JPH0141330B2 - - Google Patents

Info

Publication number
JPH0141330B2
JPH0141330B2 JP54003578A JP357879A JPH0141330B2 JP H0141330 B2 JPH0141330 B2 JP H0141330B2 JP 54003578 A JP54003578 A JP 54003578A JP 357879 A JP357879 A JP 357879A JP H0141330 B2 JPH0141330 B2 JP H0141330B2
Authority
JP
Japan
Prior art keywords
coil
pressure
intracerebral
sensor
capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54003578A
Other languages
Japanese (ja)
Other versions
JPS5596141A (en
Inventor
Iwao Sakaguchi
Kunihiko Osaka
Shigenori Hokari
Kenichi Takahashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nagano Keiki Seisakusho KK
Original Assignee
Nagano Keiki Seisakusho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nagano Keiki Seisakusho KK filed Critical Nagano Keiki Seisakusho KK
Priority to JP357879A priority Critical patent/JPS5596141A/en
Priority to DE19803000907 priority patent/DE3000907C2/en
Priority to DE19808000628 priority patent/DE8000628U1/en
Priority to FR8000849A priority patent/FR2447021A1/en
Publication of JPS5596141A publication Critical patent/JPS5596141A/en
Publication of JPH0141330B2 publication Critical patent/JPH0141330B2/ja
Granted legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/03Detecting, measuring or recording fluid pressure within the body other than blood pressure, e.g. cerebral pressure; Measuring pressure in body tissues or organs
    • A61B5/031Intracranial pressure
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/0001Transmitting or indicating the displacement of elastically deformable gauges by electric, electro-mechanical, magnetic or electro-magnetic means
    • G01L9/0008Transmitting or indicating the displacement of elastically deformable gauges by electric, electro-mechanical, magnetic or electro-magnetic means using vibrations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/0033Transmitting or indicating the displacement of bellows by electric, electromechanical, magnetic, or electromagnetic means
    • G01L9/0036Transmitting or indicating the displacement of bellows by electric, electromechanical, magnetic, or electromagnetic means using variations in inductance

Landscapes

  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Neurosurgery (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Hematology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
  • External Artificial Organs (AREA)
  • Measuring Fluid Pressure (AREA)

Description

【発明の詳細な説明】 本発明は脳内圧計に関し、一層詳細には頭皮下
に埋設したセンサと外部の測定装置を直接電線や
チユーブなどの物的手段によつて連絡することな
く、誘導結合により脳内圧の変化を測定する脳内
圧計およびさらに精度の高い脳内圧計に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an intracerebral manometer, and more particularly, the present invention relates to an intracerebral manometer, and more particularly, an inductive coupling method is used to connect a sensor buried under the scalp and an external measuring device without directly communicating with physical means such as electric wires or tubes. This invention relates to an intracerebral manometer that measures changes in intracerebral pressure and a more accurate intracerebral manometer.

従来、患者の脳内圧の変化を長期間継続的に測
定する脳内圧計としては、頭皮下に埋設したセン
サから電線やチユーブのような物的連絡手段を導
出して脳内圧を直接測定する装置が種々知られて
いるが、この種のものは連絡手段が頭皮を貫通し
て導出されるため外的感染の危険が大きい。
Conventionally, intracerebral manometers that continuously measure changes in a patient's intracerebral pressure over a long period of time are devices that directly measure intracerebral pressure by connecting physical communication means such as electric wires or tubes from a sensor buried under the scalp. Various methods are known, but since the communication means of this type penetrate the scalp and are led out, there is a high risk of external infection.

この欠点を除くものとしては、頭皮下に埋設し
たセンサと外部測定装置の間を物的接続によらず
無線電気工学的接続によつて関連づけるものもあ
るが、内部に電源を内蔵してアクテイブな回路を
構成した場合には、複雑、大型化し、ドリフト等
も発生しやすく、又構成要素が熱に弱いため熱滅
菌ができず、ガス滅菌など不確実で非能率的な手
段によらなければならず、電源の寿命にも限りが
あつて長期間の使用に耐えられない。
Some solutions to this drawback include a wireless electrical connection between a sensor implanted under the scalp and an external measurement device rather than a physical connection; When a circuit is configured, it becomes complicated and large, drifts are likely to occur, and the components are sensitive to heat, so heat sterilization is not possible, and uncertain and inefficient methods such as gas sterilization must be used. Moreover, the lifespan of the power supply is limited and cannot withstand long-term use.

なお内部センサとして電源を有さないものも知
られている(特開昭50−152580号)。この脳内圧
計は、カプセル内に可動磁石を変位自在に収納し
て内部センサを構成し、この可動磁石に外部の誘
導発生器によるパルス磁力を作用させ、該磁力が
頭蓋内圧による静圧を起えた際の可動磁石の運動
を外部から検知するようにして頭蓋内圧を計測せ
んとするものである。
It should be noted that an internal sensor that does not have a power source is also known (Japanese Patent Laid-Open No. 152580/1983). This intracerebral manometer has a movable magnet displaceably housed in a capsule to constitute an internal sensor, and a pulsed magnetic force is applied to this movable magnet by an external induction generator, and this magnetic force causes static pressure due to intracranial pressure. The aim is to measure intracranial pressure by externally detecting the movement of the movable magnet when the head is moved.

しかし上記のような磁力作用は、距離の2乗に
反比例するものであるから、外部の誘導発生器の
取付位置、例えば両者間の距離、軸線、外部コイ
ルの傾き等の空間的配置が少しでも変化すれば両
者間に作用する力が大きく変化し、それがそのま
ま計測誤差となつてあらわれてしまう。この種の
脳内圧計では頭皮下に埋設されるセンサは当然外
部から目視できるものではなく、また各人によつ
て髪や皮膚の厚さにバラツキがあるので、内部セ
ンサに対して誘導発生器をそのコイルが一定の距
離を保つて、軸線を一致して、かつ傾むかずに正
確に取付けるのは不可能に近い。
However, since the above-mentioned magnetic force is inversely proportional to the square of the distance, the installation position of the external induction generator, such as the distance between them, the axis line, and the spatial arrangement of the external coil, etc. If it changes, the force acting between the two will change significantly, and this will directly appear as a measurement error. In this type of intracerebral manometer, the sensor embedded under the scalp is naturally not visible from the outside, and since the thickness of hair and skin varies from person to person, an inductive generator is used for the internal sensor. It is nearly impossible to install the coil accurately, keeping the coils at a certain distance, aligning the axes, and without tilting.

