JPH0141204B2 - - Google Patents

Info

Publication number
JPH0141204B2
JPH0141204B2 JP10872682A JP10872682A JPH0141204B2 JP H0141204 B2 JPH0141204 B2 JP H0141204B2 JP 10872682 A JP10872682 A JP 10872682A JP 10872682 A JP10872682 A JP 10872682A JP H0141204 B2 JPH0141204 B2 JP H0141204B2
Authority
JP
Japan
Prior art keywords
light
target
polarizing beam
beam splitter
axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP10872682A
Other languages
Japanese (ja)
Other versions
JPS58225302A (en
Inventor
Yutaka Ono
Eiji Ogita
Toshitsugu Ueda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP10872682A priority Critical patent/JPS58225302A/en
Publication of JPS58225302A publication Critical patent/JPS58225302A/en
Publication of JPH0141204B2 publication Critical patent/JPH0141204B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B2290/00Aspects of interferometers not specifically covered by any group under G01B9/02
    • G01B2290/70Using polarization in the interferometer

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Instruments For Measurement Of Length By Optical Means (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To achieve a three-dimensional measurement by measuring a two- dimensional mechanical quantity utilizing a specle pattern while the mechanical quantity is measured in the axial direction perpendicular to the two-dimensional axis using return light from a light diffusion surface and light from the light source. CONSTITUTION:Light from the light source 1 is expanded with a light expander BX and enters a first polarized beam splitter 21 as parallel light. Here, light having one vibration component is reflected to irradiate a target 3. Light reflected on the target 3 enters an X-axis light receiver 55 and a y-axis light receiver 56 passing through a first PBS21 to create specle patterns. The two-dimensional mechanical quantity of the target 3 is measured from the specle patterns created with these light receivers 55 and 56. The second PBS22 is set turned by 45 deg. with respect to the first PBS21 and the third and fourth PBSs 23 and 24 are set turned by 45 deg. with respect to the first and second PBSs 21 and 22. Thus, the displacement in the direction Z of the target 3 is measured from outputs of light detectors 51-54 respectively.

