.
USA80、1−5(1983) 現在では、宿主用の酵母としてサツカロミセ
ス・セレビシエ(Saccharomyces cerevisiae、
以後S.cerevisiaeと略記する。)のみが許可され
ているにすぎない。 しかしながら微生物菌体の大規模な工業生産に
は、亜硫酸パルプ廃液発酵や石油発酵の様に、キ
ヤンデイダ属酵母が一般的に使用されている。ま
た、キヤンデイダ属は、炭素資化域が広いことな
ど、S.cerevisiaeに較べて実用上、多くの有利な
性質を有しているために、遺伝子操作技術を用い
て、高等生物に由来する有用物質を生産する際の
宿主菌としての役割が期待される。 なかでも、キヤンデイダ・ユテイリス(C.
utilis)は、食料飼料用酵母として安全性は既に
実証済みであり、今日では、グルタチオンやコエ
ンザイムA(CoA)などの有用医薬品や臨床検査
薬の生産菌としてその重要性が増している。 本発明者等は、遺伝子操作技術におけるC.
utilisの宿主でベクター系の開発を目標に、まず
C.utilisの特定遺伝子を選択マーカーとして含有
するベクターの開発を検討した結果、目的とする
新規な雑種プラスミドの作成に成功し本発明を完
成した。 本発明では、クローニングベクターとしてS.
cerevisiaeとE.coliとの共用ベクターであるYRp7
(K.StruhlらProc.Natl.Acad.Sci.76 1035
(1979))を用いた。即ち、YRp7の制限酵素
BamHI部位にC.utilisATTCC9226DNAの制限
酵素Sau3AI部分分解断片を連結させたプラスミ
ド混合物でE.coliRRI株(leuB)を形質転換さ
せ、leu+となる株を選択した。尚、E.coliのleuB
変異はS.cerevisiaeのLEU2遺伝子によつて相補
されることが既に確認されている。((B.Ratzkin
and J.Carbon:Proc.Natl.Acad.Sci.74487
(1977)).その結果アンピシリン耐性を示し、
leuB変異を相補するコロニーが得られた。この
大腸菌の形質転換体より分離したプラスミドを
pYKL−30と命名した。 本プラスミドは、10.7キロベース(Kb)(6.4メ
ガダルトン(Md))の分子量をもち、アンピシ
リン耐性、TRP1およびLEU2遺伝子を有する。
制限酵素地図および大体の構成を第1図に示し
た。ここでクローニングされた約4.9KbのLEU2
遺伝子は、Southern hybridization(E.M.
Southern、J.Mol.Biol.98503(1975))の結果、C.
utilis由来であることを確認した。 また、本プラスミドによりS.cerevisiaeDBY−
746(Trp1、leu2)を形質転換した結果、C.utilis
由来のLEU2遺伝子が、S.cerevisiaeのleu2を相
補することが見出された。C.utilisの遺伝子がS.
cerevisiaeで発現されたことは、初めての例であ
る。 次に、C.utilisの遺伝子とpBR322だけから成る
プラスミドを作成するため、S.cerevisiaeの由来
のTrp1geneを除去した。pYKL−30を制限酵素
EcoRIにより部分分解し、再び連結した。この混
合物によつて、E.coli JA300(leuB、TrpC)を
形質転換し、アンピシリン耐性およびleu+の株を
選択した。続いて、レプリカ法によつて、トリプ
トフアン要求性を調べ、trp-株を選択した。この
leu+およびtrp-を示すコロニーからプラスミドを
分離し、目的とするTrp1遺伝子を除き、C.utilis
のLEU2とpBR322とから成るプラスミドpYKL
−40を取得した。 本プラスミドは、9.25Kb(5.55Md)アンピシリ
ン耐性およびLEU2遺伝子のマーカーを持ち第2
図に示す制限酵素地図を有する。 本プラスミドのサブクローニング解析の結果、
LEU2遺伝子は、図に示す部位に位置することが
わかつた。 YRp7のTRP1遺伝子部分を切り出し、本プラ
スミドのEcoRI部分分解物に導入すればpYKL−
30を再構築することができるし、2μmDNAなど、
S.cerevisiaeで増殖可能な断片を連結させ、酵母
と大腸菌との新たな共用ベクターを作成すること
も可能である。 このサブクローニング解析データをもとに
pYKL−40から制限酵素Hfndにより、LEU2遺
伝子部分を含む約2.5Kbの断片を切り出し、
pBR322のHind部位に連結した結果、アンピシ
リン耐性およびLEU2遺伝子を含み、更に都合の
良いことには、テトラサイクリン耐性遺伝子が回
復したプラスミドpYKL−45が得られた。 本プラスミドは、6.9Kb(4.1Md)の分子量をも
ち第3図に示す様に、PstおよびSalの単一制
限酵素部位を有し、C.utilisの複数開始部位や、
他の遺伝子のクローニングベターとして有効であ
る。 本発明により作成したプラスミドの応用例とし
て、第4図に示すプラスミドpYKL−60を作成し
た。即ち、M.J.CaSadabanら(M.J.Casadaban
et al、J.Bact.143971〜980(1980))によつて調製
されたプロモータークローニング用ベクター
pMC1403のlacZ′部分(β−galactosidaseの構造
遺伝子上のブロモーター領域を8コドン欠失)を
BamHとSalで切り出し、pYKL−30の
BamHとSalで切り出される3.9Kb部分に挿
入した。その新たなプラスミドをE.coliのlacZ′株
に形質転換しアンピシリンおよびXgal(5−ブロ
モ−4−クロロ−3−インドリル−β−ガラクト
ース)を含む合成培地上で選択したところ、青色
を示すコロニー即ち、lacZ+株でのみ、目的とす
るプラスミドpYKL−60を含有していた。このこ
とは、pYKL−30が、異種遺伝子産物を同様の手
法により発現しうることを示しており、本プラス
ミドに発現ベクターとしての役割が期待される。
また、他のpYKL−40やpYKL−45は大腸菌での
発現ベクターやC.utilisDNAの複製開始点のクロ
ーニングベクターとして使用することができる。 なお、プラスミドpYKL−30、pYKL−40、
pYKL−45をE.coliRR株に、pYKL−60をE.
coliMC1061株に、またpYKL−30をS.
cerevisiaeDBY−746株に夫々移入した株は、工
業技術院微生物工業技術研究所に各々受託番号、
微工研菌寄第6927号(FERM P−6927)、同第
6928号(FERM P−6732)、同第6945号
(FERM P−6945)、同第6958号(FERM P−
6958)、および同第6944号(FERM P−6944)
として寄託された。 本発明のプラスミドを移入したE.coliまたはS.
cerevisiaeは公知の親株と同じ菌学的性質を示す
ほか次の第1表に示す特徴を有する。