また、一般に脳内圧計はシヤント管路とは別個
に頭皮下に埋設されるため脳室内に通ずるカテー
テルが重複し、センサ内の径路の空気抜や清掃を
行うためには別途の管路を設けなければならない
など頭皮下埋蔵物の量が大きくなる欠点がある。
In addition, because intracerebral manometers are generally buried under the scalp separately from the shunt duct, the catheters leading into the ventricle overlap, and a separate duct is required to vent air and clean the path inside the sensor. The disadvantage is that the amount of deposits under the scalp increases.

さらにまた、センサの感圧部に空気が封入され
ているが、人体の温度変化によつて空気圧に変化
が生じ脳内圧を正確に感知することができない。
人体の温度変化に対応して脳内圧を補償すること
も考えられるが、人体の温度は測定個所により若
干異り、脳内圧の微小変化分に比較して温度補償
による測定は望めない。
Furthermore, although air is sealed in the pressure sensitive part of the sensor, the air pressure changes due to changes in the temperature of the human body, making it impossible to accurately sense intracerebral pressure.
Although it is possible to compensate the intracerebral pressure in response to changes in the temperature of the human body, the temperature of the human body varies slightly depending on the measurement location, and it is not possible to measure by temperature compensation compared to minute changes in the intracerebral pressure.

その他、大気圧に比較して脳内圧の極めて微細
な変化分を測定するため鋭敏な感度が要求される
と同時に大気圧程度の圧力に十分耐えうるもので
なければならない。
In addition, since it measures extremely minute changes in intracerebral pressure compared to atmospheric pressure, it must have high sensitivity, and at the same time must be able to withstand pressures close to atmospheric pressure.

発明者は以上のような難点を解決すべく、リゾ
ナンスグリツドデイツプ(resonance grid dip)
の原理を応用して頭皮下にコイルおよびコンデン
サから成る無電源共振回路を埋設し、外界より誘
導結合することによつて、無電源共振回路との共
振点を探知できることに着目し、鋭意研究の結果
この無電源共振回路のコイルのインダクタンスL
(以下単にLと略す)又は、コンデンサのキヤパ
シタンスC(以下単にCと略す)あるいはL,C
の両方を可変にすると共に、このL,Cの共振周
波数を脳内圧の変化と関連づけることにより、上
記誘導結合を利用して外部から脳内圧の間接的な
測定が可能になることを想到し、さらに試験研究
を重ねた結果、脳内圧計のセンサをシヤント管路
の中間に介在せしめることにより管路の重複を省
き、またセンサの感圧部を真空にして内蔵ガスの
ガス圧が温度変化により測定圧に悪影響を与える
ことがないようにし、さらに脳内圧の微細変化分
を検出するに際して合成波のうなり現象を利用し
て測定を容易にすることにより所期の目的を達成
するに至つた。
In order to solve the above-mentioned difficulties, the inventor developed a resonance grid dip.
By applying the principle of burying a non-power resonant circuit consisting of a coil and a capacitor under the scalp and inductively coupling it from the outside world, we focused on the fact that it is possible to detect the resonance point with the non-power resonant circuit. As a result, the inductance L of the coil of this unpowered resonant circuit
(hereinafter simply abbreviated as L) or capacitance C of a capacitor (hereinafter simply abbreviated as C) or L,C
By making both L and C variable and associating the resonance frequencies of L and C with changes in intracerebral pressure, we have come up with the idea that it is possible to indirectly measure intracerebral pressure from the outside using the above-mentioned inductive coupling. As a result of further testing and research, we found that by interposing the sensor of the intracerebral pressure gauge in the middle of the shunt conduit, the duplication of conduits was eliminated, and by evacuating the pressure sensitive part of the sensor, the gas pressure of the built-in gas could be adjusted due to temperature changes. The desired objective was achieved by ensuring that the measured pressure was not adversely affected, and by making measurement easier by utilizing the beat phenomenon of the composite wave when detecting minute changes in intracerebral pressure.