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、光の干渉を利用して変位量、変位速
度、振動数等の機械量を知るようにした光学式機
械量測定装置に関するものである。 本発明の目的は、被測定物体とは非接触で、そ
の3次元の各種機械量を高精度で測定することの
できる構造簡単な、この種の装置を実現しようと
するものである。 本発明に係る装置は、光源からの可干渉な光を
被測定機械量が与えられるターゲツトの光拡散面
に照射し、そこから得られるスペツクルパターン
を利用して2次元の機械量を測定し、また、光拡
散面からの戻り光と光源からの光をいくつかのビ
ームスプリツタを介して90゜ずつ位相のずれた3
又は4種の光信号とし、これらの光信号を演算す
ることによつてターゲツトの前記2次元の軸と直
交する軸方向の機械量を測定するようにした点に
構成上の特徴がある。 第1図は本発明に係る装置の一例を示す構成説
明図である。図において、1は光源で、例えば
HeNeレーザ光源が使用され、ここから可干渉な
光が出射される。11,12はレンズで、光源1
から出射した光を拡げて平行光とするビームエク
スパンダBXを構成している。21は第1の偏光
ビームスプリツタ(以下PBSと略す)、22は第
2のPBS、23は第3のPBS、24は第4の
PBSで、これらは入射する光ビームを2方向に
分割する。25は第1のPBS21を通つて入射
するターゲツト3からの戻り光を2方向に分割す
るビームスプリツタ(以下BSと略す)、26は第
1のBSからの光を更に2方向に分割する第2の
BSである。第2のPBS22は、第1のPBS21
に対してその光軸が45゜回転させて配置され、ま
た、第3及び第4のPBS23及び24は、第2
のPBSに対してその光軸が45゜回転させて配置さ
れている。31,32はそれぞれ焦点距離がf1
f2のレンズ、33はレンズ31,32の間であつ
て、レンズ31からf1、レンズ32からf2の距離
に設置した絞り板で、これには径がdの透孔が設
けられている。ターゲツト3は光の拡散面30を
有しており、レンズ32からl(lは0〜2f2程度
が好ましい)だけ離れて設置され、これには図示
するようにx,y,z方向の3次元の測定機械量
が与えられる。41,42は光経路変更用の固定
ミラーで、第1のPBSで分割された光源1から
の光ビームを第2のPBS22に入射させる。な
お、この固定ミラーに代えてプリズム等を使用す
るようにしてもよい。51,52,53,54は
それぞれ光検出器で、例えばホトトランジスタ、
ホトダイオード、光電池等が使用される。光検出
器51,52は、第3のPBS23で分割された
光をそれぞれ受光し、また、光検出器53,54
は第4のPBS24で分割された光を受光する。
55は第2のBS26で分割された一方の光を受
光するx軸受光器、56は他方の光を受光するy
軸受光器で、これらは多数個の受光素子をアレイ
状に配列して構成されるCCDなどのイメージセ
ンサが使用される。なお、各受光素子の配列方向
は互いに直交するように設置されている。61は
レンズ32とターゲツト3との間に設置したλ/
4板、62は第1のPBS21とミラー41との
間に設置したλ/4板である。 第2図は第1図装置において、電気的な回路を
示す構成ブロツク図である。この図において、7
1は光検出器51と光検出器52との出力信号の
差を得る差演算回路、72は光検出器53と光検
出器54との出力信号の差を得る差演算回路、8
1,82,83,84はそれぞれミキサ、50は
例えばCCDで構成されたイメージセンサ55,
56を駆動するクロツク発振器で、周波数fcのク
ロツク信号を出力している。73はミキサ81,
82を介して印加される各差演算回路71,72
からの信号を加算する加算器、85,86はそれ
ぞれ対応するミキサからの出力信号のなかの特定
な周波数信号を通過させるローパスフイルタ、9
1,92,93,94はカウンタ、90は各カウ
ンタからの計数信号を入力する演算回路で、この
演算回路としては、例えばマイクロプロセツサが
使用される。95は表示装置で、例えばCRTが
使用され、演算回路90での演算結果を表示す
る。 このように構成した装置の動作は次の通りであ
る。光源1から出射された波長λの光は、ビーム
エクスパンダBXで拡げられ、平行光となつて第
1のPBS21に入射する。ここで、入射光線と
入射面にたてた法線が作る入射面に垂直方向に振
動する光成分(S波)はここで反射し、レンズ3
1、絞り板33の透孔、レンズ32及びλ/4板
61を経て、ターゲツト3の拡散面30に平行光
となつて照射される。ターゲツト3の拡散面30
に照射された平行光は、この拡散面の凹凸によつ
てランダムな位相変調を受けて反射し、この反射
光は再びλ/4板61、レンズ32、絞り板33
の透孔、レンズ31を通つて戻り、第1のPBS
21に入射する。ここで、レンズ31、絞り板3
3、レンズ32は、スペツクルの純移動状態を実
現しここを通過する光の空間周波数を下げるロー
パスフイルタとして機能するものである。第1の
PBS21に再入射する光は入射面に対して、振
動方向が平行な光成分(P波)となつており、第
1のPBS21を通過する。ここを通過したター
ゲツト3の拡散面30からの戻り光は、第1の
BS25で2つに分かれ、一方は第2のPBS22
に入射し、他方は第2のBS26で更に2つに分
かれ、x軸受光器55及びy軸受光器56にそれ
ぞれ入射する。そして、これらの受光面にスペツ
クルパターンをつくる。 第3図は、x軸受光器55及びy軸受光器56
上に得られるスペツクルパターンの一例を示す図
である。この図において、スペツクルパターン
は、ターゲツト3が矢印x方向に移動したとき
は、x軸方向に移動し、ターゲツト4が矢印y方
向に移動したときは、y軸方向に移動する。x軸
受光器55は、この受光面に照射された第3図に
示すようなスペツクルパターンのx軸方向変位を
把える。また、y軸受光器56はこの受光面に照
射された第3図に示すようなスペツクルパターン
のy軸方向変位を把える。 ここで、レンズ31,32の距離がf1+f2であ
ることと、ターゲツト3に平面波が照射されるよ
うにすれば、所謂純移動状態となり、この状態で
は、各受光器55,56の受光面に得られるスペ
ツクルパターンの、平均的スペツクル径は、
(f1λ)/(πd)で与えられる。したがつて、レン
ズ31から各受光器55,56までの距離や、レ
ンズ32とターゲツト3との間の距離lは、純移
動状態とスペツクル径には無関係となる。 各受光器55,56は、一端にクロツク発振器
50から周波数fcのクロツク信号が印加されて駆
動されており、各受光器55,56からf0=fc
N(ただしNは受光器55,56のビツト数)を
基本周波数とする周波数信号fx、fyが出力され
る。 第4図は、各受光器55,56から得られる周
波数信号fx、fyの周波数スペクトルを示す説明図
である。この信号のパワースペクトルは、基本周
波数f0の整数倍の点でピークがあり、かつそのピ
ークは、各受光器の全巾の1/(整数)と、干渉
稿の間隔が等しいところが一番大きくなり、ター
ゲツト4の移動とともに、移動する。例えば、タ
ーゲツト4がx方向にXだけ移動すれば、受光器
71からの周波数信号fxの例えばm次高調波に相
当するピークPmは、その移動速度dX/dtに比例
したΔfnxだけ周波数シフトする。同じように、
ターゲツト4がy方向にYだけ移動すれば、受光
器72からの周波数信号fyのm次高調波に相当す
るピークPmは、その移動速度dY/dtに比例した
Δfnyだけ周波数シフトする。 第2図において、ミキサ83,84は、各受光
器から出力されるm次高調波Pmと、その近傍周
波数fRとをミキシング、すなわちヘテロダイン検
波し、各出力をローパスフイルタ85,86を介
することによつて、その出力端に次式を示すよう
な周波数信号f0x、f0yをそれぞれ得る。 f0x=mf0−fR±Δfnx f0y=mf0−fR±Δfny 各カウンタ93,94は、これらの周波数信号
をそれぞれ計数する。演算回路90は、各カウン
タ93,94からの信号f0x、f0yを入力し、所定
の演算、例えば積分演算することによつて、ター
ゲツト3の各矢印x,y方向の変位量X,Yを知
ることができる。またΔfny、Δfnyは、ターゲツ
ト3の移動方向に応じて、正、負に極性が変るこ
とから、移動方向の判別も同時にできる。 第1図に戻り、第1のPBS21を通つた光源
1からの光は、λ/4板62、ミラー41,42
を通つて第2のPBS22に入射し参照光となる。