The present invention relates to a novel hybrid plasmid containing a gene derived from the yeast Candida utilis (hereinafter abbreviated as C. utilis) and a microorganism containing the same. Generally, Escherichia coli is used as a host for genetic manipulation, but it is thought that it is more advantageous to use eukaryotes such as yeast as hosts for microbial production of useful substances produced by higher organisms (such as insulin and growth hormones). It will be done. In addition, there have been reports of cases in which, like the hepatitis B virus surface antigen gene, it is not produced in E. coli, but its production has been confirmed in yeast.
(Atsushi Miyanohara et al. Proc. Natl. Acad. Sci.
USA 80 , 1-5 (1983) Currently, Saccharomyces cerevisiae is used as a host yeast.
Hereafter abbreviated as S.cerevisiae. ) are only allowed. However, yeasts of the genus Candeida are generally used in large-scale industrial production of microbial cells, such as in sulfite pulp waste liquid fermentation and petroleum fermentation. In addition, the genus Candeida has many practical properties that are advantageous compared to S. cerevisiae, such as a wider range of carbon assimilation. It is expected to play a role as a host bacterium when producing substances. Among them, Quyandida utilis (C.
utilis) has already been proven safe as a yeast for food and feed, and today its importance is increasing as a producing bacterium for useful pharmaceuticals and clinical test drugs such as glutathione and coenzyme A (CoA). The present inventors have discovered that C.
First, with the goal of developing a vector system using the utilis host.
As a result of investigating the development of a vector containing a specific gene of C. utilis as a selection marker, the present invention was completed by successfully creating the desired new hybrid plasmid. In the present invention, S.
YRp7, a shared vector between E. cerevisiae and E. coli
(K. Struhl et al. Proc. Natl. Acad. Sci. 76 1035
(1979)) was used. That is, the restriction enzyme of YRp7
E. coli RRI strain (leuB) was transformed with a plasmid mixture in which a partially digested fragment of C. utilis ATTCC9226 DNA was ligated to the BamHI site, and a leu + strain was selected. Furthermore, E.coli leuB
It has already been confirmed that the mutation is complemented by the LEU2 gene of S. cerevisiae. ((B.Ratzkin
and J.Carbon:Proc.Natl.Acad.Sci. 74 487
(1977)). As a result, it showed ampicillin resistance,
Colonies that complemented the leuB mutation were obtained. The plasmid isolated from this E. coli transformant was
It was named pYKL-30. This plasmid has a molecular weight of 10.7 kilobases (Kb) (6.4 megadaltons (Md)) and contains ampicillin resistance, TRP1 and LEU2 genes.
The restriction enzyme map and general structure are shown in Figure 1. Approximately 4.9Kb LEU2 cloned here
Genes are produced by Southern hybridization (EM
Southern, J.Mol.Biol. 98 503 (1975)), C.
I confirmed that it was derived from utilis. In addition, this plasmid allows S.cerevisiaeDBY-
As a result of transforming 746 (Trp1, leu2), C.utilis
The derived LEU2 gene was found to complement leu2 of S. cerevisiae. The C. utilis gene is S.
This is the first time that it has been expressed in S. cerevisiae. Next, in order to create a plasmid consisting only of the C. utilis gene and pBR322, the Trp1 gene derived from S. cerevisiae was removed. pYKL-30 with restriction enzyme
