JPH0142616B2 - - Google Patents

Info

Publication number
JPH0142616B2
JPH0142616B2 JP58003672A JP367283A JPH0142616B2 JP H0142616 B2 JPH0142616 B2 JP H0142616B2 JP 58003672 A JP58003672 A JP 58003672A JP 367283 A JP367283 A JP 367283A JP H0142616 B2 JPH0142616 B2 JP H0142616B2
Authority
JP
Japan
Prior art keywords
heat
resin layer
layer
chip
vapor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58003672A
Other languages
Japanese (ja)
Other versions
JPS59127829A (en
Inventor
Hideaki Mochizuki
Tooru Tamura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP58003672A priority Critical patent/JPS59127829A/en
Priority to US06/570,028 priority patent/US4555746A/en
Publication of JPS59127829A publication Critical patent/JPS59127829A/en
Publication of JPH0142616B2 publication Critical patent/JPH0142616B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明は半田耐熱性を有し、電気特性の優れた
チツプ状フイルムコンデンサーに関するものであ
る。 従来例の構成とその問題点 電気・電子機器の小型化に伴ない電子部品の高
密度実装が推進されてきているが、その有力な手
段の一つとしてチツプ実装が行なわれている。こ
れまでチツプ化できるコンデンサーとしてはセラ
ミツクコンデンサーのみであつたものが、最近で
はタンタル電解コンデンサーやアルミ電解コンデ
ンサーまでもチツプ化が進行してきた。この中に
あつて、フイルムコンデンサーだけはチツプ化へ
の対応が遅れていた。その最大の原因は、プラス
チツクフイルムコンデンサーの誘電体となるプラ
スチツクフイルム自体の耐熱性の弱さであつて、
半田浴中に浸漬すると素子の変形、容量ヌケ、リ
ード線間の短絡等の致命的不良が続出した。一
方、現在市販されている耐熱性フイルムは膜厚が
厚すぎて容量が不足したり、電気特性、特に誘電
正接が大きすぎたり、価格が高すぎたりするた
め、単体ではコンデンサーの誘電体としては不適
当である。 発明の目的 本発明は耐熱性フイルムを誘電体としてではな
く基材としてのみ利用することで耐熱性フイルム
自体の持つ欠点を解消し、その優れた熱安定性を
十分に活用したものであり、これにより優れた電
気特性を有するチツプ状フイルムコンデンサーを
提供することを目的とするものである。 発明の構成 上記目的を達成するため、本発明のチツプ状フ
イルムコンデンサーは、耐熱性プラスチツクフイ
ルムの両面に同一方向の一端部を残して他の全面
に蒸着金属電極を形成し、この上からフイルムの
縁に近接する蒸着金属電極部のみが露出されるよ
うに一方の面では熱硬化性樹脂層を形成し、他方
の面では耐熱性熱可塑性樹脂層を形成し、これら
蒸着金属電極及び樹脂層を持つプラスチツクフイ
ルムを、一層毎に前記露出した電極部が逆方向に
なるように且つ熱硬化性樹脂層と耐熱性熱可塑性
樹脂層とが重なり合うように積層し、この積層体
の両側面に露出した蒸着金属電極上に溶融金属層
を設けたものである。 実施例の説明 以下、本発明の一実施例について、図面に基づ
いて説明する。 先ず図面による実施例説明の前に本発明の基本
説明を行なう。 両面に金属電極を蒸着した耐熱性フイルムに前
記金属電極の上から両面に夫々耐熱性熱可塑性樹
脂と、熱硬化性樹脂とを片面づつに塗布し、これ
を定寸に切断したフイルムを多層積層した構造と
なつており、電極は両側面への金属溶射により蒸
着電極から引き出す。ここで耐熱性フイルムと
は、260℃で溶融したり極端な変形を生じないフ
イルムをいい、具体的にはポリイミド、ポリアミ
ド、ポリアミドイミド等のプラスチツクフイルム
をさす。又、耐熱性熱可塑性樹脂は熱変形温度
170℃以上で、且つ1KHzでの誘電正接が0.01以下
のプラスチツクであり、具体的にはポリスルホ
ン、ポリエーテルスルホン、ポリフエニレンオキ
シド、フツ素樹脂等である。一方、熱硬化性樹脂
は熱分解温度300℃以上、1KHzでの誘電正接が
0.02以下のもので、エポキシ樹脂、不飽和ポリエ
ステル樹脂、ポリブタジエン、シリコン樹脂、ジ
アリルフタレート樹脂、トリアジン系樹脂等をい
う。耐熱性熱可塑性樹脂の役割は優れた誘電特性
を活かしてコンデンサーの性能向上を図ることで
あり、且つ各層間を接着することである。一方熱
硬化性樹脂層は半田デイツプ時等の高温下におけ
る熱可塑性樹脂のクリープや流動による耐電圧や
絶縁抵抗の低下の歯止めとして働く。 以下本発明の実施例について図面を参照して説
明する。第1図に示すように、耐熱性フイルム1
を幅Aが4mm、長さBが3mmとなるように切り出
し、その両面に幅方向の同一側の一端部から0.5
mmづつを残して全面にアルミニウムを蒸着し、電
極2,3を形成する。次に第2図に示すように、
電極2の存在する側には熱可塑性樹脂ラツカーを
塗布したのち加熱乾燥することにより耐熱性フイ
ルム1の幅方向の端端に隣接する電極2の一部が
露出するように0.5mmを残して3.5mmの幅に熱可塑
性樹脂層4を形成し、一方電極3の側には熱硬化
性樹脂層5を同じく塗布法で形成し、完全に硬化
せしめる。同様にして電極2′,3′、熱可塑性樹
脂層4′、熱硬化性樹脂層5′を形成した耐熱性フ
イルム1′と前記耐熱性フイルム1とを第2図に
示すように、一方の熱硬化性樹脂層5と他方の熱
可塑性樹脂層4′とが接触し合うように貼り合わ
せる。このとき一層毎に逆方向に電極が露出する
ようにする。又このとき対向する蒸着電極3と
2′との重なり合う部分は長さ3mm、幅3mmであ
る。以下、同様にして次々にフイルムを積層し、
100層のフイルムを積層した後、積層方向の上下
から軽くプレスしつつ200〜240℃にて10分間加熱
する。これにより各層間は完全に接着し合う。積
層したフイルムの幅方向の両側面に0.3〜0.5mm厚
にアルミニウムを溶射し、第3図に示すように一
方向に向く蒸着電極2,3から電極6を、逆方向
に向く蒸着電極2′,3′から電極7を夫々引き出
す。次に第4図に示すように、電極6及び7にニ
ツケル製コムリード8,9を夫々溶接し、素子全
体を市販の成型樹脂10で外装後、成型樹脂10
から突出するコムリード8,9を第5図に示すよ
うに曲げ加工することにより本発明のチツプ状フ
イルムコンデンサーが完成する。以上の実施例に
使用した耐熱性フイルム、熱可塑性樹脂、熱硬化
性樹脂の具体的な組み合わせを第1表に示す。又
各組み合わせ例の初期特性と、260℃の半田浴中
に10秒間浸漬した後の特性を第2表に示す。尚