また、第2のPBS22には、第1のBSを介して
ターゲツト3からの戻り光が入射している。 ここで、参照光の電界をER(ERsinωt+ER
cosωt)、ターゲツト3の反射面30からの戻り
光をETsin(ωt+とすれば、第3のPBS23に
入射する光の電界のベクトル図は、第5図イの実
線に示す通りとなり、また、第4のPBS24に
入射する光の電界のベクトル図は、第5図ロの実
線に示す通りとなる。ただし、ωは光の角周波
数、は2π/λ・Zで、λは波長、Zはターゲ
ツト3の光軸方向変位量である。 ターゲツト3からの戻り光は、第2のPBS2
2が、第1のPBS21に対して45゜回転して設置
してあるので電界は、
The present invention relates to an optical mechanical quantity measuring device that uses optical interference to determine mechanical quantities such as displacement amount, displacement speed, and vibration frequency. An object of the present invention is to realize this type of device with a simple structure that can measure various three-dimensional mechanical quantities of an object with high precision without contacting the object. The device according to the present invention irradiates coherent light from a light source onto a light diffusing surface of a target to which a mechanical quantity to be measured is applied, and measures a two-dimensional mechanical quantity using the speckle pattern obtained therefrom. In addition, the return light from the light diffusing surface and the light from the light source are separated by 90 degrees out of phase through several beam splitters.
The structure is characterized in that the mechanical quantity in the axial direction orthogonal to the two-dimensional axis of the target is measured by calculating four types of optical signals. FIG. 1 is a configuration explanatory diagram showing an example of a device according to the present invention. In the figure, 1 is a light source, for example
A HeNe laser light source is used, which emits coherent light. 11 and 12 are lenses, and light source 1
It constitutes a beam expander BX that expands the light emitted from the beam into parallel light. 21 is a first polarizing beam splitter (hereinafter abbreviated as PBS), 22 is a second PBS, 23 is a third PBS, and 24 is a fourth PBS.
In PBS, these split the incoming light beam into two directions. 25 is a beam splitter (hereinafter abbreviated as BS) that splits the return light from the target 3 that is incident through the first PBS 21 into two directions, and 26 is a beam splitter that splits the light from the first BS further into two directions. 2 of
It's BS. The second PBS 22 is the first PBS 21
The third and fourth PBSs 23 and 24 are arranged with their optical axes rotated by 45 degrees with respect to the second PBS 23 and 24.
The optical axis is rotated by 45° with respect to the PBS. 31 and 32 have focal lengths of f 1 and 32, respectively.
The f 2 lens 33 is a diaphragm plate installed between the lenses 31 and 32 at a distance of f 1 from the lens 31 and f 2 from the lens 32, and is provided with a through hole with a diameter of d. There is. The target 3 has a light diffusing surface 30, and is installed at a distance l (l is preferably about 0 to 2f2) from a lens 32, and has three directions in the x, y, and z directions as shown in the figure. A measured mechanical quantity of dimension is given. 41 and 42 are fixed mirrors for changing the optical path, and the light beam from the light source 1 divided by the first PBS is made to enter the second PBS 22. Note that a prism or the like may be used instead of this fixed mirror. 51, 52, 53, and 54 are photodetectors, for example, phototransistors,
Photodiodes, photovoltaic cells, etc. are used. The photodetectors 51 and 52 each receive the light divided by the third PBS 23, and the photodetectors 53 and 54
receives the divided light at the fourth PBS 24.
55 is an x-axis light receiver that receives one of the lights divided by the second BS 26, and 56 is a y-axis receiver that receives the other light.
