JPH0141496B2 - - Google Patents

Info

Publication number
JPH0141496B2
JPH0141496B2 JP56006323A JP632381A JPH0141496B2 JP H0141496 B2 JPH0141496 B2 JP H0141496B2 JP 56006323 A JP56006323 A JP 56006323A JP 632381 A JP632381 A JP 632381A JP H0141496 B2 JPH0141496 B2 JP H0141496B2
Authority
JP
Japan
Prior art keywords
film
deposited
metal
vacuum
vapor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56006323A
Other languages
Japanese (ja)
Other versions
JPS57120434A (en
Inventor
Takuo Adachi
Atsushi Uchida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Metallizing Co Ltd
Original Assignee
Toyo Metallizing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Metallizing Co Ltd filed Critical Toyo Metallizing Co Ltd
Priority to JP56006323A priority Critical patent/JPS57120434A/en
Publication of JPS57120434A publication Critical patent/JPS57120434A/en
Publication of JPH0141496B2 publication Critical patent/JPH0141496B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は金属蒸着膜のキズ、ピンホール欠点の
少ないフイルムを製造するための真空蒸着装置に
関するものである。 従来の金属蒸着フイルムは、プラスチツクフイ
ルム等にアルミニウム、亜鉛、クロム、スズなど
の金属を蒸着し、そのまま巻取るものであつた。
そしてこれらの蒸着フイルムは、金銀糸、ラベル
などの装飾、雑貨用途に、乾燥食品、冷菓などの
包装用途に、断熱を目的とした建材用途に広く用
いられて来ている。しかしながら金属蒸着フイル
ムはそのすぐれた光線遮断性という特性をもちな
がら光学用途、たとえば製版、グラフイツクアー
ツの分野にはほとんど使用されていない。この原
因は、金属蒸着フイルムの金属膜厚が数10mμか
ら数100mμと非常に薄く、わずかの外力できず
がつくことや、蒸着時の金属の突沸によるピンホ
ールがあり、通常の用途ではこれらの数10mμ〜
数100mμの欠点では問題にされないのに対し、
光学的性質を利用する用途では、これらが致命欠
陥となるからである。かかる蒸着膜中の光学欠点
(以下ピンホールという)を分析した結果、蒸着
金属の突沸によるものと、付着ゴミがマスキング
の効果をして蒸着金属が付着しないものと、蒸着
後に何らかの事情でこすり取られたものがあるこ
とがわかつた。 前2者については発生の割合は比較的少なくし
かもそれぞれの対応策をとることによつて飛躍的
に減少させることができる。たとえば蒸着金属の
突沸対策としては蒸発すべき金属の純度を高め、
加熱すべきルツボの材質の選定、昇温速度、蒸着
加工時の温度、基材とルツボ間の距離などを選定
することにより減少させることができる。付着ゴ
ミによるピンホール防止は、被蒸着フイルムの洗
浄やふきとりによる除去、蒸着真空槽内の清掃な
どで大巾に減少させることができる。また後者に
おける蒸着後に何らかの事情でこすり取られたも
の、すなわち巻取りまでの搬送過程で接触するロ
ールや巻取時のごくわずかのスリツプによつてす
りきずが発生しピンホールになる場合について
は、従来あまり改良方法が示されていない。 また、蒸着面が蒸着後ロールに全く接触しない
ようにロール類を配置し巻取ることは理論上不可
能ではないが、実用上は真空槽内という制約や張
力、金属膜厚の検出などの目的のために従来の巻
取型の真空蒸着機では蒸着面とロール類が数本は
接触する構成になつている。 また仮に蒸着面が全く接触しないようにロール
類を配置した蒸着機であつても、蒸着フイルムを
巻取るときに蒸着面がその材料の背面と接触する
ことはさけられず、このときにわずかのテンシヨ
ン変動や巻取軸のわずかの偏心運動、蒸着フイル
ムの厚薄ムラによる接触圧の変化などからすりき
ず状または押圧によるピンホールが発生すること
がさけられない。(むろんこの時にフイルムの表
面にゴミなどの微小異物が付着していればさらに
この種の欠点は助長される。)そこで本発明者は
上記ピンホールの発生を防ぎ、光学用途に十分適
用できる金属蒸着フイルムを得るべく検討した結
果、本発明に到つたものである。 すなわち本発明は、真空中でフイルム状物を走
行させながら金属蒸着した後、その蒸着面を同じ
真空槽内に別に用意された保護シートと重ね合わ
せて巻取ることを特徴とする重ね合わせフイルム
の製造方法及びフイルムを真空中で金属蒸着する
装置において、同一真空槽内に被着層フイルムの
巻出、金属蒸着巻取とは別に保護シートを巻出す
装置を少なくとも1つ以上取りつけ、該保護シー
トと該被蒸着フイルムとを重ね合わせて巻取る装
置である。 以下、図面で詳述するが本発明はこれらに限定
されるものではない。第1図は、真空中でフイル
ム状物を走行させながら蒸着した後、その蒸着面
と同じ真空槽内に別に用意された保護シートで重
ね合わせて巻取る装置で、1は被蒸着フイルムの
巻取軸、2は搬送のためのガイドロール類、3は
冷却ロールである。金属はルツボ4から蒸し走行
中のフイルム5に付着する。蒸着されたフイルム
は6のような蒸着面に接触するロールや7のよう
に非蒸着面に接触するロールによつて搬送され8
の巻取軸に巻取られる。一般の蒸着機は上述のプ
ロセスで蒸着がされる。なお搬送過程では2′,
6′のようなニツプロールエキスパンダロール類
を設置することもできる。 本発明のこれらの搬送巻取系の他に別に設けら
れた巻取軸Aに蒸着面を保護するシートBを巻付
けたものをガイドロールCを通して蒸着済である
フイルムの蒸着面が6のガイドロールに接触する
前に重ね合わせ搬送させながら巻取軸8へ巻取
る。 この保護シートBと蒸着済フイルム6は必要に
応じてニツプロールDを取付けてもよい。 第2図は蒸着後のフイルム6を直接巻取軸8に
巻取ると同時に別の巻出軸Aと重ね合わせて巻取
る装置を示している。また第3図は本発明によつ
て得られた重ね合わせフイルムを示したものであ
る。 本発明に用いる被蒸着フイルムは蒸着可能なフ
イルムであればよく、特に限定されるものではな
い。すなわちセロフアン、トリアセテートフイル
ム、ポリエチレンテレフタレートフイルム、ポリ
エチレンフイルム、ポリプロピレンフイルム、ナ
イロンフイルム、塩化ビニルフイルム、ポリビニ
ルアルコールフイルム、ポリカーボネートフイル
ム、テフロンフイルム、ポリスチレンフイルムな
どのプラスチツクフイルムやこれらを基材とした
複合フイルム、コーテツドフイルム、表面加工
(たとえばエンボス)フイルムなどが使用される。 蒸着に使用される物質としてはアルミニウム、
亜鉛、錫、銅、鉛、セレン、ビスマス、アンチモ
ン、銀、金、クロム、ニツケル、鉄、コバルトに
例示される金属単体やニクロム、ステンレスなど
の合金類、CdS、M8F2などの化合物でもよい。
蒸発方法は誘導加熱ルツボ方式、抵抗加熱ボート
方式、電子ビーム加熱ルツボ方式などの真空蒸着
やスパツタ法などいずれの方式でも採用できる。 蒸着面に被覆する保護シートとしては、一般の
プラスチツクフイルムたとえばポリエチレンテレ
フタレート、ポリエチレン、ポリプロピレン、ナ
イロン、ポリビニルアルコール、塩化ビニル、ポ
リカーボネート、ポリスチレン、テフロンなどの
フイルムや、これらの基材に複合したフイルム
や、コーチツドフイルム、たとえば粘着加工フイ
ルムなどがある。該フイルムをそのまま用いても
よいし、あるいは帯電させて用いてもよい。具体
的にはポリエチレンテレフタレートフイルムの真
空蒸着には、同種のポリエチレンテレフタレート
フイルムで表面粗度の少ないものでもよいが、一
般はさらにやわらかいポリプレンフイルム、ポリ
エチレンフイルム、ポリビニルアルコールフイル
ムなどを該保護シートとして使用する。特に微細
な欠点までなくすには、ポリプロピレンやポリエ
ステルに粘着加工、微粘着加工したフイルムを重
ね合わせた物を用いるのがよい。金属の密着があ
まり強固でないポリプロピレンフイルムやポリエ
