JPH0141481B2 - - Google Patents

Info

Publication number
JPH0141481B2
JPH0141481B2 JP57005464A JP546482A JPH0141481B2 JP H0141481 B2 JPH0141481 B2 JP H0141481B2 JP 57005464 A JP57005464 A JP 57005464A JP 546482 A JP546482 A JP 546482A JP H0141481 B2 JPH0141481 B2 JP H0141481B2
Authority
JP
Japan
Prior art keywords
ceramic
slip
mold
female mold
sintered body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57005464A
Other languages
Japanese (ja)
Other versions
JPS58125658A (en
Inventor
Tadashi Sasaki
Arata Koga
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP57005464A priority Critical patent/JPS58125658A/en
Publication of JPS58125658A publication Critical patent/JPS58125658A/en
Publication of JPH0141481B2 publication Critical patent/JPH0141481B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Producing Shaped Articles From Materials (AREA)

Description

【発明の詳細な説明】 この発明は所要の形状に成形され焼結されたセ
ラミツクス焼結体の製造方法に係る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a ceramic sintered body that is formed into a desired shape and sintered.

アルミナ、ジルコニア、窒化珪素、炭化珪素等
のセラミツクスは鉄系或いはニツケル系の金属材
料に比べて耐熱性、耐食性、耐摩耗性が優れてお
り、過酷な条件下で使用できる機械部品用の材料
として広い用途が期待されている。
Ceramics such as alumina, zirconia, silicon nitride, and silicon carbide have superior heat resistance, corrosion resistance, and wear resistance compared to iron-based or nickel-based metal materials, and are suitable as materials for mechanical parts that can be used under harsh conditions. It is expected to have a wide range of uses.

ところでセラミツクス焼結体を製造する方法と
して種々の方法が提案されているが、いまだ満足
すべき方法がない。例えば金型を用いて単軸プレ
スで圧縮成形して焼結する方法は複雑な形状の部
品に成形することができないし、静水圧プレスに
よる成形では部品の四周から圧縮力を作用させる
ことができるが、高い寸法精度を得ることが難し
い。
Although various methods have been proposed for producing ceramic sintered bodies, there is still no satisfactory method. For example, compression molding and sintering using a mold using a uniaxial press cannot form parts with complex shapes, while molding using a hydrostatic press allows compressive force to be applied from all four circumferences of the part. However, it is difficult to obtain high dimensional accuracy.

また押出成形する方法があるが、一定の断面形
状のものしか製作できない。割型を用いて射出成
形する方法もあるが、割型を用いる関係上形状に
制限を受けるほか、高圧の成形機械と複雑な金型
加工が必要である。
There is also an extrusion method, but it can only be made with a certain cross-sectional shape. There is also a method of injection molding using a split mold, but the shape is limited due to the use of a split mold, and it requires a high-pressure molding machine and complicated mold processing.

そのほかセラミツクスをスリツプにして鋳型に
流しこんで成形する方法があるが、鋳型材料とし
て石膏や素焼を用いて割型を作り、この割型にス
リツプを流しこむため上記同様製作できる部品形
状に制限を受ける等の問題点がある。
Another method is to mold ceramics by making them into slips and pouring them into molds, but since a split mold is made using plaster or bisque as the mold material, and the slip is poured into the split molds, there are restrictions on the shapes of parts that can be manufactured in the same manner as above. There are problems such as receiving.