These axial light receivers use image sensors such as CCDs, which are constructed by arranging a large number of light receiving elements in an array. Note that the arrangement directions of the respective light receiving elements are arranged so as to be orthogonal to each other. 61 is a λ/
The fourth plate 62 is a λ/4 plate installed between the first PBS 21 and the mirror 41. FIG. 2 is a block diagram showing an electrical circuit in the apparatus shown in FIG. In this figure, 7
1 is a difference calculation circuit that obtains the difference between the output signals of the photodetector 51 and the photodetector 52; 72 is a difference calculation circuit that obtains the difference between the output signals of the photodetector 53 and the photodetector 54; 8
1, 82, 83, and 84 are mixers, and 50 is an image sensor 55 composed of, for example, a CCD.
A clock oscillator driving the clock 56 outputs a clock signal of frequency fc. 73 is mixer 81,
Each difference calculation circuit 71, 72 is applied via 82.
adders 85 and 86 are low-pass filters that pass specific frequency signals in the output signals from the corresponding mixers;
1, 92, 93, and 94 are counters, and 90 is an arithmetic circuit into which count signals from each counter are input. As this arithmetic circuit, for example, a microprocessor is used. Reference numeral 95 denotes a display device, for example, a CRT, which displays the calculation results of the calculation circuit 90. The operation of the device configured as described above is as follows. Light with a wavelength λ emitted from the light source 1 is expanded by the beam expander BX, becomes parallel light, and enters the first PBS 21. Here, the light component (S wave) that vibrates in the direction perpendicular to the incident surface created by the incident light ray and the normal line to the incident surface is reflected here, and the lens 3
1. Parallel light is irradiated onto the diffusing surface 30 of the target 3 through the through hole of the aperture plate 33, the lens 32, and the λ/4 plate 61. Diffusion surface 30 of target 3
The parallel light irradiated onto the surface undergoes random phase modulation and is reflected by the unevenness of this diffusing surface, and this reflected light is reflected again by the λ/4 plate 61, the lens 32, and the diaphragm plate 33.
through the hole, returning through the lens 31 to the first PBS
21. Here, the lens 31, the aperture plate 3
3. The lens 32 functions as a low-pass filter that realizes a state of pure speckle movement and lowers the spatial frequency of light passing through it. first
The light re-entering the PBS 21 is a light component (P wave) whose vibration direction is parallel to the plane of incidence, and passes through the first PBS 21 . The return light from the diffusion surface 30 of the target 3 that has passed through this point is reflected by the first
Divided into two at BS25, one is the second PBS22
The other beam is further divided into two at the second BS 26, and is incident on the x-axis photodetector 55 and the y-axis photodetector 56, respectively. A speckle pattern is then created on these light-receiving surfaces. FIG. 3 shows an x-axis light receiver 55 and a y-axis light receiver 56.
FIG. 3 is a diagram showing an example of a speckle pattern obtained above. In this figure, the speckle pattern moves in the x-axis direction when target 3 moves in the direction of arrow x, and moves in the y-axis direction when target 4 moves in the direction of arrow y. The x-axis light receiver 55 detects the displacement in the x-axis direction of the speckle pattern shown in FIG. 3 irradiated onto this light-receiving surface. Further, the y-axis light receiver 56 detects the displacement in the y-axis direction of the speckle pattern shown in FIG. 3 irradiated onto this light-receiving surface. Here, if the distance between the lenses 31 and 32 is f 1 + f 2 and the target 3 is irradiated with a plane wave, a so-called pure movement state will occur, and in this state, the light received by each of the light receivers 55 and 56 will be The average speckle diameter of the speckle pattern obtained on the surface is