チレンフイルムの場合は、粘着性の低い加工をし
た保護フイルムを用いる。重ね合わせすることに
よつて保護シートの表面物質たとえば滑剤、粘着
剤が付着して、後加工に悪影響を及ぼすことが明
らかな場合はこれらのものの影響をうけない材質
の組合せを用いる。 本発明による方法によつて得られるフイルム
は、上述のように蒸着中に真空槽内で別の保護シ
ートと重ね合わせることを特徴としている。これ
によつて蒸着中で発生するピンホール欠点を防ぐ
ことができる。さらに本フイルムはロール状で大
気中に取出した後の運搬、静置したときの面圧に
よるキズの発生に対し有利であるが、とりわけそ
の後工程の巻返し、コーチング、貼合せなどの加
工のためにロール搬送するときに、蒸着面が搬送
ロールに接触発生するキズが原因となるピンホー
ルに対しきわめて有効である。すなわちコーチン
グ、ラミネートなどのときは蒸着面に塗布、貼合
せをする寸前まで保護シートをつけておいた状態
で搬送し、その塗布、貼合せロールの直前で保護
シートをはがすことにより、これらの欠点は防ぐ
ことができるからである。本発明を以下の実施例
で説明する。 実施例 1 厚さ50ミクロンのポリエチレンテレフタレート
フイルム(東レ(株)製“ルミラー”)を第1図に示
す装置を用いて、真空度1×10-4Torrの真空中
で厚さ100mμにアルミニウムを真空蒸着し、一
方同じ真空槽内に設置された被蒸着フイルムとは
別の巻出機に設置された厚さ20ミクロンのポリエ
チレンフイルムベースで粘着力20g/cmの粘着加
工をしたフイルムの粘着面を、上記蒸着面に重ね
合わせて巻取を行なつた。 比較例1として、厚さ50ミクロンのポリエチレ
ンテレフタレートフイルムを上述の同一真空蒸着
機を用いて、真空度1×10-4Torrのもとに、厚
さ100mμにアルミニウムを真空蒸着しそのまま
巻取つた。 実施例1と比較例1のフイルムをそれぞれ20cm
×20cmの寸法に切り出し、ライトテーブル上にお
いてピンホール欠点数を調べた。結果を表1に示
す。
The present invention relates to a vacuum evaporation apparatus for producing a film with fewer scratches and pinhole defects in the metal evaporation film. Conventional metal-deposited films have been produced by vapor-depositing metals such as aluminum, zinc, chromium, tin, etc. onto plastic films, and then winding the films as they are.
These vapor-deposited films have been widely used for decoration such as gold and silver threads and labels, for miscellaneous goods, for packaging dried foods and frozen desserts, and for building materials for the purpose of insulation. However, although metallized films have excellent light blocking properties, they are hardly used in optical applications, such as plate making and graphic arts. The reason for this is that the metal film thickness of the metallized film is extremely thin, ranging from several tens of micrometers to several hundred micrometers, and can be scratched by the slightest external force, as well as pinholes caused by bumping of the metal during vapor deposition. Several tens of mμ~
Whereas a defect of several hundred micrometers is not a problem,
This is because these become fatal defects in applications that utilize optical properties. An analysis of such optical defects (hereinafter referred to as pinholes) in the deposited film revealed that some are due to bumping of the deposited metal, some are caused by adhering dust that acts as a masking effect and prevents the deposited metal from adhering, and some are caused by scraping off for some reason after the deposition. I found out that there were some things that were done. The incidence of the first two cases is relatively small, and can be dramatically reduced by taking countermeasures for each. For example, to prevent bumping of vapor-deposited metal, increase the purity of the metal to be vaporized,
It can be reduced by selecting the material of the crucible to be heated, the rate of temperature increase, the temperature during vapor deposition, the distance between the base material and the crucible, etc. Prevention of pinholes due to attached dust can be greatly reduced by cleaning or wiping the film to be deposited, cleaning the inside of the vacuum deposition chamber, etc. In addition, in the case of the latter, which is scraped off for some reason after vapor deposition, that is, when scratches occur due to rolls that come into contact during the transportation process up to winding or minute slips during winding, resulting in pinholes, Until now, few improvement methods have been proposed. In addition, although it is theoretically not impossible to arrange and wind up the rolls so that the evaporation surface does not come into contact with the roll after evaporation, it is practically impossible due to the constraints of being inside a vacuum chamber and the purpose of measuring tension, metal film thickness, etc. For this reason, conventional winding type vacuum evaporation machines are configured so that the evaporation surface and several rolls