It was partially digested with EcoRI and ligated again. This mixture was used to transform E. coli JA300 (leuB, TrpC), and ampicillin-resistant and leu + strains were selected. Next, tryptophan auxotrophy was investigated by the replica method, and trp - strains were selected. this
Plasmids were isolated from colonies showing leu + and trp - , the desired Trp1 gene was removed, and C. utilis
Plasmid pYKL consisting of LEU2 and pBR322
-40 was obtained. This plasmid has 9.25Kb (5.55Md) ampicillin resistance and LEU2 gene markers and a second
It has the restriction enzyme map shown in the figure. As a result of subcloning analysis of this plasmid,
The LEU2 gene was found to be located at the site shown in the figure. By cutting out the TRP1 gene part of YRp7 and introducing it into the EcoRI partial digest of this plasmid, pYKL-
30 and 2 μm DNA, etc.
It is also possible to create a new shared vector for yeast and E. coli by ligating fragments that can be propagated in S. cerevisiae. Based on this subcloning analysis data
An approximately 2.5 Kb fragment containing the LEU2 gene was excised from pYKL-40 using the restriction enzyme Hfnd.
Ligation into the Hind site of pBR322 resulted in plasmid pYKL-45, which contained the ampicillin resistance and LEU2 genes and, more conveniently, restored the tetracycline resistance gene. This plasmid has a molecular weight of 6.9 Kb (4.1 Md) and, as shown in Figure 3, has single restriction enzyme sites for Pst and Sal, multiple initiation sites for C. utilis,
It is effective as a cloning better for other genes. As an application example of the plasmid created according to the present invention, plasmid pYKL-60 shown in FIG. 4 was created. Namely, MJCaSadaban et al.
Promoter cloning vector prepared by J. Bact. et al., J. Bact. 143 971-980 (1980)
The lacZ′ part of pMC1403 (8 codon deletion of the bromotor region on the structural gene of β-galactosidase)
Excise with BamH and Sal and extract from pYKL−30.
It was inserted into the 3.9Kb part excised by BamH and Sal. When the new plasmid was transformed into E. coli lacZ' strain and selected on a synthetic medium containing ampicillin and Xgal (5-bromo-4-chloro-3-indolyl-β-galactose), colonies showing blue color were detected. That is, only the lacZ + strain contained the target plasmid pYKL-60. This indicates that pYKL-30 can express a heterologous gene product using a similar technique, and this plasmid is expected to play a role as an expression vector.
In addition, other pYKL-40 and pYKL-45 can be used as expression vectors in E. coli and cloning vectors for the replication origin of C. utilis DNA. In addition, plasmids pYKL-30, pYKL-40,
pYKL-45 was used in E. coli RR strain, and pYKL-60 was used in E. coli RR strain.
coliMC1061 strain, and pYKL-30 was added to S. coliMC1061 strain.
The strains transferred to the cerevisiaeDBY-746 strain were given accession numbers and
FERM P-6927 No. 6927 (FERM P-6927)
No. 6928 (FERM P-6732), No. 6945 (FERM P-6945), No. 6958 (FERM P-
6958), and the same No. 6944 (FERM P-6944)
Deposited as. E. coli or S. coli transfected with the plasmid of the present invention.
cerevisiae exhibits the same mycological properties as the known parent strain, and also has the characteristics shown in Table 1 below.