It is given by (f 1 λ)/(πd). Therefore, the distance from the lens 31 to each of the light receivers 55, 56 and the distance l between the lens 32 and the target 3 are independent of the pure movement state and the speckle diameter. Each of the light receivers 55 and 56 is driven by applying a clock signal of frequency fc from the clock oscillator 50 to one end, and from each of the light receivers 55 and 56 f 0 =f c /
Frequency signals f x and f y whose fundamental frequency is N (where N is the number of bits of the light receivers 55 and 56) are output. FIG. 4 is an explanatory diagram showing the frequency spectra of the frequency signals f x and f y obtained from each of the light receivers 55 and 56. The power spectrum of this signal has a peak at a point that is an integer multiple of the fundamental frequency f 0 , and the peak is greatest where the distance between the interference frames is equal to 1/(integer) of the total width of each photoreceiver. and moves as target 4 moves. For example, if the target 4 moves by X in the x direction, the peak Pm corresponding to, for example, the m -th harmonic of the frequency signal f do. In the same way,
When the target 4 moves by Y in the y direction, the peak Pm corresponding to the m-th harmonic of the frequency signal fy from the light receiver 72 shifts in frequency by Δfny proportional to the moving speed dY/dt. In FIG. 2, mixers 83 and 84 mix, or heterodyne detect, the m-th harmonic Pm output from each light receiver and its neighboring frequency f R , and pass each output through low-pass filters 85 and 86. As a result, frequency signals f 0x and f 0y as shown in the following equations are obtained at the output terminals, respectively. f 0x = mf 0 −f R ±Δf nx f 0y = mf 0 −f R ±Δf ny Each of the counters 93 and 94 counts these frequency signals, respectively. The arithmetic circuit 90 inputs the signals f 0x and f 0y from the counters 93 and 94 and calculates the displacement amount X, Y of the target 3 in the directions of the arrows x and y by performing a predetermined calculation, for example, an integral calculation. You can know. Furthermore, since the polarities of Δf ny and Δf ny change between positive and negative depending on the moving direction of the target 3, the moving direction can also be determined at the same time. Returning to FIG. 1, the light from the light source 1 that has passed through the first PBS 21 passes through the λ/4 plate 62, the mirrors 41, 42
It enters the second PBS 22 through the beam and becomes a reference beam.
Further, the return light from the target 3 is incident on the second PBS 22 via the first BS. Here, the electric field of the reference light is E R (E R sinωt+E R
cosωt), and the return light from the reflective surface 30 of the target 3 is E T sin(ωt+), then the vector diagram of the electric field of the light incident on the third PBS 23 is as shown by the solid line in Figure 5A, and , the vector diagram of the electric field of the light incident on the fourth PBS 24 is as shown by the solid line in Figure 5 (b). However, ω is the angular frequency of the light, is 2π/λ・Z, and λ is the wavelength, Z is the displacement amount of the target 3 in the optical axis direction.The return light from the target 3 is transmitted to the second PBS2.
2 is rotated by 45 degrees with respect to the first PBS 21, so the electric field is