すなわち、本発明の目的は電源を内蔵しないパ
シイブな回路を構成することにより、センサと外
部の測定装置との間の連絡を物的手段によらず、
したがつて外的感染のおそれがなく、長期間の使
用に耐え、また物設前のセンサの熱滅菌処理が可
能で、センサの容積を最小にできる極めて高精度
の、コイルとコンデンサとから成る無電源共振回
路を有し、頭皮下に埋設されて脳内圧の変化に対
応して上記コイルとコンデンサのLとCの少くと
も一方が変化しうる感圧部を設けたセンサと、こ
のセンサの共振周波数の変位を外部から計測する
グリツドデイツプメータとから成る脳内圧計を提
供するにあり、他の目的としては、温度変化の影
響を受けず、一層信頼性の高い、コイルとコンデ
ンサとから成る無電源共振回路を有し、頭皮下に
埋設されて脳内圧変化に対応して内部を真空にし
たベローズの伸縮に伴つて上記コイルとコンデン
サのLとCの少くとも一方が変化しうる感圧部を
設けたセンサと、この共振周波数の変位を外部か
ら計測するグリツドデイツプメータとから成る脳
内圧計を提供するにあり、他の目的としては、コ
イルとコンデンサとから成る無電源共振回路を有
し、頭皮下に埋設されて脳内圧の変化に対応し
て、ベローズが伸縮するのに伴いコアがコイル内
を進退してコイルのLを変化する感圧部を設けた
センサと、この共振周波数の変位を外部から計測
するグリツドデイツプメータとから成る脳内圧計
を提供するにあり、他の目的としては、コアの磁
路を連続して一層感度を鋭敏にした、コイルとコ
ンデンサとから成る無電源共振回路を有し、頭皮
下に埋設されて脳内圧の変化に対応して円柱部の
下底部にフランジ部を有するハツト形状のコアの
円柱部がベローズの伸縮に伴つてコイル内を進退
してコイルのLを変化する感圧部を設けたセンサ
と、このセンサの共振周波数の変位を外部から計
測するグリツドデイツプメータとから成る脳内圧
計を提供するにあり、他の目的としては、シヤン
ト管路と連絡することにより頭皮下埋蔵物の量を
少くし、センサの空気抜や清掃が可能な、コイル
とコンデンサとから成る無電源共振回路を有し、
頭皮下に埋設されて脳内圧の変化に対応して上記
コイルとコンデンサのLとCの少くとも一方が変
化しうる感圧部を設け、この感圧部を脳室から髄
液を排出するシヤント管路に介在せしめるように
したセンサと、このセンサの共振周波数の変位を
外部から計測するグリツドデイツプメータとから
成る脳内圧計を提供するにあり、他の目的として
は、コイルとコンデンサとから成る無電源共振回
路を有し、頭皮下に埋設されて脳膜を介して伝達
される脳内圧の変化に対応して上記コイルとコン
デンサのLとCの少くとも一方が変化しうる感圧
部を設けたセンサと、このセンサの共振周波数の
変位を外部から計測するグリツドデイツプメータ
とから成る脳内圧計を提供するにあり、また、他
の目的としては、脳内圧の微細な変化分を正確容
易に測定できる、コイルとコンデンサとから成る
無電源共振回路を有し、頭皮下に埋設されて脳内
圧の変化に対応して上記コイルとコンデンサのL
とCの少くとも一方が変化しうる感圧部を設けた
センサと、このセンサの共振周波数の変位を外部
から計測するグリツドデイツプメータの共振周波
数信号を標準周波数信号と合成する装置とから成
る脳内圧計を提供するにある。
That is, an object of the present invention is to configure a passive circuit that does not include a built-in power supply, thereby making it possible to communicate between the sensor and an external measuring device without using physical means.
Therefore, there is no risk of external infection, it can withstand long-term use, the sensor can be heat sterilized before installation, and it is made of extremely high-precision coils and capacitors that can minimize the volume of the sensor. A sensor having a power-free resonant circuit and having a pressure sensitive part buried under the scalp so that at least one of L and C of the coil and capacitor can change in response to changes in intracerebral pressure; The purpose of the present invention is to provide an intracerebral manometer consisting of a grid depth meter that externally measures the displacement of the resonant frequency.Another purpose is to provide an intracerebral manometer that is unaffected by temperature changes and is more reliable. At least one of L and C of the coil and capacitor can change with the expansion and contraction of the bellows, which is buried under the scalp and creates a vacuum inside in response to changes in intracerebral pressure. The purpose of the present invention is to provide an intracerebral manometer consisting of a sensor equipped with a pressure sensitive part and a grid depth meter that externally measures the displacement of this resonant frequency. A sensor that has a resonant circuit and a pressure sensitive part that is buried under the scalp and whose core advances and retreats within the coil to change the L of the coil as the bellows expands and contracts in response to changes in intracerebral pressure. The purpose is to provide an intracerebral manometer consisting of a grid dipmeter that externally measures the displacement of this resonant frequency.Another purpose is to provide an intracerebral manometer consisting of a grid dipmeter that measures the displacement of this resonance frequency from the outside. The cylindrical part of the hat-shaped core, which is buried under the scalp and has a flange part at the bottom of the cylindrical part, responds to changes in intracerebral pressure as the bellows expands and contracts. To provide an intracerebral manometer consisting of a sensor provided with a pressure sensing part that changes the L of the coil by moving back and forth within the coil, and a grid depth meter that externally measures the displacement of the resonance frequency of this sensor. , as other purposes, it has an unpowered resonant circuit consisting of a coil and a capacitor that can reduce the amount of sub-scalp deposits by communicating with the shunt conduit, and allow air venting and cleaning of the sensor.
A pressure sensitive part is provided which is buried under the scalp and at least one of L and C of the coil and the capacitor changes in response to changes in intracerebral pressure, and this pressure sensitive part is used as a shunt for draining cerebrospinal fluid from the ventricles. The object of the present invention is to provide an intracerebral manometer consisting of a sensor interposed in a conduit and a grid depth meter for externally measuring the displacement of the resonant frequency of this sensor. A pressure-sensitive device that is embedded under the scalp and can change at least one of L and C of the coil and capacitor in response to changes in intracerebral pressure transmitted through the brain membrane. The object of the present invention is to provide an intracerebral manometer consisting of a sensor provided with a section and a grid depth meter that externally measures the displacement of the resonant frequency of this sensor. It has an unpowered resonant circuit consisting of a coil and a capacitor that can easily and accurately measure the amount of time.
and C, and a device for synthesizing the resonant frequency signal of a grid dipmeter with a standard frequency signal to externally measure the displacement of the resonant frequency of this sensor. To provide an intracerebral manometer consisting of:

以下本発明の実施例を図面を参照して詳細に説
明する。
Embodiments of the present invention will be described in detail below with reference to the drawings.

第1図において、10はセンサである。12は
本体であつて、円筒形をなし、上端より若干下部
にフランジ14を設けてある。
In FIG. 1, 10 is a sensor. The main body 12 is cylindrical and has a flange 14 slightly below the top end.

16はベローズで、本体12内に下端部を固定
して収納されており、内部に補助スプリング18
を設けてある。
Reference numeral 16 denotes a bellows, which is housed in the main body 12 with its lower end fixed, and has an auxiliary spring 18 inside.
is provided.

20はベローズ台で、円板の上面凹嵌部にベロ
ーズ16の下端縁を固定しており、ベローズ台2
0の内部中心を通る連通孔24が両側の垂直溝2
6に連通して設けられ、円板の周側にはネジ28
が設けられ、本体12の下部と螺合して円板を上
下方向に移動し、後述のようにコイルとコアの相
対的な位置関係を微調整できるようになつてい
る。
Reference numeral 20 denotes a bellows base, in which the lower edge of the bellows 16 is fixed to the recessed part on the upper surface of the disk.
A communication hole 24 passing through the internal center of the vertical groove 2 on both sides
6, and a screw 28 is provided on the circumferential side of the disc.
is provided, which is screwed into the lower part of the main body 12 to move the disk in the vertical direction, so that the relative positional relationship between the coil and the core can be finely adjusted as described later.

30は導入パイプで、ペローズ台20の底面中
央に連結しており、連通孔24を連通し、本体1
2の下端を閉塞するモールド部32の中央を貫通
して延出している。
Reference numeral 30 denotes an introduction pipe, which is connected to the center of the bottom of the perose table 20, communicates with the communication hole 24, and connects the main body 1.
The mold part 32 extends through the center of the mold part 32 that closes the lower end of the mold part 2.

34はストツパで、ベローズ16の収縮限界を
規制するものである。
A stopper 34 regulates the contraction limit of the bellows 16.