come into contact with each other. Furthermore, even if the rolls are arranged in a vapor deposition machine so that the vapor deposition surfaces do not come into contact with each other at all, it is unavoidable that the vapor deposition surface will come into contact with the back surface of the material when winding the vapor deposited film. Scratches or pinholes due to pressure cannot be avoided due to tension fluctuations, slight eccentric movements of the winding shaft, and changes in contact pressure due to uneven thickness of the vapor-deposited film. (Of course, if microscopic foreign matter such as dust adheres to the surface of the film at this time, this kind of defect will be further exacerbated.) Therefore, the present inventors have developed a method to prevent the occurrence of pinholes and to create a metal film that can be sufficiently applied to optical applications. As a result of studies aimed at obtaining a vapor-deposited film, the present invention was arrived at. That is, the present invention provides a layered film characterized in that after metal vapor deposition is carried out while a film-like material is running in a vacuum, the vapor-deposited surface is overlapped with a separately prepared protective sheet in the same vacuum chamber and wound up. In the manufacturing method and the device for metal vapor deposition of the film in vacuum, at least one device for unwinding the protective sheet separately from unwinding the adherend layer film and winding up the metal vapor deposition layer is installed in the same vacuum chamber, and the protective sheet This is a device for superimposing and winding the vapor-deposited film and the vapor-deposited film. The present invention will be described in detail below with reference to the drawings, but the present invention is not limited thereto. Figure 1 shows a device that performs vapor deposition while running a film-like material in a vacuum, and then winds the film by overlapping it with a separately prepared protective sheet in the same vacuum chamber as the vapor deposition surface. 2 is a guide roll for conveyance, and 3 is a cooling roll. The metal is steamed from the crucible 4 and adheres to the film 5 during running. The vapor-deposited film is conveyed by a roll that contacts the vapor-deposited surface, such as 6, or a roll that contacts the non-evaporated surface, such as 7.
It is wound up on the winding shaft. A general vapor deposition machine performs vapor deposition using the process described above. In addition, during the conveyance process, 2′,
It is also possible to install Nipprol expander rolls such as 6'. In addition to these conveying and winding systems of the present invention, a sheet B for protecting the deposition surface is wound around a winding shaft A provided separately, and a sheet B for protecting the deposition surface is passed through guide rolls C to guide the film on which the deposition surface of the film that has already been deposited is 6. It is wound onto the winding shaft 8 while being overlapped and conveyed before contacting the roll. A nip roll D may be attached to the protective sheet B and the vapor-deposited film 6, if necessary. FIG. 2 shows an apparatus for directly winding the film 6 after vapor deposition onto a winding shaft 8, and at the same time winding the film 6 overlappingly with another unwinding shaft A. Further, FIG. 3 shows a superimposed film obtained by the present invention. The film to be vapor-deposited used in the present invention is not particularly limited as long as it can be vapor-deposited. In other words, plastic films such as cellophane, triacetate film, polyethylene terephthalate film, polyethylene film, polypropylene film, nylon film, vinyl chloride film, polyvinyl alcohol film, polycarbonate film, Teflon film, polystyrene film, and composite films and coatings based on these films. Tudo film, surface-treated (for example, embossed) film, etc. are used. Materials used for vapor deposition include aluminum,
