JPH0140763B2 - - Google Patents

Info

Publication number
JPH0140763B2
JPH0140763B2 JP59183734A JP18373484A JPH0140763B2 JP H0140763 B2 JPH0140763 B2 JP H0140763B2 JP 59183734 A JP59183734 A JP 59183734A JP 18373484 A JP18373484 A JP 18373484A JP H0140763 B2 JPH0140763 B2 JP H0140763B2
Authority
JP
Japan
Prior art keywords
graphite
temperature
heat treatment
cyanoacetylene
minutes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP59183734A
Other languages
Japanese (ja)
Other versions
JPS6163512A (en
Inventor
Teruichiro Matsumura
Akio Takahashi
Jun Tsukamoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP59183734A priority Critical patent/JPS6163512A/en
Publication of JPS6163512A publication Critical patent/JPS6163512A/en
Publication of JPH0140763B2 publication Critical patent/JPH0140763B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Conductive Materials (AREA)
  • Ceramic Products (AREA)
  • Carbon And Carbon Compounds (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は高導電性グラフアイトの製造方法に関
する。 炭素材料はその耐腐蝕性、耐熱性が高いことか
らきわめて多岐にわたる分野おいて利用されてい
る。すなわち導電性材料、電極、発熱体、るつ
ぼ、ボート、ダイス、接点、熱交換器、減速材、
反射材、核燃料さや、核燃料被覆材、ロケツトノ
ズル、ノーズコーン、生体用カーボン、X線デフ
ラクトメータおよびその他の応用分野が挙げられ
る。本発明により、これら応用分野において利用
される高結晶性のグラフアイト組成物の製造方法
が提案される。 (従来の技術) 従来これらの産業分野において利用される高結
晶性グラフアイト素材はメタン、エタン、プロパ
ン、ベンゼン等の脂肪族、または芳香族炭化水素
を3000℃を越える温度で、場合によつては加圧で
熱分解、熱処理されて合成されていた。このよう
にきわめて多くのエネルギーを消費するプロセス
ではあるが、得られるグラフアイトの結晶性は必
ずしも充分ではなく、より高い結晶性グラフアイ
トをより低温で合成する方法が望まれていた。 (発明が解決しようとする問題点) 本発明はこれらの従来技術の欠点である、高価
な高温のエネルギーを多量に要する問題点を解決
するとともに、より高い結晶性を持ち、したがつ
てより高い品位のグラフアイトを合成する方法を
提供しようとするものである。 (問題点を解決するための手段) 本発明はかかる問題点を解決するために以下の
構成を有するものである。 すなわち、シアノ基を含むアセチレン系化合物
を800℃以上1600℃未満の温度で反応させ、つい
で不活性雰囲気中で2500℃以上の温度で熱処理す
ることを特徴とする高導電性グラフアイトの製造
方法。 本発明の方法においてはシアノ基を含むアセチ
レン系化合物を原料とするグラフアイトおよびそ
の製造方法が提供される。本発明において提案さ
れるシアノ基とアセチレン基とを含む原料を用い
ることにより、これまでの方法に比較してより低
温でより高結晶性のグラフアイトが合成される。
シアノ基を含むアセチレン系化合物としてはシア
ノアセチレン、ジシアノアセチレン等のシアノ基
とアセチレン基とを分子内に含む炭素数6以下の
炭化水素であり、特にシアノアセチレン、ジシア
ノアセチレンが適している。これらの炭化水素は
単独で用いてもよく、また2種以上混合して用い
てもよく、さらに窒素、ヘリウム、アルゴン等の
不活性ガス、水素、ならびに他の炭化水素ガスと
混合して用いてもよい。不活性ガスで希釈して用
いる場合はシアノ基を含むアセチレン化合物の濃
度は通常3〜40%、好ましくは10〜30%程度に希
釈しておくことが出来る。 これらの原料を含有するガスは先ず800℃以上
1600℃未満の温度で熱分解され、ついで2500℃以
上の温度で熱処理される。原料成分の熱分解と、
熱分解によつて得られる熱分解炭素の熱処理とを
分けて実行することが必要であり、これを1段で
行なうことは熱経済上好ましくないのみならず、
結晶性の低いグラフアイトしか得られない。 反応時間は種々の条件により異なるが、1000℃
程度の温度で20秒程度で充分である。しかしこれ
以上の時間でもこれ以下の時間でももちろん良
い。反応後の熱処理の時間も種々の条件により異
なるが、一般に10分以上60分程度の時間が選択さ
れる。しかしこれ以上の時間でも、これ以下の時
間でももちろん良い。熱処理はアルゴン等の不活
性ガスの雰囲気の中で実行される。通常熱処理は
常圧で行なわれるが、加圧で行なうことも可能で
ある。 原料シアノアセチレン化合物の熱分解および熱
処理時の加熱は誘導加熱法、抵抗加熱法ともに用
いることが出来る。また熱分解炭素を沈着させる
ために基盤を利用する場合にはこの基盤に直接通
電し加熱することも可能である。 また本発明の方法で得られる高結晶性グラフア
イトに種々の化合物をインターカレイシヨンし電
導度を向上させることが出来ることは言うまでも
ない。 (実施例) 実施例 1 東レ社製炭素繊維M−40をアルゴン雰囲気で15
mm径、45cmの石英製反応管にセツトしこれに通電
し、種々の温度に加熱し、シアノアセチレンを分
圧1mmHgで導入し、炭素を炭素繊維の上に沈積
させた。反応時間は60分であつた。 このようにして得た繊維をアルゴン気流中で
3000℃の温度で30分間熱処理した後、電導度を測
定した。電導度は試料のグラフアイト化率(結晶
化率)を反映するので電導度を測定することによ
りグラフアイト化の程度を推定することが出来
る。