36はコイルで、本体12の上端部に中心軸を
垂直にして固定されている。38はフエライトの
コアで円柱の下端部にフランジ40を設けてコア
全体をハツト状に成形されていて、ベローズ16
の上面自由端の中央に垂直に取付けられ、ベロー
ズ16の伸縮に応じてコイル36内を進退するよ
うになつている。
A coil 36 is fixed to the upper end of the main body 12 with its center axis perpendicular. Reference numeral 38 is a ferrite core with a flange 40 provided at the lower end of the cylinder, the entire core being formed into a hat shape, and a bellows 16
It is attached vertically to the center of the free end of the upper surface of the coil 36, and moves back and forth within the coil 36 as the bellows 16 expands and contracts.

42はコンデンサで、コイル36と結合して無
電源共振回路を構成しており、コイル36上にキ
ヤツプ44が被冠され、その上から本体12上面
が覆われるようにモールド46によつてシールさ
れている。
A capacitor 42 is combined with a coil 36 to form a power-free resonant circuit. A cap 44 is placed over the coil 36, and sealed with a mold 46 so as to cover the upper surface of the main body 12 from above. ing.

48は導出チユーブで、導入パイプ30から導
入された脳髄液は連通孔24、これと連絡する垂
直溝26を通りベローズ16の周囲を通つて、コ
ア38およびコイル36を濡らして導出チユーブ
48を経て外部に排出される。
Reference numeral 48 designates a lead-out tube, and the cerebrospinal fluid introduced from the introduction pipe 30 passes through the communication hole 24 and the vertical groove 26 communicating therewith, passes around the bellows 16, wets the core 38 and the coil 36, and passes through the lead-out tube 48. It is discharged to the outside.

第2図は別の実施例に係るセンサ10aで、本
体12aの下底中央部から導入パイプ30aを垂
下し、ベローズ16aの下端部をベローズ台20
aにより本体12aに固定し、一方、コイル36
aをコイルホルダ50に固定支持させて、コイル
ホルダ50の外周壁に設けたネジ52により本体
12aの上部と螺合してコイル36aを上下方向
に移動できるようにしてある点で特徴がある。
FIG. 2 shows a sensor 10a according to another embodiment, in which an introduction pipe 30a hangs down from the center of the bottom of the main body 12a, and the lower end of the bellows 16a is connected to a bellows base 20.
a to the main body 12a, while the coil 36
The coil 36a is fixedly supported by the coil holder 50, and is screwed into the upper part of the main body 12a by a screw 52 provided on the outer peripheral wall of the coil holder 50, so that the coil 36a can be moved in the vertical direction.

このようにセンサ10においてベローズ台20
を上下方向に調節することによりコア38をコイ
ル36内で上下し、またセンサ10aにおいてコ
イルホルダ50を上下方向に調節することにより
コア38に対しコイル36aを上下することがで
きるから、予めコイルとコアの相対的な位置関係
を設定しておけば、コイルのLを適宜標準値に設
定できる。
In this way, in the sensor 10, the bellows stand 20
The core 38 can be moved up and down within the coil 36 by adjusting the coil holder 50 in the up and down direction, and the coil 36a can be moved up and down with respect to the core 38 by adjusting the coil holder 50 in the sensor 10a in the up and down direction. By setting the relative positional relationship of the cores, L of the coil can be appropriately set to a standard value.

センサ10は第3図に示すように、頭皮60下
の頭蓋骨62に凹陥部64を穿孔し、この凹陥部
64にセンサ本体12を嵌合し、センサ本体12
のフランジ部14が頭滑骨62の凹陥部64の表
面側口縁に支持されて埋設される。
As shown in FIG. 3, the sensor 10 has a recess 64 formed in the skull 62 under the scalp 60, and the sensor body 12 is fitted into the recess 64.
The flange portion 14 is supported and buried in the rim of the surface side of the concave portion 64 of the caput 62.

導入パイプ30の先端にはカテーテル54が連
結され、脳膜を貫通して脳室66内に達してい
る。また、導出チユーブ48は空気抜きを兼ねた
脳髄液排出用のレザーボワ56に連結し後述する
シヤント管路に介在させてある。
A catheter 54 is connected to the tip of the introduction pipe 30 and penetrates the cerebral membrane to reach the ventricle 66 of the brain. Further, the outlet tube 48 is connected to a reservoir 56 for draining cerebral spinal fluid which also serves as an air vent, and is interposed in a shunt conduit which will be described later.

58はグリツドデイツプメータの発振コイル
で、センサ10に対して頭皮60を隔てて外側か
ら近接してセンサ10と誘導結合する。
Reference numeral 58 denotes an oscillation coil of the grid depth meter, which is inductively coupled to the sensor 10 from outside with the scalp 60 interposed therebetween.

本発明は以上のように構成されていて、センサ
10のベローズ台20を調節してコイル36とコ
ア38の相対的位置関係を予め標準位置にセツト
して組立て、モールドシールしたものを頭皮60
下に埋設し、脳室66内と連絡しておくと、何ら
かの生理的原因で脳室66内の脳髄液が増加した
場合、溢出髄液はシヤント管路を径て心房や腹腔
内へ導かれるが、シヤント管路が閉塞するなど異
常故障が起きたときには脳室66内の脳髄液に異
常圧が発生し、この圧力変化がセンサ10内へ伝
達していきベローズ16を収縮させ、これに伴つ
てコア38がコイル36内で後退してコイルのL
を変化せしめ、センサ10内の無電源共振回路の
共振周波数が変化する。
The present invention is constructed as described above, and is assembled by adjusting the bellows base 20 of the sensor 10 to set the relative positional relationship between the coil 36 and the core 38 to a standard position in advance, and mold-sealing the sensor 10 to the scalp 60.
If it is buried below and communicates with the inside of the ventricle 66, if the cerebrospinal fluid in the ventricle 66 increases due to some physiological cause, the overflowing cerebrospinal fluid will be guided into the atrium or abdominal cavity through the shunt conduit. However, when an abnormal failure occurs such as blockage of the shunt conduit, abnormal pressure is generated in the cerebral spinal fluid within the ventricle 66, and this pressure change is transmitted to the sensor 10, causing the bellows 16 to contract. As a result, the core 38 is retracted within the coil 36 and the L of the coil is
is changed, and the resonant frequency of the unpowered resonant circuit within the sensor 10 is changed.