Even simple metals such as zinc, tin, copper, lead, selenium, bismuth, antimony, silver, gold, chromium, nickel, iron, and cobalt, alloys such as nichrome and stainless steel, and compounds such as CdS and M 8 F 2 good.
As the evaporation method, any method such as induction heating crucible method, resistance heating boat method, electron beam heating crucible method, vacuum evaporation, sputtering method, etc. can be adopted. The protective sheet to be coated on the deposition surface may be a general plastic film, such as a film made of polyethylene terephthalate, polyethylene, polypropylene, nylon, polyvinyl alcohol, vinyl chloride, polycarbonate, polystyrene, Teflon, etc., or a composite film made of these base materials. There are coated films, such as adhesive films. The film may be used as it is or may be charged. Specifically, for vacuum deposition of polyethylene terephthalate film, the same type of polyethylene terephthalate film with less surface roughness may be used, but generally softer polyprene film, polyethylene film, polyvinyl alcohol film, etc. are used as the protective sheet. do. In particular, in order to eliminate even minute defects, it is best to use a film made by laminating polypropylene or polyester with a film that has been treated with adhesive or slightly adhesive. In the case of polypropylene film or polyethylene film that does not have very strong adhesion to metal, use a protective film that has been processed to have low adhesion. If it is clear that surface materials such as lubricants and adhesives of the protective sheets will adhere to the protective sheets due to overlapping and adversely affect post-processing, use a combination of materials that will not be affected by these materials. The film obtained by the method according to the invention is characterized by being superimposed with another protective sheet in a vacuum chamber during vapor deposition, as described above. This can prevent pinhole defects that occur during deposition. Furthermore, this film is in roll form and is advantageous in preventing scratches from occurring due to surface pressure during transportation and standing after being taken out into the atmosphere. It is extremely effective against pinholes caused by scratches that occur when the vapor deposition surface comes into contact with the transport roll during roll transport. In other words, during coating, laminating, etc., these defects can be avoided by leaving the protective sheet on the vapor deposition surface until just before coating and laminating, and then peeling off the protective sheet just before the coating and laminating rolls. This is because it can be prevented. The invention is illustrated by the following examples. Example 1 A polyethylene terephthalate film (“Lumirror” manufactured by Toray Industries, Inc.) with a thickness of 50 microns was coated with aluminum to a thickness of 100 mμ in a vacuum of 1 × 10 -4 Torr using the apparatus shown in Figure 1. The adhesive surface of a film that was vacuum-deposited and treated with an adhesive strength of 20 g/cm using a 20-micron-thick polyethylene film base installed in an unwinding machine separate from the film to be deposited, which was installed in the same vacuum chamber. was superimposed on the vapor-deposited surface and wound up. As Comparative Example 1, a polyethylene terephthalate film with a thickness of 50 microns was vacuum-deposited with aluminum to a thickness of 100 mμ using the same vacuum evaporator described above under a vacuum degree of 1×10 -4 Torr, and then wound as it was. . 20 cm of each of the films of Example 1 and Comparative Example 1
It was cut out to a size of 20cm x 20cm and the number of pinhole defects was examined on a light table. The results are shown in Table 1.

