JPS58136702A - Production of molded and sintered parts of powder - Google Patents
Production of molded and sintered parts of powderInfo
- Publication number
- JPS58136702A JPS58136702A JP57016835A JP1683582A JPS58136702A JP S58136702 A JPS58136702 A JP S58136702A JP 57016835 A JP57016835 A JP 57016835A JP 1683582 A JP1683582 A JP 1683582A JP S58136702 A JPS58136702 A JP S58136702A
- Authority
- JP
- Japan
- Prior art keywords
- powder
- female mold
- raw material
- female
- moldings
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/22—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces for producing castings from a slip
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Mechanical Engineering (AREA)
- Producing Shaped Articles From Materials (AREA)
- Powder Metallurgy (AREA)
Abstract
Description
【発明の詳細な説明】
この発明は複雑な形状をした金属またはセラミックスの
精密機械部品を粉末原料を使用して高密度かつ均質に製
造する方法に係る
ガスタービン、ディーゼルエンジン、過給機等の複雑な
形状或いは曲面を有する部品を耐熱、耐食、耐摩耗性を
持った拐料で量産できればこれらの部品を使用する機械
装置の寿命或いは性能の向上に大いに貢献することがで
きる。DETAILED DESCRIPTION OF THE INVENTION This invention relates to a method for manufacturing precision mechanical parts made of metal or ceramics with complex shapes in a high-density and homogeneous manner using powder raw materials, such as gas turbines, diesel engines, superchargers, etc. If parts with complex shapes or curved surfaces can be mass-produced using heat-resistant, corrosion-resistant, and wear-resistant materials, it will greatly contribute to improving the lifespan and performance of mechanical devices that use these parts.
ところで鍛造や鋳造で成形が困難な複雑な形状の精密部
品は粉末冶金法により或いはこれを応用すれば製造が容
易になることが知られているが、通例は焼結中に加圧す
ることができないので、得られる焼結体の強度や品質に
対する信頼性に欠けるところがあった。By the way, it is known that precision parts with complex shapes that are difficult to form by forging or casting can be easily manufactured by powder metallurgy or by applying this method, but it is generally not possible to apply pressure during sintering. Therefore, the strength and quality of the obtained sintered body lacked reliability.
ところで従来の焼結法に代って熱間静水圧プレス法を利
用して四周から加圧しながら焼結する方法が開発され、
この方法は原理的には複雑な形状の部品を加圧しながら
焼結できる方法であるが、いまだ技術的には十分に確立
されておらず、例えば
(イ)一般に所要の粉末を気密で変形可能な容器内に充
填して密封する必要があり、粉末の充填密度は小さいた
め焼結収縮が大きく、かつ寸法精度が低くなる。By the way, instead of the conventional sintering method, a method was developed that uses hot isostatic pressing to sinter while applying pressure from all four sides.
In principle, this method allows parts with complex shapes to be sintered under pressure, but the technology has not yet been fully established, and for example (a) it is generally possible to deform the required powder in an airtight manner. It is necessary to fill the powder into a container and seal it, and the packing density of the powder is small, resulting in large sintering shrinkage and low dimensional accuracy.
(ロ)予め粉末を目的形状に成形した場合、脆弱な粉末
成形体の取扱いが困難で、その上容器内に密封し、加圧
焼結する際に成形体と容器壁とがよく密着していないと
焼結体に割れや変形を起し易い。(b) If the powder is molded into the desired shape in advance, it is difficult to handle the fragile powder compact, and furthermore, when it is sealed in a container and pressure sintered, the compact and the container wall are in close contact with each other. Otherwise, the sintered body is likely to crack or deform.
□
eう 目的とするセラミックスまたは金属の焼結温度に
おいて適度な変形特性を有する容器材料を頚ることか難
しい
等の問題点がある。□ eU There are problems such as the difficulty of creating a container material that has appropriate deformation characteristics at the desired sintering temperature of ceramics or metals.
本発明は上記のような問題点を解決する金属粉あるいは
セラミックス粉の成形焼結方法を提供することを目的と
している。An object of the present invention is to provide a method for forming and sintering metal powder or ceramic powder, which solves the above-mentioned problems.
次に本願発明の方法を添付図面を参照して順を追って説
明する。Next, the method of the present invention will be explained step by step with reference to the accompanying drawings.