本発明は上記の如き問題点を解決し、セラミツ
クスを複雑な形状でかつ寸法精度の高い部品に成
形、焼結することができる方法を提供することを
目的とし、 セラミツクス粉に反応しない分散用液体を加え
てスリツプとし、焼結による収縮が該セラミツク
ス焼結体より小さく、かつスリツプ用分散液に濡
れ易い耐火物で製作した所要形状のキヤビテイを
有し気孔率10〜60%の雌型を前記スリツプと反応
せずかつ濡れ易い粉でバツクアツプして組みこん
だ鋳型に前記スリツプを流しこみ、雌型壁を通し
てスリツプ中の分散液を浸出させて排出し、雌型
内に残留してキヤビテイを充填しているセラミツ
クスを固化させ、該セラミツクスが充填された雌
型を鋳型から取出して焼成したのち雌型を取除い
て所要形状のセラミツクス焼結体を得ることを特
徴とするセラミツクス焼結体の製造方法、ならび
に上記の製造方法のうちセラミツクスのスリツプ
を流しこむ雌型を該セラミツクス粉の焼結開始温
度より低い軟化開始温度を有し、スリツプ用分散
液によつて濡れ易い耐火物で製作した所要形状の
キヤビテイを有する気孔率10〜60%の雌型とした
セラミツクス焼結体の製造方法に係る。
The purpose of the present invention is to solve the above-mentioned problems and provide a method for molding and sintering ceramics into parts with complex shapes and high dimensional accuracy. A female mold with a porosity of 10 to 60% and having a cavity of the desired shape made of a refractory material that shrinks less during sintering than the ceramic sintered body and that is easily wetted by the dispersion for slips is prepared as described above. The slip is poured into a mold that has been backed up with a powder that does not react with the slip and is easily wetted, and the dispersion liquid in the slip is leached out through the female mold wall, remaining in the female mold and filling the cavity. 1. Production of a ceramic sintered body, characterized in that the ceramic sintered body is solidified, the female mold filled with the ceramic is taken out from the mold, fired, and then the female mold is removed to obtain a ceramic sintered body of a desired shape. method, as well as the above manufacturing method, in which the female mold into which the ceramic slip is poured is made of a refractory material that has a softening start temperature lower than the sintering start temperature of the ceramic powder and is easily wetted by the slip dispersion. The present invention relates to a method for producing a female ceramic sintered body having a cavity in the shape of a female mold with a porosity of 10 to 60%.

本発明では所望のセラミツクス粉末に適当なス
リツプ用分散液を重量比で0.3〜3加えてスリツ
プとする。分散液としては水とかエタノール等セ
ラミツクス粉と反応しないものが好ましく、また
水ガラス、アルギン酸アンモニウム等の解膠剤、
メチルセルローズ、ポリビニールアルコール等の
結合剤などを必要に応じて分散液中に添加しても
よい。
In the present invention, a suitable slip dispersion is added to a desired ceramic powder in a weight ratio of 0.3 to 3 to form a slip. The dispersion liquid is preferably one that does not react with the ceramic powder, such as water or ethanol, and a peptizing agent such as water glass or ammonium alginate.
A binder such as methylcellulose or polyvinyl alcohol may be added to the dispersion as necessary.

スリツプとすることによつてセラミツクス粉に
流動性が付与されるが、分散用液体の量が重量比
で0.2以下では流動性が不足し、また3以上にな
るとスリツプの鋳込みに必要以上の時間を要する
ようになるから過剰に加える必要はない。
Forming a slip gives ceramic powder fluidity, but if the amount of dispersing liquid is less than 0.2 in terms of weight ratio, the fluidity will be insufficient, and if it is more than 3, it will take more time than necessary to cast the slip. There is no need to add too much as you will need it.

セラミツクスのスリツプを流しこむ雌型の製作
材料を適当に選択することがまた重要である。雌
型材料としてその一つは所望のセラミツクス焼結
体の焼結適正温度範囲で焼成することにより当該
セラミツクスよりも収縮率の小さい耐火材料を使
用することである。その二は所望のセラミツクス
焼結体の焼結開始温度より低い軟化温度を有する
耐火材料を使用することである。
It is also important to properly select the material for making the female mold into which the ceramic slip will be poured. One of the ways to use the female mold material is to use a refractory material that has a shrinkage rate smaller than that of the desired ceramic sintered body by firing it at an appropriate sintering temperature range. The second method is to use a refractory material having a softening temperature lower than the sintering start temperature of the desired ceramic sintered body.

第一の条件を満たす材料の組合せとしては例え
ば所望のセラミツクス焼結体が窒化珪素
(Si3N4)にアルミナ、イツトリア(Y2O3)、マグ
ネシヤ等の焼結促進剤を加えたものであれば、雌
型耐火材料としては焼結促進剤を含まない窒化珪
素、窒化アルミニウム或いは窒化硼素(BN)等
を用いることができる。これらの耐火材料粉に水
ガラス、燐酸アルミニウム、コロイダルシリカ等
の結合剤を添加して成形して気孔率10〜60%を有
する雌型を製作する。所望の気孔率とするには耐
火材料粉の粒度を調整するか、または結合剤の添
加量を変えればよい。
An example of a combination of materials that satisfies the first condition is that the desired ceramic sintered body is made of silicon nitride (Si 3 N 4 ) with a sintering accelerator such as alumina, ittria (Y 2 O 3 ), or magnesia added. If so, silicon nitride, aluminum nitride, boron nitride (BN), or the like that does not contain a sintering accelerator can be used as the female refractory material. A binder such as water glass, aluminum phosphate, or colloidal silica is added to these refractory material powders and molded to produce a female mold having a porosity of 10 to 60%. In order to obtain the desired porosity, the particle size of the refractory material powder may be adjusted or the amount of binder added may be changed.