そこで外方から近接した発振コイル58の発振
周波数を一定の範囲内で連続的に変化させると、
無電源共振回路の共振周波数との共振点で共振が
起こり、この共振点と脳内圧との対応関係を予め
知つておけば外部から間接的に脳内圧の測定をす
ることができる。
Therefore, if the oscillation frequency of the oscillation coil 58 adjacent to the outside is changed continuously within a certain range,
Resonance occurs at a resonance point with the resonant frequency of the power-free resonant circuit, and if the correspondence between this resonance point and intracerebral pressure is known in advance, intracerebral pressure can be measured indirectly from the outside.

このようにセンサ10は、脳室から脳髄液を排
出するシヤント管路に感圧部を介在せしめること
ができ、この点センサ10aも同様である。
In this way, the sensor 10 can have a pressure sensitive part interposed in the shunt conduit that discharges cerebral spinal fluid from the ventricle, and the same applies to the sensor 10a.

第4図はセンサ10又は10aをシヤント管路
に介在せしめた場合の拡大説明図であつて、56
はレザーボアで、センサ10又は10aの直後に
設けられており、センサの導出チユーブ48とレ
ザーボワ56の間は連結チユーブ56aが、また
レザーボワ56の後には連結チユーブ56bが連
結している。
FIG. 4 is an enlarged explanatory diagram of the case where the sensor 10 or 10a is interposed in the shunt pipe, and shows 56
is a reservoir bore, which is provided immediately after the sensor 10 or 10a, and a connection tube 56a is connected between the sensor outlet tube 48 and the reservoir bore 56, and a connection tube 56b is connected after the reservoir bore 56.

レザーボワ56はポンプ室で、連結チユーブ5
6aの後端部はレザーボワ56内へ若干突出して
いて、レザーボワ56を頭皮の外から指で押圧す
ると連結チユーブ56aの突出部も同時に押し潰
ぶされて逆止弁として作用しポンピングする。
The reservoir bobber 56 is a pump chamber, and the connecting tube 5
The rear end of the tube 6a slightly protrudes into the reservoir 56, and when the reservoir 56 is pressed with a finger from outside the scalp, the protrusion of the connecting tube 56a is simultaneously crushed, acting as a check valve and pumping.

また、連結チユーブ56bを指で押えると共に
連結チユーブ56aの突出部を避けてレザーボワ
56を押圧すると脳髄液は逆流するので、押圧す
る指の感触でセンサの径路が閉塞する事故があつ
た場合には検知できるので、レザーボワ56を一
層強く押圧することによりセンサ径路の清掃が可
能である。
Also, if you press the connecting tube 56b with your finger and press the reservoir 56 while avoiding the protruding part of the connecting tube 56a, the cerebral spinal fluid will flow backwards, so if there is an accident where the sensor path is blocked by the feeling of the pressing finger, Since the sensor can be detected, the sensor path can be cleaned by pressing the reservoir bower 56 more forcefully.

次に第5図に示すように、センサ10bはベロ
ーズ16bの周囲にシリコーンオイル等の圧力媒
液を入れてセンサ本体12bの下端開放部をダイ
ヤフラム70によつて密閉し、このダイヤフラム
70を脳膜に外側から接触して感圧せしめるよう
にしたもので、脳膜を貫通して脳室までパイプを
挿入する必要がない。しかしこの構成の場合には
ダイヤフラム70によつてセンサ10bが密閉さ
れるため、センサ10,10aのようにシヤント
管路の中間にセンサ10bを介在せしめることは
できない。
Next, as shown in FIG. 5, the sensor 10b is constructed by filling a pressure medium such as silicone oil around the bellows 16b, sealing the open lower end of the sensor body 12b with a diaphragm 70, and connecting the diaphragm 70 with the brain membrane. It is designed to sense pressure by contacting the brain from the outside, so there is no need to insert a pipe through the brain membrane to the ventricle. However, in this configuration, since the sensor 10b is sealed by the diaphragm 70, the sensor 10b cannot be interposed between the shunt conduits like the sensors 10 and 10a.

センサ10,10a,10bにおいて、コア3
8の形状を円柱の下端部にフランジ40を設けて
コア38を全体としてハツト形状に成形してある
のは発振コイル58の磁路を連続強化するためで
あつて、コア38を支持するベローズ16が気密
性と良好なバネ弾性を要求されるので、材料とし
てステンレス、ニツケル等の金属が用いられ、発
振コイル58の磁路が切断されて感圧精度が低下
するのを防止するためである。
In the sensors 10, 10a, 10b, the core 3
The reason why the flange 40 is provided at the lower end of the cylinder to form the core 38 into a hat shape as a whole is to continuously strengthen the magnetic path of the oscillation coil 58, and the bellows 16 supporting the core 38 Since airtightness and good spring elasticity are required, a metal such as stainless steel or nickel is used as the material, and this is to prevent the magnetic path of the oscillation coil 58 from being cut and the pressure sensing accuracy to decrease.

また、センサのベローズ16内は真空にしてあ
るので内蔵ガスが人体の温度変化に影響されて感
圧部に誤差を生じさせる如き問題は生じない。さ
らに感圧部は圧力の微細変化を感知しなければな
らないから、それ相当にベローズ16の柔軟性が
要求され、したがつてベローズ16内にストツパ
34を設けて、ベローズ16に過大な圧力がかか
つた場合に永久変形の生じることがないようにし
てある。
Further, since the inside of the bellows 16 of the sensor is kept in a vacuum, there is no problem in which the built-in gas is affected by changes in the temperature of the human body, causing errors in the pressure sensitive section. Furthermore, since the pressure sensing part must sense minute changes in pressure, the bellows 16 must be flexible accordingly.Therefore, a stopper 34 is provided within the bellows 16 to prevent the bellows 16 from being subjected to excessive pressure. It is designed to prevent permanent deformation from occurring in the event of accidental contact.

また、一般に健常人の脳圧はゲージ圧で200mm
Aq程度であり、したがつて脳内圧計としては大
気圧を標準として(+)1000mmAq乃至(−)500
mmAq程度の極めて狭い測定範囲が設定されるた
め、ベローズの伸縮量が小さく、Lの変化も少な
く測定が困難である。
In general, the brain pressure of a healthy person is 200 mm in gauge pressure.
Aq, and therefore, as an intracerebral manometer, it has a range of (+) 1000mmAq to (-) 500mmAq, with atmospheric pressure as the standard.
Since an extremely narrow measurement range of about mmAq is set, the amount of expansion and contraction of the bellows is small, and the change in L is also small, making measurement difficult.