(1)溶解性或いは融解性物質による模型の製作:目的
とする形状の模型を雄型に製作する。この模型は後述す
るよ5にこれを用いて雌型シェルを形成したのち除去す
る必要があるため、雌型材料を浸さない溶媒に容易に溶
解するか、または雌型材料が軟化変形する温度よりも下
の温度で容易に融解して流れ出る拐料で作られることが
必要である。(1) Making a model using a soluble or meltable substance: A male model with the desired shape is made. This model needs to be removed after forming the female shell in step 5, which will be described later. Therefore, it must be easily dissolved in a solvent that does not soak the female mold material, or at a temperature higher than the temperature at which the female mold material softens and deforms. It is also necessary that the material be made of a material that melts and flows easily at low temperatures.
模型の上に塗布して雌型シェルを形成させるのに耐火物
粉と珪酸塩化合物粉の混合物−結合剤を混合したスラリ
ーを用いるので、上記の要件を満足するものとして低融
点のワックスや合金または水あるいは有機溶媒に溶解す
るワックスを用いる。Since a slurry containing a mixture of refractory powder and silicate compound powder and a binder is used to apply it on the model to form the female shell, low melting point wax or alloy is used as a material that satisfies the above requirements. Or use a wax that dissolves in water or an organic solvent.
模型は所望の材料を融解して金型へ流しこんで鋳造する
とか、射出成形あるいは機械加工等公知の方法で製作し
たものでよい。この模型の寸法は後の熱間静水圧プレス
の工程における原料粉成形体の収縮を見こんで最終製品
寸法より収縮分だけ大きく製作しておく必要がある。The model may be manufactured by a known method such as melting a desired material and pouring it into a mold for casting, injection molding, or machining. The dimensions of this model must be made larger than the dimensions of the final product by the amount of shrinkage in anticipation of shrinkage of the raw material powder compact during the subsequent hot isostatic pressing process.
(2)雌型シェルの形成: 雌型シェル用材料としては
所要焼結体の焼結温度において溶融しない耐火物と該焼
結温度以下の温度で溶融する珪酸塩化合物との混合粉末
に結合剤と分散液とを混合したスラリーを使用する。例
えば焼結温度が1000〜1400℃ のニッケル合金
や鋼の場合には、耐火物としてシリカ、アルミナ、ジル
コニア(Zr(h)等の融点が1400℃よりも充分に
高い材料d駅・る。(2) Formation of the female shell: The material for the female shell is a mixed powder of a refractory that does not melt at the sintering temperature of the required sintered body and a silicate compound that melts at a temperature below the sintering temperature, and a binder. and a dispersion liquid are used. For example, in the case of a nickel alloy or steel whose sintering temperature is 1000 to 1400°C, materials such as silica, alumina, and zirconia (Zr(h)), whose melting points are sufficiently higher than 1400°C, are used as refractories.
また例えば窒化珪素(SiaN4) セラミックが焼
結体の原料粉であるときはその焼結温度は1600〜1
850℃であるからアルミナ、ジルコニア、炭化珪素等
の上記温度範囲において融解しない材料を耐火物として
用いる。For example, when silicon nitride (SiaN4) ceramic is a raw material powder for a sintered body, the sintering temperature is 1600~1
Since the temperature is 850° C., materials that do not melt in the above temperature range, such as alumina, zirconia, and silicon carbide, are used as refractories.
これらの耐火物と混合する珪酸塩化合物としては上記の
金属またはセラミックスの焼結温度において、融解また
は軟化する材料を選ぶことが必要である。例えばニッケ
ル合金や鋼の場合にはパイレックスガラス等を用い、窒
化珪素セラミックスや炭化珪素セラミックスの場合には
硼珪酸ガラス、石英ガラスまたはコージェライト(2M
pO・2AJ203・5SiO2)のようにセラミック
スの焼結温度で融解または軟化する珪酸塩化合物を用い
るとよい。As the silicate compound to be mixed with these refractories, it is necessary to select a material that melts or softens at the above-mentioned sintering temperature of the metal or ceramic. For example, in the case of nickel alloys and steel, Pyrex glass, etc. are used, and in the case of silicon nitride ceramics and silicon carbide ceramics, borosilicate glass, quartz glass, or cordierite (2M
It is preferable to use a silicate compound that melts or softens at the sintering temperature of ceramics, such as pO.2AJ203.5SiO2).
珪酸塩化合物の耐火物忙対する混合率は5チ以上50%
以下とする。これが5%以下であると耐火物粒子間の隙
間を十分に塞ぐだけの量が不足して完全に気密化するこ
とができず、他方50%以上になるとガス加圧の際、雌
型壁の変形のほかに耐火物粒子間の融液が内部へ浸入、
圧入されるのが顕著になるから適当に珪酸塩化合物の混
合率を選定する必要がある。The mixing ratio of silicate compounds to refractories is 50% or more.