【表】 * 微工研菌寄番号
以下実施例をあげて本発明を具体的に説明す
る。 実施例 1 プラスミドpYKL−30の調製 S.cerevisiaeで既に知られている方法(J.R.
Broach et al.、Gene8 121〜133(1979))に従つ
て、C.utilisATCC9226のDNA部分消化物とプラ
スミドYRp7とを連結した雑種プラスミドの作成
を行い、大腸菌(leu-株)に形質転換した結果、
leu+を示す株を分離しその株より目的とするプラ
スミドpYKL−30を抽出した。 即ち、プラスミドYRp7 10μgを制限酵素Bam
H140単位により、37℃、1時間消化し続いてア
ルカリ性フオスフアターゼ処理(1単位、60℃、
30分間)し5′末端のリンを除いた。別にC.
utilisDNAを制限酵素Sau3A0.5単位により部
分消化し、その断片と前記プラスミドとを混合
し、T4リガーゼ0.1単位により15℃、16時間連結
反応を行う。 一方、事前に普通ブイヨン培地で対数増殖中期
まで培養したE.coli RR株(leuB-)を、
50mM塩化カルシウム水溶液に懸濁し、0℃30分
間放置した中に、前記連結混合物を加え更に、0
℃、30分間処理し、形質転換を完了する。形質転
換体は、アンピシリン100μg/mlを含有する普
通ブイヨン寒天培地上で、37℃、16〜24時間培養
し、生じたコロニーを、レプリカ法により、プロ
リンとチアミン各25μg/mlを含むDavis最小培
地に移し生じるコロニーを選択する。この様にし
て得られたコロニーから分離したプラスミドが
pYKL−30である。 実施例 2 プラスミドpYKL−40の調製 実施例1で得られたプラスミドpYKL−305μg
を制限酵素Eoc R5単位により37℃、15分間
部分消化し、T4−リガーゼにより連結する
(0.05単位、15℃、16時間)。この混合プラスミド
によつてE.coli JA−300株(leuB、trpC)を形
質転換してアンピシリン100μg/ml、トリプト
フアン、スレオニン、チミンおよびチアミンを
各々25γ/ml含むDavis最小培地(1)で、37℃、24
〜48時間培養する。生じたコロニーをレプリカ法
により培地(1)からトリプトフアンを除いた培地(2)
での生育を調べる。その結果、培地(1)でのみ生育
し、培地(2)で増殖しないコロニーから分離したプ
ラスミドがpYKL−40である。 実施例 3 プラスミドpYKL−45の調製 実施例2で得られたプラスミドpYKL−40 10μ
gを制限酵素Hind40単位により37℃、1時間
消化し、0.8%アガロースゲルにて各断片を分画
する。エチジウムプロミド染色後、紫外線照射下
で、約2.5Kbの断片を切り出し、ゲル内のDNA
断片を凍結融解法によつて抽出する。 一方、pBR322 2μgをHind8単位で37℃、
1時間消化後、アルカリ性フオスアターゼ処理
(0.2単位、60℃、1時間)し、前記2.5Kb断片と
を混合、T4−リガーゼにより両者を連結させて、
E.coli RR(leu-)株に形質転換する。次に、
アンピシリン100γ/ml、プロリンおよびチミン
各25γ/mlを含むDavis最少倍地に撒き、37℃、
24〜48時間培養する。生じたコロニーについて、
テトラサイクリン25γ/mlを含有する普通ブイヨ
ン培地に移し、耐性を示したコロニーから分離し
たプラスミドがpYKL−45である。 参考例 1 プラスミドpYKL−60の調製 実施例1において得られたプラスミドpYKL−
30 10μgを、制限酵素BamHおよびSal各40
単位で37℃、1時間消化し、0.8%アガローマゲ
ルにて、各断片を分画する。一方、プラスミド
pMC1403 10μgを、同様にBamHおよびSal
にて消化し、0.8%アガローマゲルにて分画する。
前者においては、6.9Kb断片、後者においては
6.2Kb断片を各々抽出し、T4−リガーゼにより両
者を連結する。次に、E.coliMC1061(lacZ′)に
形質転換し、アンピシリン100γ/mlを含む普通
ブイロン培地上で37℃、16〜24時間培養する。生
じたコロニーをXgal(5−ブロモ−4−クロロ−
3−インドリルβ−ガラクトース)、アラニンお
よびロイシン各25γ/mlを含むDavis最少培地上
に、ストリークし、β−galactosidase生産を示
す青色のコロニーを分離した。そのコロニーより
得られたプラスミドがpYKL−60である。 実施例 4 雑種プラスミドpYKL−30のS.cerevisiaeでの
発現 プラスミドpYKL−30によるS.cerevisiaeDBY
−746の形質転換を行つた。形質転換は、酢酸リ
チウム法(村田ら、日本農芸化学会、57年度溝演
要旨集、P568(1982))を用いた。即ち、YEPD
培養液10mlにより、O.D.1.0付近まで培養し、集
菌後0.5mlの0.2M酢酸リチウムに懸濁し、28℃、
1時間振とうし、その0.1mlをとり、10μgの
pYKL−30を加え30℃、30分間放置する。70%ポ
リエチレングリコール4000を0.1ml加え30℃、1
時間放置する。42℃、5分間処理したあと、ウラ
シルおよびヒスチジン各25γ/mlを含有する酵母
用アミノ酸要求最少培地に撒くとき、30℃、2〜
4日間後にプラスミドpYKL−30により形質転換
された目的のコロニーが得られた。
[Table] *The present invention will be specifically explained with reference to examples below. Example 1 Preparation of plasmid pYKL-30 Method already known for S. cerevisiae (JR
Broach et al., Gene8 121-133 (1979)), a hybrid plasmid was created by ligating a partial DNA digest of C. utilis ATCC9226 and plasmid YRp7, and the result was transformed into E. coli (leu - strain). ,