そこで、センサの共振周波数と、この共振周波
数に近い固定周波数を合成することにより、両者
の差を周波数とする「うなり」として圧力の変化
分を拡大的に検出することができる。
Therefore, by combining the resonant frequency of the sensor and a fixed frequency close to this resonant frequency, it is possible to detect the change in pressure in an expanded manner as a "beat" whose frequency is the difference between the two.

この測定により得られる値は絶対圧力であるか
ら、気圧発信器の側定値を差引き補正してゲージ
圧とすればよい。
Since the value obtained by this measurement is an absolute pressure, it is sufficient to subtract and correct the fixed value of the atmospheric pressure transmitter to obtain the gauge pressure.

なお、以上の実施例において感圧部としてベロ
ーズを用い、その変化をコイル内のコアの進退運
動に変換し、脳室内圧の変化をコイルのLの変化
としてとらえたが、コンデンサを可変としてコン
デンサのCの変化としてとらえてもよく、またこ
れらの両方を同時に変化させることもできる。
In the above example, a bellows was used as the pressure sensitive part, and the change was converted into the movement of the core in the coil back and forth, and the change in intraventricular pressure was captured as a change in L of the coil. It may be regarded as a change in C, or both of these may be changed at the same time.

以上本発明に係る脳内圧計によれば頭皮下のセ
ンサと外部の測定装置とは誘導結合によるため外
的感染のおそれが全く無く、センサ内に電源がな
いところから長期間の使用に耐え、アクテイブな
回路が存在しないため熱に強く、頭皮下に埋設す
る前にセンサを熱滅菌処理できるので滅菌が完全
であると共に能率が良く、センサの容積も最小に
することができる。
As described above, according to the intracerebral manometer according to the present invention, since the sensor under the scalp and the external measuring device are inductively coupled, there is no risk of external infection, and since there is no power supply inside the sensor, it can withstand long-term use. Since there is no active circuit, it is resistant to heat, and since the sensor can be heat sterilized before being implanted under the scalp, sterilization is complete and efficient, and the volume of the sensor can be minimized.

さらに、本発明では、外部グリツドデイツプメ
ータによる外部交番磁界が内部センサの無電源共
振回路の共振の共鳴吸収として作用すればよく、
換言すれば、センサとコイルの電磁誘導結合が維
持される範囲に空間的相対位置を保てば、原理的
に充分な精度で計測が可能であるので、検出コイ
ルの取付位置が引用例のように厳密さが要求され
ない。したがつて髪や皮膚の厚さが各人によつて
多少バラついても脳内圧の正確な計測が可能とな
る。そしてまたセンサ内に機械的共振部分を有さ
ないので頭皮下に埋設されるセンサを簡易なもの
に構成でき、故障が少なく、長期間の埋設使用が
可能となり、理想的な脳内圧計が提供された。
Furthermore, in the present invention, it is only necessary that the external alternating magnetic field by the external grid depth meter acts as a resonant absorption of the resonance of the unpowered resonant circuit of the internal sensor.
In other words, if the relative spatial position of the sensor and coil is maintained within a range that maintains the electromagnetic inductive coupling, it is theoretically possible to measure with sufficient accuracy. does not require rigor. Therefore, accurate measurement of intracerebral pressure is possible even if the thickness of hair and skin varies somewhat from person to person. Furthermore, since the sensor does not have a mechanical resonance part, the sensor to be buried under the scalp can be constructed simply, with fewer failures and can be used buried for a long period of time, providing an ideal intracerebral pressure meter. It was done.

また、センサの感圧部をシヤント管路に介在せ
しめることにより、脳室内へ挿入するカテーテル
も一本で足り、シヤント管路を利用して空気抜き
や清掃もできるので、それだけ頭皮下埋設物の量
も少くすることができ、感圧部が真空で内蔵ガス
を存在せしめない場合は人体の温度変化に伴う誤
差もない。
In addition, by interposing the pressure-sensitive part of the sensor in the shunt conduit, only one catheter is required to be inserted into the ventricle, and the shunt conduit can be used for air removal and cleaning, which increases the amount of material buried under the scalp. If the pressure sensitive part is in a vacuum and no built-in gas exists, there will be no error due to changes in the temperature of the human body.

さらにまた、コイルとコアの位置関係の変化を
利用するものにあつては、コアの形状をハツト形
にすることによつて磁路の切断を防止して感圧部
の感度を鋭敏にすることができ、従来脳内圧の微
細変化分を測定するには実用的でなかつた脳内圧
計を極めて実用的で信頼性の高いものにすること
ができる等の著効を奏する。
Furthermore, in cases where changes in the positional relationship between the coil and the core are used, the shape of the core is made into a hat shape to prevent the magnetic path from being cut and to make the sensitivity of the pressure sensitive part more sensitive. The present invention has remarkable effects, such as making an intracerebral manometer, which was conventionally impractical for measuring minute changes in intracerebral pressure, extremely practical and highly reliable.

以上本発明につき好適な実施例を挙げて種々説
明したが、本発明はこの実施例に限定されるもの
ではなく、発明の精神を逸脱しない範囲内で多く
の改変を施し得るのはもちろんのことである。
Although the present invention has been variously explained above with reference to preferred embodiments, the present invention is not limited to these embodiments, and it goes without saying that many modifications can be made without departing from the spirit of the invention. It is.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明に係る脳内圧計の実施例を示すも
ので、第1図、第2図はそれぞれセンサ10,1
0aの断面説明図、第3図は使用状態を示す説明
図、第4図はセンサ10,10aの埋設状態を示
す断面説明図、第5図は別のセンサ10bの断面
説明図である。 10,10a,10b……センサ、12,12
a,12b……本体、14……フランジ、16,
16a,16b……ベローズ、18……補助スプ
リング、20……ベローズ台、24……連通孔、
26……垂直溝、28……ネジ、30,30a…
…導入パイプ、32……モールド部、34……ス
トツパ、36,36a……コイル、38……コ
ア、40……フランジ、42……コンデンサ、4
4……キヤツプ、46……モールド、48……導
出チユーブ、50……コイルホルダ、52……ネ
ジ、54……カテーテル、56……レザーボワ、
56a,56b……連結チユーブ、58……発振
コイル、60……頭皮、62……頭蓋骨、64…
…凹陥部、70……ダイヤフラム、66……脳
室。
The drawings show an embodiment of the intracerebral manometer according to the present invention, and FIGS. 1 and 2 show sensors 10 and 1, respectively.
0a, FIG. 3 is an explanatory view showing the state of use, FIG. 4 is an explanatory cross-sectional view showing the embedded state of the sensors 10 and 10a, and FIG. 5 is an explanatory cross-sectional view of another sensor 10b. 10, 10a, 10b...sensor, 12, 12
a, 12b...main body, 14...flange, 16,
16a, 16b... bellows, 18... auxiliary spring, 20... bellows stand, 24... communicating hole,
26... Vertical groove, 28... Screw, 30, 30a...
...Introduction pipe, 32...Mold part, 34...Stopper, 36, 36a...Coil, 38...Core, 40...Flange, 42...Capacitor, 4
4...cap, 46...mold, 48...lead tube, 50...coil holder, 52...screw, 54...catheter, 56...reservoir,
56a, 56b... Connection tube, 58... Oscillation coil, 60... Scalp, 62... Skull, 64...
... recess, 70... diaphragm, 66... ventricle.