The following shall apply. If this is less than 5%, there is not enough to close the gaps between the refractory particles, making it impossible to achieve complete airtightness.On the other hand, if it is more than 50%, when gas is pressurized, the female mold wall In addition to deformation, the melt between refractory particles infiltrates into the interior.
Since press-fitting becomes noticeable, it is necessary to appropriately select the mixing ratio of the silicate compound.
この混合率を適正に選ぶことによって雌型壁は気密かつ
変形可能な圧力伝達壁として原料粉成形体に等方的に圧
力を作用するので一様に焼結収縮がおこり、寸法形状の
精度の高い、高密度、高品質の焼結体が得られる。By appropriately selecting this mixing ratio, the female mold wall acts as an airtight and deformable pressure transmission wall that applies pressure isotropically to the raw material powder compact, resulting in uniform sintering shrinkage and improved dimensional and shape accuracy. A high-density, high-quality sintered body can be obtained.
この耐火物粉と珪酸塩化合物粉の模型への塗布が容易に
行なえるように、水、エタノール等の分散液と混合し、
また乾燥後に強度を持たせるため水ガラス、燐酸アルミ
ニウム、コロイダルシリカ、アルミナセメント等の結合
剤を混合したスラリー状とする。このスラリーを模型に
塗布し、乾燥硬化させたのち、10〜60%の気孔率に
なるようにすることが必要である。気孔率が60チを超
えると雌型の強度が低下し、破損し易くなり、他方気孔
率が10チ以下では原料粉スリップの注入後、分散液の
浸出が起り難くなるので好ましくない。In order to easily apply the refractory powder and silicate compound powder to the model, they are mixed with a dispersion of water, ethanol, etc.
After drying, it is made into a slurry mixed with a binder such as water glass, aluminum phosphate, colloidal silica, or alumina cement to give it strength. After applying this slurry to a model and drying and curing it, it is necessary to obtain a porosity of 10 to 60%. If the porosity exceeds 60 inches, the strength of the female mold will decrease and it will be easily damaged, while if the porosity is less than 10 inches, it will be difficult for the dispersion to ooze out after pouring the raw material slip, which is not preferable.
(3)模型の除去: 雌型内の模型を融解させるか、溶
媒に溶解させて雌型から除去して、雌型シェル内に模型
と同じ形状のキャビティを作る。溶媒で溶解除去した場
合はその後充分に乾燥する。(3) Removal of the model: The model in the female mold is melted or dissolved in a solvent and removed from the female mold to create a cavity with the same shape as the model in the female mold shell. If it is removed by dissolving it with a solvent, it is then thoroughly dried.
(4)焼結原料粉の準備ニー目的とする焼結部品を作る
ための原料粉が金属粉の場合は平均粒径が数1 7
)
10〜100ミクロンで、アトマイズ法或いは回転電極
式法等で作った球形粒子であることが充填性の点から望
ましい。(4) Preparation of sintering raw material powder If the raw material powder for making the intended sintered parts is metal powder, the average particle size is several 17.
) Spherical particles having a diameter of 10 to 100 microns and made by an atomization method or a rotating electrode method are desirable from the viewpoint of filling properties.
原料粉がセラミックの場合には焼結性の点から平均粒径
は大きくても数ミクロン、望ましくは1ミクロン以下で
あり、また充填性の点から球形粒子であることが望まし
い。When the raw material powder is ceramic, the average particle size is at most several microns, preferably 1 micron or less, from the viewpoint of sinterability, and spherical particles are desirable from the viewpoint of filling properties.
また窒化珪素や炭化珪素等それ自体では焼結性が不十分
なセラミックスの場合には焼結促進剤を添加することが
好まl〜い。焼結促進剤としては窒化珪素の場合Aノ2
03、AiN、Y2O3、MpO1CeO2等が適当で
ある。Further, in the case of ceramics such as silicon nitride and silicon carbide, which have insufficient sinterability by themselves, it is preferable to add a sintering accelerator. In the case of silicon nitride, A-2 is used as a sintering accelerator.
03, AiN, Y2O3, MpO1CeO2, etc. are suitable.
上記のほか、WC−Co 、あるいはTiN−Ni等の
サーメットや、Aノ203 等のセラミックス粉をNi
合金等の金属中に分散させた分散強化合金、あるいはC
やSiC等の繊維を金属中に分散させた繊維強化合金の
粉末も焼結原料粉として使用することができる。In addition to the above, cermets such as WC-Co or TiN-Ni, and ceramic powders such as A-203 can be used to
Dispersion strengthened alloys dispersed in metals such as alloys, or C
Powder of fiber-reinforced alloy in which fibers such as or SiC are dispersed in metal can also be used as the sintering raw material powder.