A strain exhibiting leu + was isolated, and the target plasmid pYKL-30 was extracted from the strain. That is, 10 μg of plasmid YRp7 was injected with restriction enzyme Bam.
Digestion with H140 units for 1 hour at 37°C followed by alkaline phosphatase treatment (1 unit, 60°C,
30 minutes) to remove the phosphorus at the 5′ end. Separately C.
utilisDNA is partially digested with 0.5 units of restriction enzyme Sau3A, the fragment and the above plasmid are mixed, and a ligation reaction is performed at 15°C for 16 hours using 0.1 unit of T4 ligase. On the other hand, E. coli RR strain (leuB - ), which had been previously cultured in ordinary bouillon medium to mid-logarithmic growth phase,
The ligation mixture was added to the suspension in a 50mM calcium chloride aqueous solution and left at 0°C for 30 minutes.
°C for 30 min to complete transformation. The transformants were cultured on ordinary bouillon agar medium containing 100 μg/ml of ampicillin at 37°C for 16 to 24 hours, and the resulting colonies were cultured using the replica method on Davis minimal medium containing 25 μg/ml each of proline and thiamine. Transfer to a cell and select the resulting colonies. The plasmid isolated from the colony thus obtained is
pYKL-30. Example 2 Preparation of plasmid pYKL-40 Plasmid pYKL-305 μg obtained in Example 1
is partially digested with restriction enzyme Eoc R5 units at 37°C for 15 minutes and ligated with T4-ligase (0.05 units, 15°C, 16 hours). This mixed plasmid was used to transform E. coli JA-300 strain (leuB, trpC) in Davis minimal medium (1) containing 100 μg/ml ampicillin, 25 γ/ml each of tryptophan, threonine, thymine, and thiamine. °C, 24
Incubate for ~48 hours. Culture medium (2) is obtained by removing tryptophan from culture medium (1) using the replica method of the resulting colonies.
Investigate growth in. As a result, pYKL-40 was a plasmid isolated from a colony that grew only in medium (1) and did not proliferate in medium (2). Example 3 Preparation of plasmid pYKL-45 Plasmid pYKL-40 obtained in Example 2 10μ
g was digested with the restriction enzyme Hind40 unit at 37°C for 1 hour, and each fragment was fractionated on a 0.8% agarose gel. After staining with ethidium bromide, a fragment of approximately 2.5 Kb was cut out under ultraviolet irradiation, and the DNA in the gel was cut out.
The fragments are extracted by the freeze-thaw method. On the other hand, 2 μg of pBR322 was heated at 37°C in Hind8 units.
After digestion for 1 hour, it was treated with alkaline phosatase (0.2 units, 60°C, 1 hour), mixed with the 2.5 Kb fragment, and ligated together using T4-ligase.