第二の条件を満たす耐火材料としては溶融シリ
カ、硼珪酸ガラス、コーデイエライト(2MgO・
2Al2O3・5SiO2)等のシリケート系のガラスまた
はセラミツクスがある。これらの材料を粉にして
所要形状のキヤビテイを有する雌型に成形し焼結
させるか、またはこれら材料粉に水ガラス、燐酸
アルミニウム、コロイダルシリカ等の結合剤を添
加して所望形状のキヤビテイを有する雌型に成
形、焼結することにより気孔率10〜60%の雌型と
する。この肉厚は強度を維持できる範囲内で可及
的に薄い方が後の焼結の段階で、所望のセラミツ
クス焼結体に歪を生じない点で好ましい。
Refractory materials that meet the second condition include fused silica, borosilicate glass, and cordierite (2MgO
There are silicate-based glasses and ceramics such as 2Al 2 O 3 and 5SiO 2 ). These materials are powdered, molded into a female mold having a cavity of the desired shape, and sintered, or a binder such as water glass, aluminum phosphate, or colloidal silica is added to the powdered materials to form a cavity of the desired shape. By molding and sintering into a female mold, it is made into a female mold with a porosity of 10 to 60%. It is preferable that this wall thickness be as thin as possible within a range that can maintain strength, since this will not cause distortion in the desired ceramic sintered body during the subsequent sintering step.

次に添付図面を参照しながら本発明の実施例に
ついて説明する。
Next, embodiments of the present invention will be described with reference to the accompanying drawings.

実施例 1 ポリビニルアルコール系の水溶性ワツクスを通
例の方法によつて金型中に射出成形して小型ター
ビン翼車の形状をした雄型1を製作する。
Example 1 A male mold 1 in the shape of a small turbine wheel is manufactured by injection molding polyvinyl alcohol-based water-soluble wax into a mold by a conventional method.

コロイダルシリカをエタノール中に分散させた
液と窒化珪素粉とを混合したスラリーを雄型1に
塗布して乾燥させて雄型1の外側に厚さ約2mmの
シエル2を形成する。
A slurry prepared by mixing colloidal silica dispersed in ethanol and silicon nitride powder is applied to the male mold 1 and dried to form a shell 2 with a thickness of about 2 mm on the outside of the male mold 1.

次にこのシエル2を水中に浸漬して内側の水溶
性ワツクスを溶解除去して所望の形状のキヤビテ
イ3を有する雌型4を得た。シエル2は窒化珪素
粉の粒度を−200メツシユとすることによつて気
孔率を約50%とした。この雌型4を乾燥し、シリ
カ粉5でバツクアツプして鋳枠7の中に保持して
鋳型6とした。
Next, this shell 2 was immersed in water to dissolve and remove the water-soluble wax inside to obtain a female mold 4 having a cavity 3 of a desired shape. Shell 2 had a porosity of about 50% by setting the particle size of the silicon nitride powder to -200 mesh. This female mold 4 was dried, backed up with silica powder 5, and held in a casting flask 7 to form a mold 6.

一方、所望のセラミツクスとして窒化珪素に焼
結促進剤としてアルミナとイツトリアをそれぞれ
5%づつ加えて混合粉砕した平均粒径1ミクロン
以下のセラミツクス粉に重量比で2/3の水を加え、
アルギン酸アンモニウム0.1%とアンモニア1%
を加えてスリツプ8として、上記鋳型6の雌型4
に流しこんだ。スリツプ中の分散用液は雌型4の
シエル2の気孔を通過して雌型の外側へ浸出し、
バツクアツプ材のシリカ粉を濡らし、雌型内には
スリツプ中のセラミツクスが残留し、雌型のキヤ
ビテイ内に充填されて固化した。チクソトロピー
(揺変性)の大きいスリツプの場合には鋳型6に
振動を加える等によつて流動性を増加させると充
填が早く行なわれて好都合である。
On the other hand, as a desired ceramic, 2/3 of water by weight is added to ceramic powder with an average particle size of 1 micron or less, which is prepared by mixing and pulverizing silicon nitride with 5% each of alumina and ittria as sintering accelerators.
Ammonium alginate 0.1% and ammonia 1%
is added to form the slip 8, and the female mold 4 of the mold 6 is
I poured it into The dispersion liquid in the slip passes through the pores of the shell 2 of the female mold 4 and leaks out to the outside of the female mold.
The silica powder of the backup material was wetted, and the ceramic in the slip remained inside the female mold, filling it into the cavity of the female mold and solidifying it. In the case of a slip with high thixotropy, it is advantageous to increase fluidity by applying vibration to the mold 6, etc., so that filling can be carried out quickly.