(5)焼結原料粉のスリップの製作: 前記の焼結原料
粉に分散用液体を混合してスリップとする。(5) Production of slip from sintering raw material powder: A dispersion liquid is mixed with the sintering raw material powder to form a slip.
(8)
分散用液体としては一般には水を用いるが、焼結原料粉
が分散液と化学反応を起したり、凝集するような場合に
はエタノール、プロパツール等の有機溶媒を用いるとよ
い。(8) Water is generally used as the dispersion liquid, but if the sintering raw material powder causes a chemical reaction with the dispersion liquid or coagulates, an organic solvent such as ethanol or propatool may be used.
また必要によってはスリップを安定させるための解膠剤
や結合剤、離型剤の添加、pHの調整等を行なう。セラ
ミックス粉の場合解膠剤として水ガラスまたはアルギン
酸アンモニウム等が、結合剤としてはメチル七ルローズ
またはポリビニールアルコール等を用いる。Further, if necessary, a deflocculant, a binder, a mold release agent, and the like are added to stabilize the slip, and the pH is adjusted. In the case of ceramic powder, water glass or ammonium alginate is used as a deflocculant, and methyl heptylose or polyvinyl alcohol is used as a binder.
(6)スリップの注入二 上記のように調製したスリッ
プを前記の所要形状のキャビティを持つ雌型内に注入す
る。この際薄肉の雌型の保持および雌型から浸出して来
るスリップ用分散液の吸収の目的で雌型を粉体充填床中
に保持することが望ましい。このようにすると雌型に注
入されたスリップ中の分散用液体は雌型壁の気孔を通し
て浸出し、周囲の粉体充填床中に吸収され、浸出が促進
される。(6) Slip injection 2 The slip prepared as described above is injected into the female mold having the cavity of the desired shape. At this time, it is desirable to hold the female mold in a powder-packed bed for the purpose of holding the thin female mold and absorbing the slip dispersion liquid leached from the female mold. In this way, the dispersing liquid in the slip injected into the female mold leaches out through the pores of the female mold wall and is absorbed into the surrounding powder packed bed, promoting leaching.
スリップの注入終了彼、雌型の注入口を前記の雌型用材
料で閉塞して密閉する。雌型内から分散用液体を浸出さ
せたのち粉末充填床より雌型を取出し、自然乾燥または
徐々に加熱することにより乾燥する。十分乾燥すること
により焼結原料粉が(7)雌型シェルの気密化: 焼結
原料粉の充填された雌型を構成成分の珪酸塩化合物の融
点以上まで加熱して珪酸塩化合′物を溶融させ、雌型シ
ェルの耐火物粒子間の空間を珪酸塩化合物の融液によっ
て完全に満たすととKよって雌型シェルを気密化する。When the injection of the slip is completed, the injection port of the female mold is closed and sealed with the material for the female mold. After the dispersion liquid has been leached from the female mold, the female mold is removed from the powder-filled bed and dried by air drying or gradual heating. By sufficiently drying, the sintering raw material powder becomes When the silicate compound is melted and the spaces between the refractory particles of the female shell are completely filled with the silicate compound melt, the female shell is made airtight.
この加熱は雌型シェル内に気体を残留させないためK、
真空中で行なうことが好ましいが、原料粉が酸化しない
ような雰囲気中で常圧で行なってもよい。Since this heating does not leave any gas remaining in the female shell,
Although it is preferable to carry out the process in a vacuum, the process may also be carried out at normal pressure in an atmosphere that does not oxidize the raw material powder.
(8)熱間静水圧プレス: 雌型を完全に気密化したの
ち熱間静水圧プレス装置の中に雌型な入れ、ガスを通人
して装置内のガス圧をおよそ100〜2000気圧に上
げて雌型をガス加圧しながら加熱して原料粉の焼結適正
温度まで昇温し、加圧による密度の上昇と焼結を行なう
。ガス圧が100気圧より低い場合は焼結中に成形体に
加えられる圧力が不足し、熱間静水圧プレスの効果が不
十分である。また2000気圧より高い圧力を使うこと
は現状の熱間静水圧プレス能力から制限される。(8) Hot isostatic press: After making the female mold completely airtight, place it in a hot isostatic press machine and pass gas through it to bring the gas pressure inside the machine to approximately 100 to 2000 atmospheres. The female mold is heated while pressurized with gas to raise the temperature to the appropriate temperature for sintering the raw material powder, and the pressurization increases density and sintering. If the gas pressure is lower than 100 atm, the pressure applied to the compact during sintering will be insufficient and the effect of hot isostatic pressing will be insufficient. Further, the use of a pressure higher than 2000 atm is limited by the current hot isostatic press capability.