【表】 実施例 2 厚さ100ミクロンのポリエチレンテレフタレー
トフイルム(東レ(株)製ルミラー)を実施例1と同
じ装置を用いて真空度2×10-4Torrで70mμの
厚さににアルミニウムを真空蒸着し、厚さ25ミク
ロンの未延伸プロピレンフイルムを重ね合わせ巻
取を行つた。 なお同様に重ね合わせをしない状態で巻取つた
フイルムを比較例2とし、実施例1と同様にライ
トテーブル下でピンホール欠点の検査をした結果
を表2に示す。
[Table] Example 2 A polyethylene terephthalate film (Lumirror manufactured by Toray Industries, Inc.) with a thickness of 100 microns was vacuum-coated with aluminum to a thickness of 70 mμ at a vacuum level of 2 × 10 -4 Torr using the same equipment as in Example 1. After vapor deposition, an unstretched propylene film with a thickness of 25 microns was stacked and wound up. Table 2 shows the results of Comparative Example 2, which was a film wound without overlapping, and inspected for pinhole defects under a light table in the same manner as in Example 1.

【表】 実施例 3 厚さ80ミクロンのトリアセテートフイルムに実
施例1と同様の装置を用いて真空度5×
10-4Torr下でアルミニウム50mμの厚さに蒸着
し、厚さ15ミクロンのポリビニルアルコールフイ
ルムを重ね合わせ巻取つた。同じフイルムを蒸着
してそのまま巻取つたものを比較例3とし、実施
例1の方法で評価した結果を表3に示す。
[Table] Example 3 A triacetate film with a thickness of 80 microns was coated with a vacuum degree of 5× using the same equipment as in Example 1.
Aluminum was deposited to a thickness of 50 μm under 10 -4 Torr, and a polyvinyl alcohol film of 15 μm thickness was layered and rolled up. Comparative Example 3 is a film in which the same film was vapor-deposited and wound as it was, and evaluated using the method of Example 1. Table 3 shows the results.