雌型4に適度な液体透過性と強度とを持たせる
ためにはシエル2の気孔率を10〜60%の範囲とす
ることが好ましい。
In order to provide the female mold 4 with appropriate liquid permeability and strength, the porosity of the shell 2 is preferably in the range of 10 to 60%.

セラミツクス9の充填された雌型4を鋳枠7か
ら取出し、充分乾燥したのち雌型ごと焼結炉中に
入れ、窒素雰囲気中で約1750℃まで加熱してセラ
ミツクス9を焼結させた。この際セラミツクスの
分解を抑制して焼結体の密度を高めるため雌型と
同様な材料を用いて雌型4の流しこみ口10に蓋
をして、セラミツクス充填物9を完全に密閉する
こともできる。
The female mold 4 filled with ceramics 9 was taken out from the flask 7, and after sufficiently drying, the female mold was placed in a sintering furnace and heated to about 1750° C. in a nitrogen atmosphere to sinter the ceramics 9. At this time, in order to suppress the decomposition of the ceramic and increase the density of the sintered body, the pouring port 10 of the female mold 4 is covered with a material similar to that of the female mold to completely seal the ceramic filling 9. You can also do it.

雌型およびセラミツクスは焼結の際収縮する
が、雌型の収縮が充填されているセラミツクより
小さくなるような雌型材料を選んであるので、焼
結後にセラミツクス焼結体9′と雌型4′のシエル
2′との間には隙間11が生じ、焼結後に雌型に
振動を与える等によつてシエル2′は容易に破壊
されて除去され、所要形状のセラミツクス焼結体
9′を取出すことができた。
Although the female mold and the ceramic shrink during sintering, a material for the female mold is selected such that the shrinkage of the female mold is smaller than that of the filled ceramic, so that the ceramic sintered body 9' and the female mold 4 A gap 11 is created between the shell 2' and the shell 2', and the shell 2' is easily destroyed and removed by applying vibration to the female mold after sintering, thereby forming the ceramic sintered body 9' in the desired shape. I was able to take it out.

実施例 2 融点100℃のワツクスを使用して通例の方法で
製作したタービン翼形状の雄型1表面に、50〜
200メツシユの溶融石英ガラス粉とコロイダルシ
リカ分散液とより成るスラリーを塗布し、乾燥さ
せたのち、オートクレーブ中で加熱してワツクス
1を融解し流出して除去することにより、厚さ約
0.7mm、気孔率約40%で所望形状のキヤビテイ3
を有する溶融石英ガラス製の雌型4を得た。これ
をムライト粉5でバツクアツプして鋳枠7中に埋
設して保持し鋳型6とした。
Example 2 The surface of the male die 1 in the shape of a turbine blade was manufactured using wax with a melting point of 100°C in a conventional manner.
A slurry consisting of 200 mesh of fused silica glass powder and colloidal silica dispersion is applied, dried, and then heated in an autoclave to melt and remove Wax 1 to a thickness of approx.
Cavity 3 with desired shape, 0.7mm, porosity approximately 40%
A female mold 4 made of fused silica glass was obtained. This was backed up with mullite powder 5 and buried and held in a casting flask 7 to form a mold 6.

次に窒化珪素にアルミナ15重量%、窒化アルミ
ニウム5重量%を混合し、平均粒径を0.8ミクロ
ンに調整したセラミツクス粉に、重量比で同量の
蒸溜水とアルギン酸アンモニウム0.5重量%を加
え、苛性ソーダでペーハー(PH)を8に調整した
スリツプを前記鋳型6中の雌型4に、振動を加え
ながら流しこんだ。
Next, to ceramic powder prepared by mixing silicon nitride with 15% by weight of alumina and 5% by weight of aluminum nitride and adjusting the average particle size to 0.8 microns, the same weight ratio of distilled water and 0.5% by weight of ammonium alginate were added, and caustic soda was added. The slip whose pH was adjusted to 8 was poured into the female mold 4 of the mold 6 while being vibrated.