INDUSTRIAL APPLICATION FIELD The present invention relates to a chip-shaped film capacitor that has soldering heat resistance and excellent electrical characteristics. Conventional configurations and their problems With the miniaturization of electrical and electronic equipment, high-density mounting of electronic components is being promoted, and chip mounting is one of the effective means for this. Until now, the only capacitors that could be made into chips were ceramic capacitors, but recently tantalum electrolytic capacitors and aluminum electrolytic capacitors have also been made into chips. Of these, film capacitors were the only ones that were slow to adapt to chips. The biggest reason for this is the poor heat resistance of the plastic film itself, which is the dielectric material of the plastic film capacitor.
When immersed in a solder bath, fatal defects such as deformation of the device, missing capacitance, and short circuits between lead wires occurred. On the other hand, the heat-resistant films currently on the market are too thick and lack capacity, have too large electrical properties, especially the dielectric loss tangent, and are too expensive. It's inappropriate. Purpose of the Invention The present invention eliminates the drawbacks of the heat-resistant film itself by using the heat-resistant film only as a base material, not as a dielectric, and makes full use of its excellent thermal stability. The object of the present invention is to provide a chip-shaped film capacitor having better electrical characteristics. Structure of the Invention In order to achieve the above-mentioned object, the chip-shaped film capacitor of the present invention is provided by forming a vapor-deposited metal electrode on both sides of a heat-resistant plastic film, leaving one end in the same direction on the other surface; A thermosetting resin layer is formed on one side and a heat-resistant thermoplastic resin layer is formed on the other side so that only the vapor-deposited metal electrode portion close to the edge is exposed. The plastic films having the same structure are stacked so that the exposed electrode portions of each layer are in opposite directions and the thermosetting resin layer and the heat-resistant thermoplastic resin layer are overlapped, and the exposed electrodes are stacked on both sides of the laminate. A molten metal layer is provided on a vapor-deposited metal electrode. DESCRIPTION OF EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. First, the basics of the present invention will be explained before explaining the embodiments with reference to the drawings. A heat-resistant film with metal electrodes deposited on both sides is coated with a heat-resistant thermoplastic resin and a thermosetting resin on each side from above the metal electrodes, and the films are cut to size and then laminated in multiple layers. The electrode is drawn out from the vapor-deposited electrode by metal spraying on both sides. Here, the heat-resistant film refers to a film that does not melt or undergo extreme deformation at 260°C, and specifically refers to plastic films such as polyimide, polyamide, and polyamide-imide. In addition, heat-resistant thermoplastic resin has a heat distortion temperature of
Plastics with a dielectric loss tangent of 0.01 or less at 170°C or higher and 1KHz, specifically polysulfone, polyethersulfone, polyphenylene oxide, fluororesin, etc. On the other hand, thermosetting resin has a thermal decomposition temperature of 300℃ or higher and a dielectric loss tangent at 1KHz.