【表】 実施例 4 実施例1で得られたフイルムと比較例1で得ら
れたフイルムをそれぞれグラビアロールコーター
を用いて金属蒸着面に保護層を設けた。 塗料は、 VAGH 20部(U.C.C.社製ビニル系樹脂) トルエン 40部 MEK 40部 としグラビアロールは180メツシユ深さ30ミクロ
ン、ピラミツド型のもので塗布厚は固形分で約1
g/m2、乾燥温度80℃、巻取速度50m/分であ
る。塗工までのガイドロールのうち蒸着膜と接触
するものは5本である。 実施例1のフイルムは巻出し後、重ね合わせた
状態のままで搬送し塗工する寸前でカバーフイル
ムをひきはがして巻取り除去した。 比較例1のフイルムはそのまま常法どおりフイ
ルムを搬送し塗工した。両者の塗工フイルムを実
施例1と同じ評価方法でピンホールを検査し結果
を表4にまとめた。
[Table] Example 4 A protective layer was provided on the metal-deposited surface of the film obtained in Example 1 and the film obtained in Comparative Example 1 using a gravure roll coater. The paint is 20 parts VAGH (vinyl resin manufactured by UCC), 40 parts toluene, and 40 parts MEK.The gravure roll has a 180 mesh depth of 30 microns and is pyramid-shaped, and the coating thickness is approximately 1.
g/m 2 , drying temperature 80°C, and winding speed 50 m/min. Of the guide rolls up to coating, five come into contact with the deposited film. After the film of Example 1 was unwound, the film was transported in a stacked state, and just before coating, the cover film was peeled off and the film was rolled up and removed. The film of Comparative Example 1 was transported and coated in the usual manner. Both coated films were inspected for pinholes using the same evaluation method as in Example 1, and the results are summarized in Table 4.

【表】【table】 【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図は本発明による真空蒸着装置で
ある。また第3図は本発明によつて得られた重ね
合わせフイルムである。 1:被蒸着フイルムの巻出軸、2:ガイドロー
ル、3:水冷ロール、4:蒸発ルツボ、5:被蒸
着フイルム、6:金属面接触ガイドロール、7:
非金属面接触ガイドロール、8:巻取軸、A:保
護シートの巻出軸、B:保護シート、C:ガイド
ロール、D:ニツプロール、9:ニツプロール、
10:エキスパンダロール、11:真空槽、1
2:被蒸着フイルム、13:金属蒸着層、14:
保護シート。
1 and 2 show a vacuum evaporation apparatus according to the present invention. FIG. 3 shows a laminated film obtained according to the present invention. 1: Unwinding shaft of film to be deposited, 2: Guide roll, 3: Water-cooled roll, 4: Evaporation crucible, 5: Film to be deposited, 6: Metal surface contact guide roll, 7:
Non-metallic surface contact guide roll, 8: Winding shaft, A: Unwinding shaft of protective sheet, B: Protective sheet, C: Guide roll, D: Nip roll, 9: Nip roll,
10: Expander roll, 11: Vacuum chamber, 1
2: Deposited film, 13: Metal deposited layer, 14:
protective sheet.