【式】となる。更に、第2の PBS22に対してそれぞれ45゜回転する第3、第
4のPBS23,24を通つて、各光検出器51,
52,53,54に入射する光の電界は、それぞ
れ第5図イ,ロの破線に示す通りとなる。 したがつて、各光検出器51〜54で検出され
る光パワーをPD1〜PD4とすれば、これらは(1)〜
(4)式でそれぞれ表わすことができる。 (1)〜(4)式において、
[Formula] becomes. Further, each photodetector 51,
The electric fields of the light incident on 52, 53, and 54 are as shown by the broken lines in FIG. 5A and 5B, respectively. Therefore, if the optical power detected by each photodetector 51 to 54 is PD 1 to PD 4 , these are (1) to
Each can be expressed by equation (4). In equations (1) to (4),

【式】 とおくと、(1)〜(4)式はそれぞれ90゜ずつ位相のず
れた(5)〜(8)式で表わされる信号となる。 PD1=A+Bcos ……(5) PD2=A−Bcos ……(6) PD3=A−Bsin ……(7) PD4=A+Bsin ……(8) 第2図に示す回路において、差演算回路71は
光検出器51,52からの(5)式、(6)式で表わされ
る各信号を入力し、両信号の差を演算することに
よつてその出力端に、2Bcosなる信号を出力す
る。同じように、差演算回路72は、(7)式、(8)式
で表わされる各信号を入力し、両信号の差を演算
することによつてその出力端に、−2Bsinなる信
号を出力する。加算回路73は、それぞれミキサ
81,82を通つて印加される各信号を加算する
ことによつて、その出力端に、2Bsin(ωct−)
なる周波数信号を得る。ここでωcは、ミキサ8
1,82に加するキヤリア信号のキヤリア周波数
を示す。カウンタ91は、加算回路73からの周
波数信号を計数し、また、カウンタ92はキヤリ
ア信号の周波数を計数する。演算回路90は、各
カウンタ91,92からの計数値の差を演算する
ことによつて、ターゲツト3の矢印z方向の変位
量に対応する位相量=2π/λ・Zを求めることが できる。 なお、各光検出器51〜54からの出力信号の
演算処理回路としては、第2図のブロツク図以外
の他の回路を用いてもよい。 また、第2図において、光検出器52を省略し
て3個の光検出器とし、この部分の回路として、
第6図に示すような演算処理回路を用いるように
してもよい。 すなわち、第6図において第2図と異なる点
は、光検出器51,53からの(5)式、(7)式で表わ
される信号の差を演算することによつて√2
Bsin(+π/4)なる信号を得、また、光検出
器51,54からの(5)式、(8)式で表わされる信号
の差を演算することによつて、−√2Bsin(−
π/4)なる信号を得るようにし、位相差量を
演算するようにしたものである。 なお、上記の実施例において、ターゲツト3の
拡散面30に、再帰性反射物を貼布するように
し、検出感度を増大させるようにしてもよい。ま
た、ここでは、受光器55,56として、CCD
のようなイメージセンサを用いることを想定した
が、これらに空間フイルタを組合せたようなパタ
ーン検出器を用いてもよい。また、ここではター
ゲツト3のx,y,z方向の変位量や移動速度を
測定する場合を説明したが、ターゲツト3の振動
数や回転数あるいは形状変化等、各種の3次元の
機械量を測定することができる。 以上説明したように、本発明に係る装置によれ
ば、被測定機械量が与えられるターゲツトとは非
接触で、このターゲツトの3次元の変位量など各
種機械量を高分解能で測定することができる。
[Equation] Then, Equations (1) to (4) become signals expressed by Equations (5) to (8), each having a phase shift of 90°. PD 1 = A + Bcos ... (5) PD 2 = A - Bcos ... (6) PD 3 = A - Bsin ... (7) PD 4 = A + Bsin ... (8) In the circuit shown in Figure 2, difference calculation The circuit 71 inputs the signals expressed by equations (5) and (6) from the photodetectors 51 and 52, calculates the difference between the two signals, and outputs a signal of 2Bcos at its output terminal. do. Similarly, the difference calculation circuit 72 inputs each signal expressed by equations (7) and (8), calculates the difference between both signals, and outputs a signal −2Bsin at its output terminal. do. The adder circuit 73 adds 2Bsin(ωct-) to its output terminal by adding the signals applied through the mixers 81 and 82, respectively.
Obtain a frequency signal of Here ωc is mixer 8
The carrier frequency of the carrier signal added to 1 and 82 is shown. Counter 91 counts the frequency signal from addition circuit 73, and counter 92 counts the frequency of the carrier signal. By calculating the difference between the count values from each counter 91 and 92, the calculation circuit 90 can determine the phase amount = 2π/λ·Z corresponding to the displacement amount of the target 3 in the direction of the arrow z. Note that as the arithmetic processing circuit for the output signals from each of the photodetectors 51 to 54, a circuit other than the one shown in the block diagram of FIG. 2 may be used. In addition, in FIG. 2, the photodetector 52 is omitted and there are three photodetectors, and the circuit of this part is as follows.
An arithmetic processing circuit as shown in FIG. 6 may also be used. That is, the difference between FIG. 6 and FIG. 2 is that by calculating the difference between the signals expressed by equations (5) and (7) from the photodetectors 51 and 53,
By obtaining a signal Bsin(+π/4) and calculating the difference between the signals expressed by equations (5) and (8) from the photodetectors 51 and 54, −√2Bsin(−
π/4) is obtained, and the amount of phase difference is calculated. In the above embodiment, a retroreflective material may be attached to the diffusion surface 30 of the target 3 to increase the detection sensitivity. In addition, here, as the light receivers 55 and 56, CCD
Although it is assumed that an image sensor such as the above is used, a pattern detector such as a combination of these and a spatial filter may also be used. In addition, although we have explained here the case of measuring the displacement amount and movement speed of the target 3 in the x, y, and z directions, it is also possible to measure various three-dimensional mechanical quantities such as the vibration frequency, rotation speed, or shape change of the target 3. can do. As explained above, according to the device according to the present invention, various mechanical quantities such as three-dimensional displacement of a target can be measured with high resolution without contacting the target to which the mechanical quantity to be measured is given. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る装置の一例を示す構成説
明図、第2図は電気的な回路を示す構成ブロツク
図、第3図はx軸受光器(y軸受光器)の受光面
につくられるスペツクルパターンの一例を示す説
明図、第4図はx軸受光器(y軸受光器)から得
られる信号の周波数スペクトルを示す説明図、第
5図は第3、第4のPBSに入射する光及び各光
検出器に入射する光の電界を示す説明図、第6図
は電気回路の他の一例を示す要部構成ブロツク図
である。 1……光源、21〜24……偏光ビームスプリ
ツタ、11,12,31,32……レンズ、33
……絞り板、3……ターゲツト、30……拡散
面、41,42……ミラー、51〜54……光検
出器、55,56……受光器、61,62……
λ/4板。
FIG. 1 is a configuration explanatory diagram showing an example of the device according to the present invention, FIG. 2 is a configuration block diagram showing an electrical circuit, and FIG. 3 is a configuration diagram showing an example of a device according to the present invention. Figure 4 is an explanatory diagram showing an example of the speckle pattern obtained. Figure 4 is an explanatory diagram showing the frequency spectrum of the signal obtained from the x-axis optical receiver (y-axis optical receiver). Figure 5 is an explanatory diagram showing the frequency spectrum of the signal obtained from the x-axis optical receiver (y-axis optical receiver). FIG. 6 is an explanatory diagram showing the electric field of the light incident on each photodetector and the electric field of the light incident on each photodetector. FIG. 6 is a block diagram showing the main part configuration of another example of the electric circuit. 1... Light source, 21-24... Polarizing beam splitter, 11, 12, 31, 32... Lens, 33
... Aperture plate, 3 ... Target, 30 ... Diffusion surface, 41, 42 ... Mirror, 51 to 54 ... Photodetector, 55, 56 ... Light receiver, 61, 62 ...
λ/4 plate.