雌型材料には珪酸塩化合物が適当量混合し゛(あるので
雌型壁は気密で而も変形可能な圧力伝達壁として、内部
に充填されている原料粉成形体に等方的な圧力を加える
。An appropriate amount of a silicate compound is mixed in the female mold material (therefore, the female mold wall acts as an airtight yet deformable pressure transmitting wall that applies isotropic pressure to the raw material powder compact filled inside. .
(9)雌型の除去: 焼結後に常温まで冷却し5、す゛
ンドブラスト、打撃、振動、研削等の機械的方法または
高温高圧アルカリ溶液処理のような化学的方法により焼
結体上の雌型シェルを除去し、焼結体を取出す。(9) Removal of the female mold: After sintering, the female mold is removed from the sintered body by a mechanical method such as wind blasting, impact, vibration, or grinding, or a chemical method such as high-temperature, high-pressure alkaline solution treatment. The mold shell is removed and the sintered body is taken out.
次に実施例について説明する。Next, an example will be described.
実施例1゜
ニッケル合金(14%Co−94Cr −5,5%7−
)〜4.7係’l’i−3%M O−N i ) ア
トマイズ球状粉(平均粒径100ミクロン)を原料粉と
し、見掛は容積で等量のエタノールと混合して成形用の
スリップとした。一方、射出成形によってエンジン用タ
ービン翼の模型をワックスで製作した。雌型シェル用と
して耐火物は300メツシユの溶融石英粉を、珪酸塩化
合物はパイレックスガラス粉を重量で60%=40%の
割合に混合し、これに結合剤としてコロイダルシリカを
15重量係分散させた水を35重量%混合してスラリー
とし、これをワックス製の模型の上に約2mm厚のシェ
ルになるように塗布した。これを約120℃に加熱して
、シェルの内側のワックスを融解させ流出させて除去し
、気孔率40%の雌型とした。Example 1゜Nickel alloy (14%Co-94Cr-5,5%7-
)~4.7'l'i-3%M O-N i) Atomized spherical powder (average particle size 100 microns) is used as raw material powder, and mixed with an equal amount of ethanol by apparent volume to form a molding material. It was a slip. Meanwhile, a wax model of an engine turbine blade was made by injection molding. For the female shell, 300 mesh of fused quartz powder was mixed as the refractory material, and Pyrex glass powder was mixed as the silicate compound in a ratio of 60% = 40% by weight, and colloidal silica was dispersed in this as a binder in a ratio of 15% by weight. A slurry was prepared by mixing 35% by weight of water, and the slurry was applied onto a wax model to form a shell approximately 2 mm thick. This was heated to about 120° C. to melt the wax inside the shell, flow it out, and remove it, forming a female mold with a porosity of 40%.
この雌型のキャビティ内に前記の予め調製しておいたニ
ッケル合金粉のスリップを注入し、スリップ中のエタノ
ールを雌型壁の気孔を通して浸出させ、雌型のキャビテ
ィ中に残留した原料粉をキャビティ内に充填させ、前記
の雌型用スラリーを雌型の注入口に塗布して注入口を封
じ、全体を十分に乾燥したのち熱間静水圧プレス装置内
に入れ、装置内を10”Torr の真空忙引いておい
て1100℃ に加熱し、パイレックスガラスを溶融さ
せて雌型シェルの耐火物粒子間の隙間を満たI7て気密
にしたのち、アルゴンガスを装置内に送入して1000
気圧とし、更に1200℃ まで温度を上げて1時間熱
間靜水圧プレスを行なった。The previously prepared slip of nickel alloy powder is injected into the cavity of this female mold, and the ethanol in the slip is leached through the pores of the wall of the female mold, and the raw material powder remaining in the cavity of the female mold is removed from the cavity. The slurry for the female mold was applied to the injection port of the female mold to seal the injection port, and after the whole was sufficiently dried, it was placed in a hot isostatic press machine, and the inside of the machine was heated to 10" Torr. After the vacuum was removed, the temperature was heated to 1,100°C, and the Pyrex glass was melted to fill the gaps between the refractory particles in the female shell to make it airtight. Argon gas was then introduced into the device and heated to 1,100°C.
Atmospheric pressure was applied, and the temperature was further increased to 1200° C., and hot water pressure pressing was performed for 1 hour.
冷却後、焼結体のつまった雌型を取出し、サンドブ2ス
トをかけて表面の雌型材を除去して製品焼結体を得た。After cooling, the female mold filled with the sintered body was taken out and sandblasted to remove the female mold material on the surface to obtain a product sintered body.