Claims (1)

【特許請求の範囲】 1 コイルとコンデンサとから成る無電源共振回
路を有し、頭皮下に埋設されて脳内圧の変化に対
応して上記コイルとコンデンサのインダクタンス
とキヤパシタンスの少なくとも一方が変化しうる
感圧部を設けたセンサと、このセンサの共振周波
数の変位を外部から計測するグリツドデイツプメ
ータとから成る脳内圧計。 2 コイルとコンデンサとから成る無電源共振回
路を有し、頭皮下に埋設されて脳内圧の変化に対
応して内部を真空にしたベローズの伸縮に伴つて
上記コイルとコンデンサのインダクタンスと、キ
ヤパシタンスの少なくとも一方が変化しうる感圧
部を設けたセンサと、この共振周波数の変位を外
部から計測するグリツドデイツプメータとから成
る脳内圧計。 3 コイルとコンデンサとから成る無電源共振回
路を有し、頭皮下に埋設されて脳内圧の変化に対
応して、ベローズが伸縮するのに伴いコアがコイ
ル内を進退してコイルのインダクタンスを変化す
る感圧部を設けたセンサと、この共振周波数の変
位を外部から計測するグリツドデイツプメータと
から成る脳内圧計。 4 コイルとコンデンサとから成る無電源共振回
路を有し、頭皮下に埋設されて脳内圧の変化に対
応して円柱部の下底部にフランジ部を有するハツ
ト形状のコアの円柱部がベローズの伸縮に伴つて
コイル内を進退してコイルのインダクタンスを変
化する感圧部を設けたセンサと、このセンサの共
振周波数の変位を外部から計測するグリツドデイ
ツプメータとから成る脳内圧計。 5 コイルとコンデンサとから成る無電源共振回
路を有し、頭皮下に埋設されて脳内圧の変化に対
応して上記コイルとコンデンサのインダクタンス
とキヤパシタンスの少なくとも一方が変化しうる
感圧部を設け、この感圧部を脳室から髄液を排出
するシヤント管路に介在せしめるようにしたセン
サと、このセンサの共振周波数の変位を外部から
計測するグリツドデイツプメータとから成る脳内
圧計。 6 コイルとコンデンサとから成る無電源共振回
路を有し、頭皮下に埋設されて脳膜を介して伝達
される脳内圧の変化に対応して上記コイルとコン
デンサのインダクタンスとキヤパシタンスの少な
くとも一方が変化しうる感圧部を設けたセンサ
と、このセンサの共振周波数の変位を外部から計
測するグリツドデイツプメータとから成る脳内圧
計。 7 コイルとコンデンサとから成る無電源共振回
路を有し、頭皮下に埋設されて脳内圧の変化に対
応して上記コイルとコンデンサのインダクタンス
とキヤパシタンスの少なくとも一方が変化しうる
感圧部を設けたセンサと、このセンサの共振周波
数の変位を外部から計測するグリツドデイツプメ
ータと、このグリツドデイツプメータの共振周波
数信号を標準周波数信号と合成する装置とから成
る脳内圧計。
[Claims] 1. A power-free resonant circuit consisting of a coil and a capacitor, which is buried under the scalp so that at least one of the inductance and capacitance of the coil and capacitor can change in response to changes in intracerebral pressure. An intracerebral manometer consisting of a sensor equipped with a pressure-sensitive section and a grid dipmeter that externally measures the displacement of the sensor's resonance frequency. 2 It has an unpowered resonant circuit consisting of a coil and a capacitor, and as the bellows, which is buried under the scalp and creates a vacuum inside in response to changes in intracerebral pressure, expands and contracts, the inductance and capacitance of the coil and capacitor change. An intracerebral manometer consisting of a sensor equipped with a pressure sensitive part, at least one of which can change, and a grid dipmeter that externally measures the displacement of this resonance frequency. 3 It has a power-free resonant circuit consisting of a coil and a capacitor, and is buried under the scalp, and as the bellows expands and contracts in response to changes in intracerebral pressure, the core advances and retreats within the coil, changing the inductance of the coil. This intracerebral manometer consists of a sensor equipped with a pressure-sensitive part, and a grid dipmeter that externally measures the displacement of this resonance frequency. 4 It has an unpowered resonant circuit consisting of a coil and a capacitor, and is buried under the scalp so that the cylindrical part of the hat-shaped core, which has a flange part at the bottom of the cylindrical part, expands and contracts like a bellows in response to changes in intracerebral pressure. This intracerebral manometer consists of a sensor equipped with a pressure-sensitive part that moves back and forth within the coil to change the inductance of the coil, and a grid dipmeter that externally measures the displacement of the sensor's resonance frequency. 5. A pressure-sensitive section is provided, which has a power-free resonant circuit consisting of a coil and a capacitor, and is buried under the scalp so that at least one of the inductance and capacitance of the coil and capacitor can change in response to changes in intracerebral pressure; This intracerebral manometer consists of a sensor in which this pressure-sensitive part is interposed in a shunt conduit that drains cerebrospinal fluid from the ventricle, and a grid depth meter that externally measures the displacement of the resonance frequency of this sensor. 6. It has an unpowered resonant circuit consisting of a coil and a capacitor, and at least one of the inductance and capacitance of the coil and capacitor changes in response to changes in intracerebral pressure that is buried under the scalp and transmitted through the brain membrane. This intracerebral manometer consists of a sensor equipped with a pressure-sensitive section that can be used to detect pressure, and a grid dipmeter that externally measures the displacement of the resonance frequency of this sensor. 7. It has a power-free resonant circuit consisting of a coil and a capacitor, and is provided with a pressure-sensitive part that is buried under the scalp and can change at least one of the inductance and capacitance of the coil and capacitor in response to changes in intracerebral pressure. An intracerebral manometer consisting of a sensor, a grid dipmeter that externally measures the displacement of the resonance frequency of the sensor, and a device that synthesizes the resonance frequency signal of the grid dipmeter with a standard frequency signal.
JP357879A 1979-01-16 1979-01-16 Cerebral internal pressure meter Granted JPS5596141A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP357879A JPS5596141A (en) 1979-01-16 1979-01-16 Cerebral internal pressure meter
DE19803000907 DE3000907C2 (en) 1979-01-16 1980-01-11 Intracranial pressure meter
DE19808000628 DE8000628U1 (en) 1979-01-16 1980-01-11 INTRACRANIAL PRESSURE GAUGE
FR8000849A FR2447021A1 (en) 1979-01-16 1980-01-15 DEVICE FOR MEASURING THE INTRACRANIAL PRESSURE OF A PATIENT