スリツプ中の分散液は雌型4のシエル2を通し
て浸出させて排出し、残留したセラミツクスを固
化させ、雌型4を鋳型6から取出し、充分に乾燥
したのち、更に窒化珪素粉の充填されたるつぼ内
に保持して、窒素雰囲気中で約1700℃まで加熱し
て焼結した。
The dispersion liquid in the slip is leached and discharged through the shell 2 of the female mold 4, the remaining ceramic is solidified, the female mold 4 is taken out from the mold 6, and after being sufficiently dried, it is further poured into a crucible filled with silicon nitride powder. The material was held in a nitrogen atmosphere and heated to approximately 1700°C for sintering.

当該セラミツクスの焼結開始温度は約1300℃で
あり、雌型に使用した溶融石英ガラスの軟化点は
1200℃であつたので、焼結温度において雌型4の
シエル2″は軟化し、内側のセラミツクスの焼結
の際の収縮に対応して変形し、歪やクラツクを発
生させることがなかつた。
The sintering start temperature of the ceramics is approximately 1300℃, and the softening point of the fused silica glass used for the female mold is
Since the temperature was 1200°C, the shell 2'' of the female die 4 softened at the sintering temperature and deformed in response to the shrinkage of the inner ceramic during sintering, without causing distortion or cracks.

焼結後にサンドブラストを施し、更に熱アルカ
リ水溶液で処理して焼結体表面の溶融石英ガラス
を除去し、タービン翼形状のセラミツクス焼結体
を得ることができた。
After sintering, the sintered body was sandblasted and further treated with a hot alkaline aqueous solution to remove the fused silica glass on the surface of the sintered body, making it possible to obtain a ceramic sintered body in the shape of a turbine blade.

以上説明したように特許請求の範囲第1項記載
の発明は所望のセラミツク粉をスリツプとし、分
散液と反応せず濡れ性が良く、かつ所望のセラミ
ツクよりも焼結の際の収縮が小さい耐火物を用い
て製作した所望形状のキヤビテイを有する気孔率
10〜60%の雌型に流しこみ、雌型の気孔を通して
スリツプ中の分散液を雌型外へ浸出させてキヤビ
テイ内にはスリツプ中のセラミツクスを残留、固
化させ、乾燥後にこれを焼結して収縮率の差によ
つて雌型のシエルをセラミツク焼結体から容易に
分離除去するようにしたものであるから、所望の
形状を持つたセラミツクス焼結体を、たとえ複雑
な形状のものでも精度よく容易に製造することが
できる。
As explained above, the invention recited in claim 1 uses a desired ceramic powder as a slip, which does not react with the dispersion liquid, has good wettability, and has a fire-resistant material that shrinks less during sintering than the desired ceramic. Porosity with a cavity of desired shape manufactured using material
The dispersion liquid in the slip is poured into a 10 to 60% female mold, and the dispersion in the slip is leached out of the female mold through the pores of the female mold, leaving the ceramic in the slip in the cavity and solidifying it. After drying, it is sintered. The female shell can be easily separated and removed from the ceramic sintered body based on the difference in shrinkage rate. It can be easily manufactured with high precision.

また特許請求の範囲第2項記載の発明は所望の
形状のキヤビテイを有する雌型を所望のセラミツ
ク焼結体の焼結開始温度よりも低い軟化点を有す
る耐火材料で製作し、この雌型を用いるほかは上
述の特許請求の範囲第1項記載の発明と同様に行
なうので、焼結開始時に雌型が軟化し始め、内側
の所望のセラミツクス成形体の焼結による変形に
追随して変形して無理な応力を作用することがな
いから、得られたセラミツク焼結体にはたとえそ
れが複雑な形状のものでもクラツクや歪を生ずる
ことがない。
Further, the invention described in claim 2 is such that a female mold having a cavity of a desired shape is made of a refractory material having a softening point lower than the sintering start temperature of the desired ceramic sintered body, and the female mold is Other than the use, the process is carried out in the same manner as the invention described in claim 1 above, so that the female mold starts to soften at the start of sintering and deforms following the deformation of the desired ceramic molded body inside due to sintering. Since no unreasonable stress is applied to the resulting ceramic sintered body, no cracks or distortions will occur even if the ceramic sintered body has a complicated shape.