焼結体の密度はほとんど理論密度に稠密化されており、
焼結体は従来の精密鋳造タービン翼に比して気孔等の欠
陥が著しく少ないことが認められた。The density of the sintered body is almost densified to the theoretical density,
It was found that the sintered body had significantly fewer defects such as pores than conventional precision cast turbine blades.
実施例2゜
平均粒径0.7ミクロン、α型結晶を95%以上含み、
不純物として酸素を1.5チ含む窒化珪素粉混合してス
リップとした。Example 2゜ Average particle size 0.7 microns, containing 95% or more α-type crystals,
A slip was prepared by mixing silicon nitride powder containing 1.5 grams of oxygen as an impurity.
一方、水溶性のソルブルワックスを射出成形してターボ
過給機翼車の形状をした模型を製作し、その上に雌型シ
ェル用スラリーを塗布した。このスラリーは耐火物粉と
して−300メツシュの炭化珪素粉、珪酸塩化合物とし
て硼珪酸ガラス粉を2:1(重量比)の割合に混合した
ものに、結合剤のコロイダルシリカを分散させたエタノ
ール液を35重量%混合してスラリーとした。前記模型
にスラリーを塗布し、乾燥固化させて約1mrrl厚の
雌型シェルを形成させたのち、水中に浸漬して模型のソ
ルブルワックスを溶解して除去し、模型形状のキャビテ
ィを有し、気孔率約30%の雌型とした。On the other hand, a model in the shape of a turbo supercharger wheel was made by injection molding water-soluble soluble wax, and slurry for the female shell was applied onto it. This slurry is a mixture of -300 mesh silicon carbide powder as a refractory powder and borosilicate glass powder as a silicate compound at a ratio of 2:1 (weight ratio), and an ethanol solution in which colloidal silica as a binder is dispersed. A slurry was prepared by mixing 35% by weight. After applying the slurry to the model and drying and solidifying it to form a female shell with a thickness of about 1 mrrl, it is immersed in water to dissolve and remove the soluble wax on the model to form a model-shaped cavity, It was made into a female type with a porosity of about 30%.
この雌型を珪砂粉充填床中に保持し、上記の窒化珪素を
主成分とするスリップを雌型に注入し、分散液を雌型壁
を通して浸出させ、雌型キャビティ内に原料粉を残留、
充填させて乾燥、固化させた。次に、雌型材料のスラリ
ーを用いてスリップ注入口を封じたのち、熱間静水圧プ
レス装置内に入れ、装置を真空に引いて1O−3Tor
r とし、この中で雌型を1550℃ K加熱して雌型
材料中の硼珪酸ガラスを融解させて、雌型の気孔を硼珪
酸ガラス融液で満たして気密にしたのち、熱間靜水圧プ
レス装置にアルゴンガスを通人して1000気圧まで上
げ、この中で雌型を1750℃に2時間加熱して熱間静
水圧プレスを行なった。This female mold is held in a bed filled with silica sand powder, the slip containing silicon nitride as a main component is injected into the female mold, the dispersion liquid is leached through the female mold wall, and the raw material powder remains in the female mold cavity.
It was filled, dried, and solidified. Next, after sealing the slip inlet using a slurry of female mold material, it is placed in a hot isostatic press apparatus, and the apparatus is evacuated to 1O-3 Torr.
r, the female mold was heated to 1550°C K to melt the borosilicate glass in the female mold material, and the pores of the female mold were filled with the borosilicate glass melt to make it airtight, and then heated under hot water pressure. Argon gas was passed through the press equipment to raise the pressure to 1000 atm, and the female mold was heated in the press at 1750° C. for 2 hours to perform hot isostatic pressing.
冷却後、雌型を装置から取出し、アルカリ水溶液による
オートクレーブ処理を施して雌型シェルの硼珪酸ガラス
を溶解して除去した。得られた焼結体の密度は3.15
97ccで、充分に稠密化され、クラックその他の欠陥
はなかった。After cooling, the female mold was taken out from the apparatus and subjected to autoclave treatment with an aqueous alkaline solution to dissolve and remove the borosilicate glass in the female mold shell. The density of the obtained sintered body is 3.15
At 97 cc, it was sufficiently densified and had no cracks or other defects.