0.02 or less, and refers to epoxy resins, unsaturated polyester resins, polybutadiene, silicone resins, diallyl phthalate resins, triazine resins, etc. The role of the heat-resistant thermoplastic resin is to improve the performance of the capacitor by taking advantage of its excellent dielectric properties, and also to bond between each layer. On the other hand, the thermosetting resin layer serves to prevent a decrease in withstand voltage and insulation resistance due to creep or flow of the thermoplastic resin at high temperatures such as during solder dipping. Embodiments of the present invention will be described below with reference to the drawings. As shown in FIG.
Cut it out so that the width A is 4 mm and the length B is 3 mm, and on both sides, cut out 0.5 mm from one end of the same side in the width direction.
Aluminum is vapor-deposited over the entire surface, leaving a thickness of 1 mm, to form electrodes 2 and 3. Next, as shown in Figure 2,
A thermoplastic resin lacquer is applied to the side where the electrode 2 is present, and then heated and dried to expose a portion of the electrode 2 adjacent to the widthwise end of the heat-resistant film 1, leaving a 0.5 mm gap. A thermoplastic resin layer 4 is formed with a width of mm, and a thermosetting resin layer 5 is formed on the electrode 3 side by the same coating method and completely cured. As shown in FIG. 2, a heat-resistant film 1' having electrodes 2', 3', a thermoplastic resin layer 4', and a thermosetting resin layer 5' formed thereon and the heat-resistant film 1 are placed on one side as shown in FIG. The thermosetting resin layer 5 and the other thermoplastic resin layer 4' are bonded together so that they are in contact with each other. At this time, the electrodes are exposed in opposite directions for each layer. Also, at this time, the overlapping portion of the opposing vapor deposition electrodes 3 and 2' has a length of 3 mm and a width of 3 mm. After that, the films are laminated one after another in the same way,
After laminating 100 layers of film, the film is heated at 200 to 240°C for 10 minutes while being lightly pressed from above and below in the lamination direction. As a result, each layer is completely bonded to each other. Aluminum is thermally sprayed to a thickness of 0.3 to 0.5 mm on both sides of the laminated film in the width direction, and as shown in Figure 3, the vapor deposition electrodes 2 and 3 to electrode 6 are oriented in one direction, and the evaporation electrode 2' is oriented in the opposite direction. , 3', respectively. Next, as shown in FIG. 4, nickel com leads 8 and 9 are welded to the electrodes 6 and 7, respectively, and the entire device is covered with a commercially available molded resin 10.
The chip-shaped film capacitor of the present invention is completed by bending the comb leads 8 and 9 protruding from the capacitor as shown in FIG. Table 1 shows specific combinations of the heat-resistant film, thermoplastic resin, and thermosetting resin used in the above examples. Further, Table 2 shows the initial characteristics of each combination example and the characteristics after being immersed in a 260° C. solder bath for 10 seconds. still