(Industrial Application Field) The present invention relates to a method for producing highly conductive graphite. Carbon materials are used in a wide variety of fields because of their high corrosion resistance and heat resistance. Namely conductive materials, electrodes, heating elements, crucibles, boats, dies, contacts, heat exchangers, moderators,
Examples include reflectors, nuclear fuel sheaths, nuclear fuel cladding, rocket nozzles, nose cones, biological carbon, X-ray defractometers and other applications. According to the present invention, a method for producing a highly crystalline graphite composition used in these application fields is proposed. (Prior Art) Highly crystalline graphite materials conventionally used in these industrial fields are made by processing aliphatic or aromatic hydrocarbons such as methane, ethane, propane, and benzene at temperatures exceeding 3000°C in some cases. was synthesized by thermal decomposition and heat treatment under pressure. Although this is a process that consumes an extremely large amount of energy, the crystallinity of the graphite obtained is not necessarily sufficient, and a method of synthesizing graphite with higher crystallinity at a lower temperature has been desired. (Problems to be Solved by the Invention) The present invention solves the disadvantages of these conventional techniques, which require a large amount of expensive, high-temperature energy, and also has higher crystallinity and therefore higher The purpose is to provide a method for synthesizing high-quality graphite. (Means for Solving the Problems) The present invention has the following configuration in order to solve the problems. That is, a method for producing highly conductive graphite, which comprises reacting an acetylene compound containing a cyano group at a temperature of 800°C or higher and lower than 1,600°C, and then heat-treating it at a temperature of 2,500°C or higher in an inert atmosphere. The method of the present invention provides graphite using an acetylene compound containing a cyano group as a raw material and a method for producing the graphite. By using the raw material containing cyano groups and acetylene groups proposed in the present invention, graphite with higher crystallinity can be synthesized at a lower temperature than in conventional methods.
The acetylene compound containing a cyano group is a hydrocarbon having 6 or less carbon atoms and containing a cyano group and an acetylene group in the molecule, such as cyanoacetylene and dicyanoacetylene, and cyanoacetylene and dicyanoacetylene are particularly suitable. These hydrocarbons may be used alone or in a mixture of two or more, and may be used in combination with an inert gas such as nitrogen, helium, or argon, hydrogen, or other hydrocarbon gas. Good too. When used diluted with an inert gas, the concentration of the acetylene compound containing a cyano group can be usually diluted to about 3 to 40%, preferably about 10 to 30%. The gas containing these raw materials is first heated to over 800℃.