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP357879A JPS5596141A (en) 1979-01-16 1979-01-16 Cerebral internal pressure meter

Publications (2)

Publication Number Publication Date
JPS5596141A JPS5596141A (en) 1980-07-22
JPH0141330B2 true JPH0141330B2 (en) 1989-09-05

Family

ID=11561328

Family Applications (1)

Application Number Title Priority Date Filing Date
JP357879A Granted JPS5596141A (en) 1979-01-16 1979-01-16 Cerebral internal pressure meter

Country Status (3)

Country Link
JP (1) JPS5596141A (en)
DE (2) DE8000628U1 (en)
FR (1) FR2447021A1 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0060859A1 (en) * 1980-09-20 1982-09-29 Robert Bosch Gmbh Elektromechanical converter
JPS57177735A (en) * 1981-04-27 1982-11-01 Toyoda Chuo Kenkyusho Kk Telemeter type brain nanometer
EP0069073A1 (en) * 1981-07-01 1983-01-05 Microbo S.A. Force detecting device
FR2509047A1 (en) * 1981-07-06 1983-01-07 Microbo Sa Force-transducer measuring in six degrees of freedom - has spring-coupled discs forming non-inductive linear displacement sensor
JPS63115538A (en) * 1986-11-04 1988-05-20 株式会社日本エム・デイ・エム Endocranial pressure measuring apparatus and ventricle shunt for measuring endocranial pressure
JPS63122424A (en) * 1986-11-12 1988-05-26 株式会社日本エム・デイ・エム Endocranial compliance measuring apparatus and ventricle shunt for measuring endocranial compliance
JPH0346729Y2 (en) * 1987-04-06 1991-10-03
JPH0219713A (en) * 1988-07-07 1990-01-23 Nagano Keiki Seisakusho Ltd Displacement measuring instrument
JPH0219712A (en) * 1988-07-07 1990-01-23 Nagano Keiki Seisakusho Ltd Displacement measuring instrument
DE3928554A1 (en) * 1989-08-29 1991-03-14 Hellige Gmbh Fontanel-metric brain pressure measurer - places pressure sensor at precisely determined depth value w.r.t. untouched head cortex in fontanelle
US7059195B1 (en) * 2004-12-02 2006-06-13 Honeywell International Inc. Disposable and trimmable wireless pressure sensor for medical applications
DE102005020569B4 (en) * 2005-04-30 2010-08-05 Aesculap Ag Implantable device for detecting intracorporeal pressures
ITUB20160704A1 (en) * 2016-02-12 2017-08-12 Valtriani Massimiliano ELECTROMEDICAL DEVICE

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50152580A (en) * 1974-03-07 1975-12-08

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3958558A (en) * 1974-09-16 1976-05-25 Huntington Institute Of Applied Medical Research Implantable pressure transducer
FR2325351A1 (en) * 1975-05-23 1977-04-22 Pertuiset Bernard Pressure detector for measuring cerebral arterial pressure - has frequency modulator and supple ring containing inert gas closed at either end by bellows pieces
US4062354A (en) * 1975-07-01 1977-12-13 Taylor H Lyndon Intracranial pressure transducer system
US4127110A (en) * 1976-05-24 1978-11-28 Huntington Institute Of Applied Medical Research Implantable pressure transducer

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50152580A (en) * 1974-03-07 1975-12-08

Also Published As

Publication number Publication date
DE8000628U1 (en) 1985-05-30
JPS5596141A (en) 1980-07-22
DE3000907C2 (en) 1984-03-08
FR2447021A1 (en) 1980-08-14
FR2447021B1 (en) 1984-02-17
DE3000907A1 (en) 1980-07-17

Similar Documents

Publication Publication Date Title
US4127110A (en) Implantable pressure transducer
US4354506A (en) Intracranial pressure gauge
US4206761A (en) Pressure-balanced telemetric pressure sensing method
US4281666A (en) Single diaphragm pressure-balanced telemetric pressure sensing system
US20220202304A1 (en) Wireless intracranial monitoring system
US10687719B2 (en) Implantable shunt system and associated pressure sensors
US4653508A (en) Pressure-balanced telemetric pressure sensing system and method therefore
US4281667A (en) Single diaphragm telemetric differential pressure sensing system
US4206762A (en) Telemetric differential pressure sensing method
US4660568A (en) Telemetric differential pressure sensing system and method therefore
US4265252A (en) Intracranial pressure implant
JPH0141330B2 (en)
US3958558A (en) Implantable pressure transducer
US4593703A (en) Telemetric differential pressure sensor with the improvement of a conductive shorted loop tuning element and a resonant circuit
US7162926B1 (en) Lead embedded pressure sensor
US20220257136A1 (en) Wireless intracranial monitoring system
JPH0349452B2 (en)
US20130296721A1 (en) Hypertension System And Method
Rosengren et al. A system for passive implantable pressure sensors
Zervas et al. A pressure-balanced radio-telemetry system for the measurement of intracranial pressure: A preliminary design report
Ziaie et al. An implantable pressure sensor cuff for tonometric blood pressure measurement
EP3361938A1 (en) Wireless intracranial monitoring system
JPH0346729Y2 (en)
Walker et al. Intracranial pressure monitoring in neurosurgery
GB2043911A (en) Intracranial Pressure Gauge