Claims (1)

【特許請求の範囲】 1 真空中でフイルム状物を走行させながら金属
蒸着した後、その蒸着面を同じ真空槽内に別に用
意された保護シートと重ね合わせて巻取ることを
特徴とする重ね合わせフイルムの製造法。 2 フイルムを真空中で金属蒸着する装置におい
て、同一真空槽内に被蒸着フイルムの巻出、金属
蒸着、巻取とは別に保護シートを巻出す装置を少
なくとも1つ以上取りつけ、該保護シートと該被
蒸着フイルムとを重ね合わせて巻取る装置。
[Claims] 1. Overlapping characterized by depositing metal while running a film-like material in a vacuum, and then overlapping the deposited surface with a protective sheet separately prepared in the same vacuum chamber and winding it up. Film manufacturing method. 2. In an apparatus for metal-depositing films in vacuum, at least one apparatus for unwinding a protective sheet in addition to unwinding, metal-depositing, and winding of the film to be deposited is installed in the same vacuum chamber, and the protective sheet and the A device that overlaps and winds the film to be deposited.
JP56006323A 1981-01-21 1981-01-21 Method and apparatus for manufacturing stacked film Granted JPS57120434A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56006323A JPS57120434A (en) 1981-01-21 1981-01-21 Method and apparatus for manufacturing stacked film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56006323A JPS57120434A (en) 1981-01-21 1981-01-21 Method and apparatus for manufacturing stacked film

Publications (2)

Publication Number Publication Date
JPS57120434A JPS57120434A (en) 1982-07-27
JPH0141496B2 true JPH0141496B2 (en) 1989-09-06

Family

ID=11635152

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56006323A Granted JPS57120434A (en) 1981-01-21 1981-01-21 Method and apparatus for manufacturing stacked film

Country Status (1)

Country Link
JP (1) JPS57120434A (en)

Also Published As

Publication number Publication date
JPS57120434A (en) 1982-07-27

Similar Documents

Publication Publication Date Title
US5462779A (en) Thin film multilayer structure as permeation barrier on plastic film
US6707610B1 (en) Reducing the susceptibility of titanium nitride optical layers to crack
US6913808B2 (en) Barrier film having high colorless transparency and method
US4686141A (en) Pellicular laminate means for shielding structures from electromagnetic radiation
JP3443976B2 (en) Method for producing transparent gas barrier film
EP0460966B1 (en) Barrier film having high colorless transparency and method of manufacture thereof
JPH0141496B2 (en)
US4452664A (en) Method for predetermining peel strength at copper/aluminum interface
Kukla et al. Overview on modern vacuum web coating technology
EP0588366A1 (en) Magnetic recording medium manufacturing method and manufacturing apparatus and magnetic recording medium
JP3123371B2 (en) Barrier laminate
JPH0282696A (en) Metal thin film laminate structure for electromagnetic wave shield
JP4120865B2 (en) Gas barrier film roll, laminate using the same, and packaging bag
WO2022047946A1 (en) Coating process
US3255035A (en) Tin oxide coating
JPH1071663A (en) Gas barrier laminated structure
JP2002225169A (en) Transparent gas barrier laminated film
JPH08100258A (en) Method for forming thin film and device therefor
JPH06330317A (en) Thin film production system
JPS61266569A (en) Vapor deposition method for metal or the like on synthetic resin film
JPH09102435A (en) Method and device for manufacturing metal vapor-deposition film
US5736263A (en) Magnetic recording medium comprising successive magnetic metallic films of iron, nickel, and cobalt deposited on a substrate
JPH06228752A (en) Production of deposited film
JPH0688367B2 (en) Film for packaging
JPH0813571B2 (en) Metal film transfer film and method for producing the same, metal film transfer film substrate, and method of using metal film transfer film