Transform into E. coli RR (leu - ) strain. next,
Spread on Davis minimal medium containing 100 γ/ml ampicillin, 25 γ/ml each of proline and thymine, and incubate at 37°C.
Incubate for 24-48 hours. Regarding the colonies that emerged,
The plasmid pYKL-45 was isolated from a colony that showed resistance after being transferred to a normal bouillon medium containing 25 γ/ml of tetracycline. Reference example 1 Preparation of plasmid pYKL-60 Plasmid pYKL- obtained in Example 1
30 10 μg each of restriction enzymes BamH and Sal
Digest at 37°C for 1 hour, and fractionate each fragment using 0.8% agaroma gel. On the other hand, plasmid
10 μg of pMC1403 was added to BamH and Sal
Digest with 0.8% agaroma gel and fractionate with 0.8% agaroma gel.
In the former case, 6.9Kb fragment, in the latter case
Each 6.2 Kb fragment is extracted and ligated together using T4-ligase. Next, E. coli MC1061 (lacZ') is transformed and cultured at 37° C. for 16 to 24 hours on a normal bouillon medium containing 100 γ/ml ampicillin. The resulting colonies were treated with Xgal (5-bromo-4-chloro-
The cells were streaked onto Davis minimal medium containing 25 γ/ml each of alanine and leucine (3-indolyl β-galactose), and blue colonies indicating β-galactosidase production were isolated. The plasmid obtained from that colony is pYKL-60. Example 4 Expression of hybrid plasmid pYKL-30 in S.cerevisiae S.cerevisiaeDBY with plasmid pYKL-30
-746 transformation was performed. For transformation, the lithium acetate method (Murata et al., Japanese Society of Agricultural Chemistry, 1957 Mizo Abstracts, P568 (1982)) was used. That is, YEPD
Cultivate to around OD1.0 with 10ml of culture solution, and after harvesting, suspend in 0.5ml of 0.2M lithium acetate, and store at 28℃.
Shake for 1 hour, then take 0.1 ml and add 10 μg of
Add pYKL-30 and leave at 30℃ for 30 minutes. Add 0.1ml of 70% polyethylene glycol 4000 and heat at 30℃ for 1
Leave it for a while. After treatment at 42℃ for 5 minutes, when spreading on yeast amino acid-requiring minimal medium containing 25γ/ml each of uracil and histidine, 30℃ for 2 to 2 minutes.
After 4 days, target colonies transformed with plasmid pYKL-30 were obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図−プラスミドpYKL−30の制限酵素地
図、第2図−プラスミドpYKL−40の制限酵素地
図、第3図−プラスミドpYKL−45の制限酵素地
図、第4図−プラスミドpYKL−60の制限酵素地
図。 図中 pBR322、S.CerevisiaeTRP1
遺伝子、.utilisLEU2遺伝子、E.coli
lacZ′遺伝子。
Figure 1 - Restriction enzyme map of plasmid pYKL-30, Figure 2 - Restriction enzyme map of plasmid pYKL-40, Figure 3 - Restriction enzyme map of plasmid pYKL-45, Figure 4 - Restriction enzyme map of plasmid pYKL-60. map. In the figure pBR322, S.CerevisiaeTRP1
gene,. utilisLEU2 gene, E.coli
lacZ′ gene.