従つて本発明の方法によればガスタービン、デ
イーゼルエンジン、ターボ過給機等の複雑な形状
の精密部品或いは各種軸受、シールバルブ等の部
品を耐熱、耐食性に優れたセラミツクスによつて
製作することが可能になり、作動温度の上昇、作
動環境の苛酷化が可能になり、熱効率或いは性能
を著しく向上させることができる。
Therefore, according to the method of the present invention, precision parts with complex shapes such as gas turbines, diesel engines, turbochargers, etc., as well as parts such as various bearings and seal valves, can be manufactured using ceramics having excellent heat resistance and corrosion resistance. This makes it possible to raise the operating temperature and make the operating environment more severe, thereby significantly improving thermal efficiency or performance.

なお上記の実施例については焼結促進剤を加え
た窒化珪素スリツプを用いて成形焼結体を得る場
合について説明したが、本発明の方法はこの例に
限定されることなく、炭化珪素、アルミナ、ジル
コニア等の他のセラミツクス成形焼結体の製造に
ついても適用できることは容易に理解されよう。
In the above example, a case where a shaped sintered body was obtained using a silicon nitride slip to which a sintering accelerator was added was explained, but the method of the present invention is not limited to this example, and can be applied to silicon carbide, alumina, etc. It will be easily understood that the present invention can also be applied to the production of molded sintered bodies of other ceramics such as zirconia and the like.

【図面の簡単な説明】[Brief explanation of drawings]

添付図面は本発明の方法を説明するためのフロ
ーシートである。 1……所望の形状の雄型、2……シエル、3…
…キヤビテイ、4……雌型、6……鋳型、8……
スリツプ、9……セラミツク粉成形体、9′……
セラミツク焼結体、2′,2″……焼結後の雌型の
シエル。
The accompanying drawing is a flow sheet for explaining the method of the invention. 1...Male mold of desired shape, 2...Ciel, 3...
...Cavity, 4...Female mold, 6...Mold, 8...
Slip, 9... Ceramic powder compact, 9'...
Ceramic sintered body, 2', 2''...female shell after sintering.

Claims (1)

【特許請求の範囲】 1 セラミツクスのスリツプを鋳型に流しこみ、
乾燥、焼結してセラミツクス成形焼結体を製造す
る方法において、 セラミツクス粉に反応しない分散用液体を加え
てスリツプとし、 焼結による収縮が該セラミツクス焼結体より小
さく、かつスリツプ用分散液に濡れ易い耐火物で
製作した所要形状のキヤビテイを有し気孔率10〜
60%の雌型を前記スリツプと反応せずかつ濡れ易
い粉でバツクアツプして組みこんだ鋳型に前記ス
リツプを流しこみ、 雌型壁を通してスリツプ中の分散用液を浸出さ
せて排出し、雌型内に残留してキヤビテイを充填
しているセラミツクスを固化させ、 該セラミツクスが充填された雌型を鋳型から取
出して焼成したのち、雌型を取除いて所要形状の
セラミツクス焼結体を得る ことを特徴とするセラミツクス焼結体の製造方
法。 2 セラミツクスのスリツプを鋳型に流しこみ、
乾燥、焼結してセラミツクス成形焼結体を製造す
る方法において、 セラミツクス粉に反応しない分散用液体を加え
てスリツプとし、 軟化温度が該セラミツク粉の焼結開始温度より
低くかつスリツプ用分散液によつて濡れ易い耐火
物で製作した所要形状のキヤビテイを有する気孔
率10〜60%の雌型を前記スリツプと反応せずかつ
濡れ易い粉でバツクアツプして組みこんだ鋳型に
前記スリツプを流しこみ、 雌型壁を通してスリツプ中の分散用液を浸出さ
せて排出し、雌型内に残留してキヤビテイを充填
しているセラミツクスを固化させ、 該セラミツクスが充填された雌型を鋳型から取
出して焼成したのち雌型を取除いて所要形状のセ
ラミツクス焼結体を得る ことを特徴とするセラミツクス焼結体の製造方
法。
[Claims] 1. Pour a ceramic slip into a mold,
In the method of manufacturing a ceramic molded sintered body by drying and sintering, a non-reactive dispersion liquid is added to ceramic powder to form a slip, and the shrinkage due to sintering is smaller than that of the ceramic sintered body, and the slip dispersion liquid is It has a cavity of the required shape made of easily wetted refractory material and has a porosity of 10~
60% of the female mold is backed up with a powder that does not react with the slip and is easily wetted, and the slip is poured into a mold, and the dispersion liquid in the slip is leached and discharged through the wall of the female mold. The ceramic remaining in the mold and filling the cavity is solidified, the female mold filled with the ceramic is taken out from the mold and fired, and then the female mold is removed to obtain a ceramic sintered body in the desired shape. A method for producing a featured ceramic sintered body. 2 Pour the ceramic slip into the mold,
In a method of producing a ceramic molded sintered body by drying and sintering, a non-reactive dispersion liquid is added to ceramic powder to form a slip, and the softening temperature is lower than the sintering start temperature of the ceramic powder and the slip dispersion liquid is Pour the slip into a mold that is prepared by backing up a female mold with a porosity of 10 to 60% and having a cavity of the desired shape made of an easily wettable refractory with powder that does not react with the slip and is easily wetted. The dispersion liquid in the slip was leached and discharged through the female mold wall, the ceramic remaining in the female mold and filling the cavity was solidified, and the female mold filled with the ceramic was taken out from the mold and fired. A method for producing a ceramic sintered body, which comprises the step of obtaining a ceramic sintered body having a desired shape by subsequently removing the female mold.
JP57005464A 1982-01-19 1982-01-19 Manufacture of ceramics sintered body Granted JPS58125658A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57005464A JPS58125658A (en) 1982-01-19 1982-01-19 Manufacture of ceramics sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57005464A JPS58125658A (en) 1982-01-19 1982-01-19 Manufacture of ceramics sintered body