以上説明したように、従来の粉末冶金法では通例単軸プ
レスで粉末を成形して焼結するため複雑な形状の機械部
品の製作は勿論のこと、均一な密度の焼結体を製作する
ことは困難であったが、本発明の方法によれば焼結には
熱間静水圧プレス法を採用するので焼結中に四周から圧
力を加えることができ、高い密度で而も均一密度の複雑
な形状の部品でも量産可能になる。As explained above, in the conventional powder metallurgy method, powder is usually formed and sintered using a uniaxial press, which makes it difficult to manufacture not only mechanical parts with complex shapes but also sintered bodies with uniform density. However, according to the method of the present invention, since hot isostatic pressing is used for sintering, pressure can be applied from all sides during sintering, resulting in high density and even complex sintering. It becomes possible to mass produce parts with various shapes.
而も密封容器として原料粉の焼結温度で軟化溶融しない
耐火物粉に焼結温度以下で溶融する珪酸塩化合物を混合
してスラリーとし模型に+lk布してシェルを形成させ
、模型は溶解または融解させて除去して所望形状のキャ
ビティを有する雌型とした容器を使用するので、加圧焼
結する前に容器の密封が容易である。In addition, as a sealed container, refractory powder that does not soften and melt at the sintering temperature of the raw material powder is mixed with a silicate compound that melts below the sintering temperature to form a slurry, and the model is coated with +lk to form a shell, and the model is melted or melted. Since the container is melted and removed to form a female mold having a cavity of the desired shape, it is easy to seal the container before pressure sintering.
また該雌型のキャビティ内に所要の金属或いはセラミッ
クス粉をスリップ状にして注入し、分散液は雌型壁の気
孔を通して浸出させ、キャビティ内にスリップ中の原料
粉を残留させ充填させるので、これを乾燥固化させると
所望形状の成形体が得られ、所望形状圧するのに従来の
如くプレス成形する必要がなく、また雌型の気孔を利用
して分散液を浸出させるので原料粉を雌型キャビティ内
に充填させることも容易である等実用上の効果がきわめ
て大きい。In addition, the required metal or ceramic powder is injected in the form of a slip into the cavity of the female mold, and the dispersion liquid is leached out through the pores of the wall of the female mold, leaving the raw material powder in the slip inside the cavity and filling it. By drying and solidifying the powder, a molded product with the desired shape can be obtained, and there is no need for conventional press molding to obtain the desired shape.Also, since the dispersion liquid is leached using the pores of the female mold, the raw material powder can be transferred into the female mold cavity. It has extremely great practical effects, such as being easy to fill inside.
添付図面は本発明の方法のフローシートを示す図面であ
る。The accompanying drawings are diagrams showing a flow sheet of the method of the present invention.
Claims (1)
方法において、 溶解または融解し易い材料で製作した所望形状の模型に
、耐火物粉と珪酸塩化合物粉とに分散液を混合したスラ
リーを塗布し固化させて雌型シェルを形成させ、 これを溶媒に浸し、または加熱して模型を溶解または融
解させて雌型シェルから除去し、模型形状のキャビティ
を有し、かつ気孔率10〜60q6の雌型を製作し、 所望の金属原料粉またはセラミックス原料粉に分散液を
混合してスリップとし、 該スリップを前記雌型のキャビティ内に注入し、スリッ
プの分散液を雌型壁を通して浸出させて除去し、キャビ
ティ内に残留充填された原料粉末成形体を乾燥、固化さ
せ、 雌型の注入口を密閉しておいて加熱炉中で雌型材料中の
珪酸塩化合物の融点まで加熱、融解させて雌型の気孔を
封じて密封体とし、 該密封体を熱間静水圧プレス装置で加圧しながら焼結温
度に加熱して、密封体中の原料粉末成形体を加圧焼結し
たのち、 雌型を除去して焼結体を得る ことを特徴とするセラミックスまたは金属粉の成形焼結
部品の製造方法。[Claims] In a method for manufacturing molded and sintered parts of metal powder or ceramic powder, a dispersion of refractory powder and silicate compound powder is applied to a model of a desired shape made of a material that is melted or easily melted. The mixed slurry is applied and solidified to form a female shell, which is immersed in a solvent or heated to dissolve or melt the model and removed from the female shell, having a model-shaped cavity and pores. A female mold with a ratio of 10 to 60q6 is manufactured, a dispersion liquid is mixed with the desired metal raw material powder or ceramic raw material powder to form a slip, the slip is injected into the cavity of the female mold, and the slip dispersion is poured into the female mold. The raw material powder compact remaining filled in the cavity is dried and solidified, and the injection port of the female mold is sealed, and the melting point of the silicate compound in the female mold material is heated in a heating furnace. The pores of the female mold are sealed to form a sealed body.The sealed body is heated to the sintering temperature while being pressurized with a hot isostatic press device, and the raw material powder compact in the sealed body is pressurized. A method for producing a molded and sintered part of ceramics or metal powder, which comprises removing a female mold after sintering to obtain a sintered body.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57016835A JPS58136702A (en) | 1982-02-04 | 1982-02-04 | Production of molded and sintered parts of powder |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57016835A JPS58136702A (en) | 1982-02-04 | 1982-02-04 | Production of molded and sintered parts of powder |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS58136702A true JPS58136702A (en) | 1983-08-13 |