Claims (1)

【特許請求の範囲】 1 少くともバクテリアプラスミドDNAと、酵
母キヤンデイダ・ユテイリスATCC9226の制限酵
素Sau3AIによる部分分解断片由来であつてサツ
カロミセス・セレビシエのLEU2遺伝子を相補す
るLEU2遺伝子とからなる雑種プラスミド。 2 酵母サツカロミセス・セレビシエのTRP1遺
伝子をも含むことを特徴とする特許請求の範囲第
1項の雑種プラスミド。 3 プラスミドがpYKL−30である特許請求の範
囲第1項の雑種プラスミド。 4 プラスミドがpYKL−40である特許請求の範
囲第2項の雑種プラスミド。 5 少くともバクテリアプラスミドDNAと、酵
母キヤンデイダ・ユテイリスATCC9226の制限酵
素Sau3AIによる部分分解断片由来であつてサツ
カロミセス・セレビシエのLEU2遺伝子を相補す
るLEU2遺伝子とからなり、更に酵母サツカロミ
セス・セレビシエのTRP1遺伝子を含んでもよい
雑種プラスミドの制限酵素Hindにより切り出
される酵母キヤンデイダ・ユテイリスATCC9226
のLEU2遺伝子を含む断片をプラスミドpBR322
のHind部位に挿入してなりテトラサイクリン
耐性遺伝子が回復したことを特徴とする雑種プラ
スミド。 6 プラスミドがpYKL−45である特許請求の範
囲第5項記載の雑種プラスミド。 7 pYKL−30、pYKL−40、pYKL−45から選
ばれる雑種プラスミドを含有する大腸菌。 8 プラスミドpYKL−30を含有する酵母サツカ
ロミセス・セレビシエ。
[Scope of Claims] 1. A hybrid plasmid consisting of at least bacterial plasmid DNA and the LEU2 gene, which is derived from a fragment partially digested with the restriction enzyme Sau3AI of the yeast Candida utilis ATCC9226 and complements the LEU2 gene of Satucharomyces cerevisiae. 2. The hybrid plasmid according to claim 1, which also contains the TRP1 gene of the yeast Saccharomyces cerevisiae. 3. The hybrid plasmid of claim 1, wherein the plasmid is pYKL-30. 4. The hybrid plasmid of claim 2, wherein the plasmid is pYKL-40. 5 Consists of at least bacterial plasmid DNA and the LEU2 gene, which is derived from a fragment partially digested with the restriction enzyme Sau3AI of the yeast Candida utilis ATCC9226 and complements the LEU2 gene of Satucharomyces cerevisiae, and further contains the TRP1 gene of the yeast Satucharomyces cerevisiae. Yeast Candida utilis ATCC9226 excised with the restriction enzyme Hind from a hybrid plasmid
Plasmid pBR322 fragment containing the LEU2 gene
A hybrid plasmid characterized in that the tetracycline resistance gene is restored by inserting it into the Hind site of . 6. The hybrid plasmid according to claim 5, wherein the plasmid is pYKL-45. 7. Escherichia coli containing a hybrid plasmid selected from pYKL-30, pYKL-40, and pYKL-45. 8 Yeast Saccharomyces cerevisiae containing plasmid pYKL-30.
JP58037530A 1983-03-09 1983-03-09 Novel hybrid plasmid and microorganism containing the same Granted JPS59162884A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58037530A JPS59162884A (en) 1983-03-09 1983-03-09 Novel hybrid plasmid and microorganism containing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58037530A JPS59162884A (en) 1983-03-09 1983-03-09 Novel hybrid plasmid and microorganism containing the same