【表】【table】

【表】 比較のために、市販のポリエステルフイルムコン
デンサーの性能をも第2表に併記する。 発明の効果 以上のように本発明によれば次の効果を得るこ
とができる。即ち、第1表、第2表から分かるよ
うに本発明のチツプ状フイルムコンデンサーは市
販のフイルムコンデンサーと比較して非常に低い
誘電正接を有し、しかも260℃、10秒間の半田浴
中浸漬テスト後に市販品が大幅な容量減少や絶縁
抵抗の劣化を来たすのに対し、本発明品は特性劣
化が殆んど無い等、優れた電気特性を有する新し
いチツプ状フイルムコンデンサーとして非常に有
益なものである。
[Table] For comparison, the performance of commercially available polyester film capacitors is also listed in Table 2. Effects of the Invention As described above, according to the present invention, the following effects can be obtained. That is, as can be seen from Tables 1 and 2, the chip-shaped film capacitor of the present invention has a very low dielectric loss tangent compared to commercially available film capacitors, and moreover, it can be immersed in a solder bath at 260°C for 10 seconds. While commercially available products later suffered from a significant decrease in capacity and deterioration in insulation resistance, the product of the present invention exhibits almost no deterioration in characteristics, making it extremely useful as a new chip-shaped film capacitor with excellent electrical properties. be.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明の一実施例を示し、第1図は両面
に電極を蒸着した耐熱性フイルムの斜視図、第2
図は二層積層の様子を示す断面図、第3図は金属
溶射した状態を示す断面図、第4図はコムリード
を溶接した状態を示す斜視図、第5図は外装して
完成した状態を示す断面図である。 1,1′……耐熱性フイルム、2,2′,3,
3′……蒸着電極、4,4′……熱可塑性樹脂層、
5,5′……熱硬化性樹脂層、6,7……電極、
8,9……コムリード、10……成型樹脂。
The drawings show one embodiment of the present invention, and FIG. 1 is a perspective view of a heat-resistant film with electrodes deposited on both sides, and FIG.
The figure is a cross-sectional view showing the state of two-layer lamination, Figure 3 is a cross-sectional view showing the metal sprayed state, Figure 4 is a perspective view showing the welded state of ComLead, and Figure 5 is the completed state with exterior packaging. FIG. 1, 1'...Heat-resistant film, 2, 2', 3,
3'... Vapor deposition electrode, 4,4'... Thermoplastic resin layer,
5, 5'... thermosetting resin layer, 6, 7... electrode,
8, 9... Comlead, 10... Molding resin.

Claims (1)