It is pyrolyzed at temperatures below 1600°C and then heat treated at temperatures above 2500°C. Pyrolysis of raw material components,
It is necessary to carry out the heat treatment of the pyrolytic carbon obtained by pyrolysis separately, and carrying out this in one stage is not only unfavorable from a thermoeconomic point of view, but also
Only graphite with low crystallinity can be obtained. Reaction time varies depending on various conditions, but at 1000℃
Approximately 20 seconds at a certain temperature is sufficient. However, it is of course possible to take more or less time than this. The time for heat treatment after the reaction also varies depending on various conditions, but generally a time of 10 minutes or more and about 60 minutes is selected. However, it is of course possible to take more or less time than this. The heat treatment is performed in an atmosphere of an inert gas such as argon. The heat treatment is usually carried out under normal pressure, but it can also be carried out under increased pressure. For heating during thermal decomposition and heat treatment of the raw material cyanoacetylene compound, both an induction heating method and a resistance heating method can be used. Furthermore, when a substrate is used to deposit pyrolytic carbon, it is also possible to heat the substrate by directly applying electricity to it. It goes without saying that various compounds can be intercalated with the highly crystalline graphite obtained by the method of the present invention to improve its electrical conductivity. (Example) Example 1 Carbon fiber M-40 manufactured by Toray Industries, Ltd. was heated for 15 minutes in an argon atmosphere.
It was set in a quartz reaction tube with a diameter of 45 cm, which was energized and heated to various temperatures, and cyanoacetylene was introduced at a partial pressure of 1 mmHg to deposit carbon onto the carbon fibers. The reaction time was 60 minutes. The fibers thus obtained were placed in an argon stream.
After heat treatment at a temperature of 3000°C for 30 minutes, the conductivity was measured. Since the electrical conductivity reflects the graphitization rate (crystallization rate) of the sample, the degree of graphitization can be estimated by measuring the electrical conductivity.

【表】 表1の如く、シアノアセチレンの熱分解温度が
1600℃を越えると生成するグラフアイトの電導度
が低下する。したがつて結晶性の高いグラフアイ
トをシアノアセチレンから合成するためには熱分
解温度が1600℃以下であることが好ましい。また
電導度は熱分解温度が800℃以下の場合も低い。 実施例 2 実施例1において1400℃で熱分解して得た試料
を種々の温度でアルゴン中で30分熱処理した。 このようにして得た試料を理学電気製RU200
ロータフレツクス強力X線発生装置 マイクロデフラクトメータ MDG2193D ゴニオメータを用い、透過法によりCu−Kα線
によりX線回折をおこなつた。この結果を用い、
(0、0、4)回折線から得られるグラフアイト
構造の面間隔を表2に示す。
[Table] As shown in Table 1, the thermal decomposition temperature of cyanoacetylene is
When the temperature exceeds 1600℃, the electrical conductivity of the graphite produced decreases. Therefore, in order to synthesize highly crystalline graphite from cyanoacetylene, the thermal decomposition temperature is preferably 1600°C or lower. The conductivity is also low when the thermal decomposition temperature is below 800°C. Example 2 The samples obtained by thermal decomposition at 1400° C. in Example 1 were heat treated in argon at various temperatures for 30 minutes. The sample obtained in this way was
X-ray diffraction was performed using Cu-Kα rays using a Rotorflex high-intensity X-ray generator micro-defractometer MDG2193D goniometer using the transmission method. Using this result,
Table 2 shows the interplanar spacing of the graphite structure obtained from the (0, 0, 4) diffraction line.