JPH0220684B2 JPH0220684B2 (en) | 1990-05-10 |
Family
ID=11927250
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP57016835A Granted JPS58136702A (en) | 1982-02-04 | 1982-02-04 | Production of molded and sintered parts of powder |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58136702A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60259407A (en) * | 1984-06-06 | 1985-12-21 | 株式会社ノリタケカンパニーリミテド | Casting molding method of ceramic product |
JPS6119704A (en) * | 1984-07-06 | 1986-01-28 | Ishikawajima Harima Heavy Ind Co Ltd | Preparation of sintered machine parts |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5414311A (en) * | 1977-07-05 | 1979-02-02 | Mitsubishi Metal Corp | Preparation of sintered product having complicated shape |
JPS5548561A (en) * | 1978-09-28 | 1980-04-07 | Hashimoto Forming Co Ltd | Cutting method of foreign material produced in level different surface part and its device |
JPS55150310A (en) * | 1979-05-07 | 1980-11-22 | Asea Ab | Preparation of article of ceramic or metallic substance |
-
1982
- 1982-02-04 JP JP57016835A patent/JPS58136702A/en active Granted
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5414311A (en) * | 1977-07-05 | 1979-02-02 | Mitsubishi Metal Corp | Preparation of sintered product having complicated shape |
JPS5548561A (en) * | 1978-09-28 | 1980-04-07 | Hashimoto Forming Co Ltd | Cutting method of foreign material produced in level different surface part and its device |
JPS55150310A (en) * | 1979-05-07 | 1980-11-22 | Asea Ab | Preparation of article of ceramic or metallic substance |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60259407A (en) * | 1984-06-06 | 1985-12-21 | 株式会社ノリタケカンパニーリミテド | Casting molding method of ceramic product |
JPH0358884B2 (en) * | 1984-06-06 | 1991-09-06 | Noritake Co Ltd | |
JPS6119704A (en) * | 1984-07-06 | 1986-01-28 | Ishikawajima Harima Heavy Ind Co Ltd | Preparation of sintered machine parts |
Also Published As
Publication number | Publication date |
---|---|
JPH0220684B2 (en) | 1990-05-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102079653B (en) | Method for producing silicon-based ceramic core for aircraft engine blade | |
US4808360A (en) | Method of producing mold for slip casting and method of molding slip casting | |
WO1997043060A1 (en) | Inert calcia facecoats for investment casting of titanium and titanium-aluminide alloys | |
JP2000202573A (en) | Core composition excellent in characteristic used for casting in application to gas turbine and article | |
US20230036173A1 (en) | Casting elements and methods of making the same using low temperature solidification | |
WO2013123584A1 (en) | Highly filled particulate composite materials and methods and apparatus for making same | |
CN109822078B (en) | SiC prepared by vacuum pressure infiltration counter-pressure method3DMethod for preparing/Al composite material | |
JP5334842B2 (en) | Molded body for powder sintered body, powder sintered body and production method thereof | |
CN106083205B (en) | A kind of method that integral alumina base ceramic-mould elevated temperature strength is improved by chemical vapor infiltration | |
US20060211567A1 (en) | Method and slip for production of a moulded body from ceramic material ceramic moulded body and use of such a moulded body | |
US3701379A (en) | Process of casting utilizing magnesium oxide cores | |
CN109796222A (en) | The preparation method of beta-silicon nitride nanowire reinforcing silicon nitride foam ceramic | |
US5141683A (en) | Method of producing reinforced materials | |
JPS58136702A (en) | Production of molded and sintered parts of powder | |
Wu et al. | Rapid casting of hollow turbine blades using integral ceramic moulds | |
JPH0436117B2 (en) | ||
JPS6119704A (en) | Preparation of sintered machine parts | |
JPH0663684A (en) | Production of ceramic core for casting | |
CA1079935A (en) | Method of making a duo-density silicon nitride article | |
JPS58125658A (en) | Manufacture of ceramics sintered body | |
JPH0478681B2 (en) | ||
JPS6092806A (en) | Manufacture of ceramic product | |
KR101761047B1 (en) | Core for precision casting, production method therefor, and mold for precision casting | |
JPS63140740A (en) | Mold for casting active metal of high melting point | |
JPH038534A (en) | Rare earth oxide slurry |