【特許請求の範囲】 1 耐熱性プラスチツクフイルムの両面に同一方
向の一端部を残して他の全面に蒸着金属電極を形
成し、この上からフイルムの縁に近接する蒸着金
属電極部のみが露出されるように一方の面では熱
硬化性樹脂層を形成し、他方の面では耐熱性熱可
塑性樹脂層を形成し、これら蒸着金属電極及び樹
脂層を持つプラスチツクフイルムを、一層毎に前
記露出した電極部が逆方向になるように且つ熱硬
化性樹脂層と耐熱性熱可塑性樹脂層とが重なり合
うように積層し、この積層体の両側面に露出した
蒸着金層電極上に溶融金属層を設けたチツプ状フ
イルムコンデンサー。 2 耐熱性プラスチツクフイルムが、260℃で溶
融や極端な変形を生じないフイルムである特許請
求の範囲第1項記載のチツプ状フイルムコンデン
サー。 3 耐熱性熱可塑性樹脂層の樹脂が、熱変形温度
170℃以上で、且つ1KHzで測定した誘電正接が
0.01以下の耐熱性熱可塑性樹脂である特許請求の
範囲第1項記載のチツプ状フイルムコンデンサ
ー。 4 熱硬化性樹脂層の樹脂が、熱分解温度300℃
以上で、且つ1KHzでの誘電正接が0.02以下の熱
硬化性樹脂である特許請求の範囲第1項記載のチ
ツプ状フイルムコンデンサー。
[Scope of Claims] 1. Vapor-deposited metal electrodes are formed on both sides of a heat-resistant plastic film, leaving one end in the same direction on the other entire surface, and only the vapor-deposited metal electrodes near the edges of the film are exposed from above. A thermosetting resin layer is formed on one side and a heat-resistant thermoplastic resin layer is formed on the other side, and the plastic film having the vapor-deposited metal electrode and the resin layer is layered layer by layer on the exposed electrode. The thermosetting resin layer and the heat-resistant thermoplastic resin layer were stacked so that their parts were in opposite directions and overlapped, and a molten metal layer was provided on the vapor-deposited gold layer electrodes exposed on both sides of this laminate. Chip-shaped film capacitor. 2. The chip-shaped film capacitor according to claim 1, wherein the heat-resistant plastic film is a film that does not melt or undergo extreme deformation at 260°C. 3 The resin of the heat-resistant thermoplastic resin layer has a heat distortion temperature of
The dielectric loss tangent measured at 170℃ or higher and at 1KHz is
The chip-shaped film capacitor according to claim 1, which is a heat-resistant thermoplastic resin of 0.01 or less. 4 The resin of the thermosetting resin layer has a thermal decomposition temperature of 300℃
The chip-shaped film capacitor according to claim 1, which is a thermosetting resin having the above properties and a dielectric loss tangent of 0.02 or less at 1 KHz.
JP58003672A 1983-01-12 1983-01-12 Chip film capacitor Granted JPS59127829A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP58003672A JPS59127829A (en) 1983-01-12 1983-01-12 Chip film capacitor
US06/570,028 US4555746A (en) 1983-01-12 1984-01-11 Organic chip capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58003672A JPS59127829A (en) 1983-01-12 1983-01-12 Chip film capacitor

Publications (2)

Publication Number Publication Date
JPS59127829A JPS59127829A (en) 1984-07-23
JPH0142616B2 true JPH0142616B2 (en) 1989-09-13

Family

ID=11563911

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58003672A Granted JPS59127829A (en) 1983-01-12 1983-01-12 Chip film capacitor

Country Status (1)

Country Link
JP (1) JPS59127829A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101085322B1 (en) * 2007-10-18 2011-11-23 이비덴 가부시키가이샤 Wiring substrate and method of manufacturing the same
US20230129081A1 (en) * 2020-03-19 2023-04-27 Rohm Co., Ltd. Multilayer capacitor

Also Published As

Publication number Publication date
JPS59127829A (en) 1984-07-23

Similar Documents

Publication Publication Date Title
US4555746A (en) Organic chip capacitor
JPH0142615B2 (en)
JPH0142616B2 (en)
JPH0569290B2 (en)
JPH0142617B2 (en)
JP3901916B2 (en) Metallized film capacitors
JP2870179B2 (en) Chip type metallized film capacitor and manufacturing method thereof
JPS6027110A (en) Chip-shaped film capacitor
JPH0770426B2 (en) Capacitor
JPS605506A (en) Chip-like film capacitor
JPS61102021A (en) Capacitor
JP2917487B2 (en) Manufacturing method of multilayer capacitor
JPH0458164B2 (en)
JPH0770428B2 (en) Capacitor
JPH0450727B2 (en)
JPS59916A (en) Film for condenser dielectric unit
JPH0461485B2 (en)
JPS61119024A (en) Laminated capacitor
JPH0770416B2 (en) Method of manufacturing chip type film capacitor
JPS5936920A (en) Film condenser
JPS5972124A (en) Film condenser
JPS5848413A (en) Chip-shaped condenser and method of producing same
JPS63181409A (en) Laminated film chip capacitor
JPH0283912A (en) Manufacture of chip-shaped film capacitor
JPS5969911A (en) Film condenser