Claims (1)

【特許請求の範囲】 1 可干渉な光を出射する光源1と、 x,y,z軸方向の被測定機械量が与えられる
ターゲツト3と、 前記光源からの光を2方向に分割する第1の偏
光ビームスプリツタ21と、 この偏光ビームスプリツタで分割された一方の
光をλ/4板61を介して前記ターゲツトに照射
すると共に、ターゲツトからの戻り光を前記λ/
4板を介して前記第1の偏光ビームスプリツタ2
1に導く光学系と、 前記第1の偏光ビームスプリツタを通過した前
記ターゲツトからの戻り光を2方向に分割する第
1の光分割手段25と、 この第1の光分割手段で分割された一方の光を
さらに2方向に分割する第2の光分割手段26
と、 第2の光分割手段で分割された各光を受光し、
各受光面に得られるスペツクルパターンのx軸方
向及びy軸方向の移動を検出するx軸受光手段5
5及びy軸受光手段56と、 前記第1の光分割手段25で分割された他方の
光が導かれる第2の偏光ビームスプリツタ22
と、 前記第1の偏光ビームスプリツタで分割された
他方の光をλ/4板62を介して、前記第2の偏
光ビームスプリツタ22に導く光学系と、 前記第2の偏光ビームスプリツタ22で分割さ
れた各光をそれぞれさらに2方向に分割する第
3、第4の偏光ビームスプリツタ23,24と、 前記第3、第4の偏光ビームスプリツタ23,
24で分割された各光をそれぞれ受光する光検出
手段51〜54と、 前記光検出手段51〜54からの信号を入力
し、差演算を含む所定の演算を行なうことにより
各光信号の位相差量φを求め、これから前記ター
ゲツトのz軸方向の移動量を求める演算手段と を備えた光学式機械量測定装置。
[Scope of Claims] 1. A light source 1 that emits coherent light; a target 3 to which mechanical quantities to be measured in the x, y, and z-axis directions are given; and a first target that divides the light from the light source into two directions. A polarizing beam splitter 21 irradiates one of the lights split by this polarizing beam splitter to the target via a λ/4 plate 61, and returns light from the target to the λ/4 plate.
the first polarizing beam splitter 2 through four plates;
1; a first light splitting means 25 for splitting the return light from the target that has passed through the first polarizing beam splitter into two directions; A second light splitting means 26 that further splits one light into two directions.
and receiving each light split by the second light splitting means,
The x-axis light receiving means 5 detects the movement of the speckle pattern obtained on each light receiving surface in the x-axis direction and the y-axis direction.
5 and y-axis light receiving means 56, and a second polarizing beam splitter 22 to which the other light split by the first light splitting means 25 is guided.
and an optical system that guides the other light split by the first polarizing beam splitter to the second polarizing beam splitter 22 via the λ/4 plate 62, and the second polarizing beam splitter. third and fourth polarizing beam splitters 23 and 24 that further split each of the lights split by 22 into two directions; the third and fourth polarizing beam splitters 23,
The phase difference of each optical signal is determined by inputting the signals from the light detecting means 51 to 54 and performing predetermined calculations including difference calculations. An optical mechanical quantity measuring device, comprising: calculating means for determining the amount φ, and calculating from this the amount of movement of the target in the z-axis direction.
JP10872682A 1982-06-24 1982-06-24 Optical type mechanical quantity measuring apparatus Granted JPS58225302A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10872682A JPS58225302A (en) 1982-06-24 1982-06-24 Optical type mechanical quantity measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10872682A JPS58225302A (en) 1982-06-24 1982-06-24 Optical type mechanical quantity measuring apparatus