Publications (2)

Publication Number Publication Date
JPS59162884A JPS59162884A (en) 1984-09-13
JPH0142673B2 true JPH0142673B2 (en) 1989-09-13

Family

ID=12500088

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58037530A Granted JPS59162884A (en) 1983-03-09 1983-03-09 Novel hybrid plasmid and microorganism containing the same

Country Status (1)

Country Link
JP (1) JPS59162884A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995032289A1 (en) * 1994-05-25 1995-11-30 Kirin Beer Kabushiki Kaisha Transformant line of candida utilis yeast and expression of heterogene therewith

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE100147T1 (en) * 1986-09-16 1994-01-15 Gist Brocades Nv PENICILLIUM TRANSFORMANTS AND PROCESS FOR THEIR PRODUCTION.
CU22722A1 (en) * 1996-10-03 2002-02-28 Ct Ingenieria Genetica Biotech TRANSFORMATION SYSTEM FOR THE EXPRESSION OF HETEROLOGICAL GENES IN CANDIDA UTILIS YEAST

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995032289A1 (en) * 1994-05-25 1995-11-30 Kirin Beer Kabushiki Kaisha Transformant line of candida utilis yeast and expression of heterogene therewith

Also Published As

Publication number Publication date
JPS59162884A (en) 1984-09-13

Similar Documents

Publication Publication Date Title
JPH0543348B2 (en)
JPH06102024B2 (en) Novel promoter and gene expression method using the promoter
JP3878207B2 (en) Expression plasmid controlled by osmB promoter
WO1984004535A1 (en) Heat regulated production of selected and fused proteins in yeast
Leplatois et al. High-level production of a peroxisomal enzyme: Aspergillus flavus uricase accumulates intracellularly and is active in Saccharomyces cerevisiae
US4716112A (en) Vectors for increased expression of cloned genes
US5627046A (en) Yeast promoter and its use
Payne et al. High-level production of spinach glycolate oxidase in the methylotrophic yeast Pichia pastoris: engineering a biocatalyst
JPH09509843A (en) Combined use of two types of expression cassettes to produce the desired protein
JP2772793B2 (en) Method for stabilizing plasmid contained in bacteria and strain obtained thereby
JPH07112431B2 (en) Gene expression regulation method
JPH08500014A (en) K. Promoter of K. lactis transaldolase gene and use thereof
JPH0142673B2 (en)
JP3009257B2 (en) Genetic DNA encoding aspartase and use thereof
JPH0829099B2 (en) Recombinant DNA, expression vector and plasmid, production method thereof and inducible and repressible foreign gene expression method
US5104795A (en) Shortened phosphoglycerate kinase promoter
JPH08500008A (en) K. Promoter of gene for K. lactis ribosomal protein RP28 and uses thereof
JPH06169780A (en) Gene dna participating in integration of membraneous protein to membrane
JPH04330284A (en) Gene coding diaminopelargonic acid aminotransferase and desthiobiotin synthetase and its utilization
JP2752092B2 (en) Expression plasmid having DEO promoter and bacterial host containing the plasmid
US4845031A (en) Recombinant DNA process for producing useful polypeptides
US5541084A (en) Hybrid yeast promoter comprising an ENO2 UAS and TATA region and an additional UAS located between said ENO2 UAS and TATA region
JP2692015B2 (en) Genes that enhance transformation using mercury-resistant shuttle vector plasmids for Thiobacillus
US4757021A (en) Recombinant plasmid and microbial strain transformed by said plasmid
EP0216573B1 (en) Yeast promoter and method of producing heterologous proteins