Publications (2)

Publication Number Publication Date
JPS58125658A JPS58125658A (en) 1983-07-26
JPH0141481B2 true JPH0141481B2 (en) 1989-09-06

Family

ID=11611947

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57005464A Granted JPS58125658A (en) 1982-01-19 1982-01-19 Manufacture of ceramics sintered body

Country Status (1)

Country Link
JP (1) JPS58125658A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0513522Y2 (en) * 1988-03-10 1993-04-09
EP0396766B1 (en) * 1988-10-06 1995-03-15 Kawasaki Steel Corporation Casting mold for slip casting

Also Published As

Publication number Publication date
JPS58125658A (en) 1983-07-26

Similar Documents

Publication Publication Date Title
US4011291A (en) Apparatus and method of manufacture of articles containing controlled amounts of binder
EP0255577B1 (en) Method of producing mold for slip casting
US4352390A (en) Precision silica cones for sand casting of steel and iron alloys
US3859153A (en) Refractory laminate having improved green strength
JP2001511719A (en) Metal perfect dense mold and method of forming parts
US4130157A (en) Silicon nitride (SI3 N4) leachable ceramic cores
CN109692943B (en) SiC prepared by vacuum pressure infiltration positive pressure method3DMethod for preparing/Al composite material
CN110732637A (en) turbine blade air film hole precision forming method
EP0574620A1 (en) Investment casting of metal matrix composites
US20060211567A1 (en) Method and slip for production of a moulded body from ceramic material ceramic moulded body and use of such a moulded body
JPH05254914A (en) Method for making sintered body
CN109822077B (en) SiC prepared by extrusion infiltration method3DMethod for preparing/Al composite material
CN1562522A (en) Manufacturing technique for precision investment casting die body made from magnesium alloy
JPH0141481B2 (en)
US4605057A (en) Process for producing core for casting
Wu et al. Rapid casting of hollow turbine blades using integral ceramic moulds
US3802891A (en) Semi-permanent refractory molds and mold parts
JPS58136702A (en) Production of molded and sintered parts of powder
JPH0663684A (en) Production of ceramic core for casting
JPS6224172B2 (en)
JPH0636954B2 (en) Composition for easily disintegrating mold
JPH0657843B2 (en) Manufacturing method of sintered machine parts
KR20010104587A (en) Alumina-base investment casting shell mold and manufacturing method thereof
JPS60253505A (en) Manufacture of ceramics product
JPH066221B2 (en) Ceramic mold manufacturing method