Publications (2)

Publication Number Publication Date
JPS58225302A JPS58225302A (en) 1983-12-27
JPH0141204B2 true JPH0141204B2 (en) 1989-09-04

Family

ID=14491986

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10872682A Granted JPS58225302A (en) 1982-06-24 1982-06-24 Optical type mechanical quantity measuring apparatus

Country Status (1)

Country Link
JP (1) JPS58225302A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2704987B2 (en) * 1988-02-17 1998-01-26 国際電信電話 株式会社 Polarization diversity optical receiving system
JP5260261B2 (en) * 2008-12-25 2013-08-14 株式会社雄島試作研究所 Polarization separation interferometer and polarization separation interferometer type length measuring device

Also Published As

Publication number Publication date
JPS58225302A (en) 1983-12-27

Similar Documents

Publication Publication Date Title
US7193720B2 (en) Optical vibration imager
US20050030520A1 (en) Velocimeter, displacement meter, vibrometer and electronic device
US4512661A (en) Dual differential interferometer
JP2007285898A (en) Laser vibrometer
KR101910084B1 (en) A novel optical device outputting two parallel beams and an interferometer using the optical device
KR102007004B1 (en) Apparatus for measuring three dimensional shape
RU2458352C2 (en) Detector and method of determining speed
US6654121B1 (en) Apparatus and method for detecting polarization
JPH0141204B2 (en)
JPH0375041B2 (en)
JPH045122B2 (en)
JP2002116005A (en) Laser-interferometer type displacement gauge
JPH0141205B2 (en)
JPH026002B2 (en)
JPH0134082Y2 (en)
JPS6355035B2 (en)
JPH0326321B2 (en)
JPS58225301A (en) Optical type displacement measuring apparatus
JPH01142401A (en) Optical displacement measuring apparatus
JPH04155260A (en) Rotational speed measuring apparatus
JP2866784B2 (en) Vibration detection method
JP2900052B2 (en) Micro displacement meter
JPH0712545A (en) Interatomic-force-microscope detection apparatus by differential heterodyne interferometer using optical-fiber array
WO2017155244A1 (en) Tilt measurement sensor using interferometer
JPH06221853A (en) Position detector