【表】 熱処理温度が2000℃ではグラフアイトの面間隔
は1.7Å以上であるが、熱処理温度が2500℃以上
では面間隔は1.7Å未満となりグラフアイト構造
が良く発達することが分かる。 この様に本発明の方法である、シアノアセチレ
ンを原料として、2段法によりグラフアイトを合
成するとより低温で高グラフアイト化率の生成物
が得られる。熱処理温度が2000℃では高グラフア
イト化率の試料にのみ観察される(101)ピーク
と(100)ピークとの分離および(102)ピークの
生成は認められないが、熱処理温度が2500℃を越
えると、これらのピークが観察される。 実施例 3 実施例1の方法により、1200℃でシアノアセチ
レンおよびベンゼンを熱分解して得た試料を種々
の温度でアルゴン中で5分熱処理しグラフアイト
を得た。 レーザーラマンマイクロプローブにより、5145
Åのレーザーを用いラマンスペクトルを測定し
た。ラマンスペクトルにはグラフアイトに基づく
1580cm-1のピーク(A)と非晶質の炭素による1350cm
-1のピーク(B)が観察される。これらピークの比
B/Aを表3に示す。これはグラフアイト化率を
示すものである。
[Table] When the heat treatment temperature is 2000°C, the interplanar spacing of graphite is 1.7 Å or more, but when the heat treatment temperature is 2500°C or higher, the interplanar spacing becomes less than 1.7 Å, indicating that the graphite structure is well developed. As described above, when graphite is synthesized by the two-stage method using cyanoacetylene as a raw material according to the method of the present invention, a product with a high graphite conversion rate can be obtained at a lower temperature. When the heat treatment temperature is 2000℃, separation of the (101) and (100) peaks and the formation of the (102) peak, which are observed only in samples with a high graphitization rate, are not observed, but when the heat treatment temperature exceeds 2500℃ and these peaks are observed. Example 3 According to the method of Example 1, samples obtained by thermally decomposing cyanoacetylene and benzene at 1200°C were heat treated in argon at various temperatures for 5 minutes to obtain graphite. 5145 by laser Raman microprobe
Raman spectra were measured using a laser with a wavelength of . Raman spectra are based on graphite.
Peak (A) at 1580 cm -1 and 1350 cm due to amorphous carbon
-1 peak (B) is observed. The ratio B/A of these peaks is shown in Table 3. This indicates the graphite conversion rate.

【表】【table】

【表】 この様にシアノアセチレンを原料として利用す
る場合は、熱処理温度2500℃でグラフアイト以外
の非晶質の炭素はラマンで観察するかぎり存在し
ないが、ベンゼンを原料とする場合には熱処理温
度が3000℃を越えてもまだ非晶質の炭素が存在す
る。この様にシアノアセチレンを原料とすると、
これまでの方法に比較して、より低温でより結晶
性の高いグラフアイトが得られる。 実施例 4 実施例1の方法によりジシアノアセチレンを
1400℃で熱分解し、ついで2800℃で20分アルゴン
中で熱処理して得たグラフアイトのラマンスペク
トルを測定した。1350cm-1の非晶質の炭素に基づ
くピークは観察されず、ラマン的には完全なグラ
フアイトであることが分かつた。 実施例 5 実施例1の方法により、1500℃および1800℃で
得た試料を、3000℃でアルゴン中で30分熱処理し
た。これらの試料の磁気抵抗を77k、10キロガウ
スで測定した。磁気抵抗はグラフアイトの結晶化
度を鋭敏に反映する。1800℃で作成した試料の磁
気抵抗は60%であるが、1500℃で作成した試料の
値は250%であり、1500℃で作成した試料のグラ
フアイト化率が高い。次にシアノアセチレンの代
りにベンゼンを用い。1500℃で熱分解し、3000℃
で焼成した試料の磁気抵抗は50%であり、シアノ
アセチレンを原料とする試料に比較して低い。 比較例 1 東レ社製炭素繊維M−40をアルゴン雰囲気で15
mm径、45cmの石英製反応管にセツトしこれに通電
し、2200℃に加熱し、シアノアセチレンを分圧1
mmHgで導入し、炭素を炭素繊維の上に沈積させ
た。反応時間は、60分であつた。 このようにして得た繊維の電導度を測定したと
ころ、800S/cmであつた。また、実施例2と同
様のX線発生装置を用いて、同様にX線回折を行
つたところ、面間隔は、3.430Åであつた。 また、得られた繊維を、アルゴン気流中、3000
℃の温度で30分間熱処理した後、再度電導度を測
定したところ、1200S/cmであつた。 (発明の効果) 本発明において提案されたシアノアセチレンを
原料とし、2段法によりグラフアイトを合成する
ことにより、これまでの方法に比較してより低温
で、より高い結晶性のグラフアイトを得ることが
出来る。
[Table] As shown above, when using cyanoacetylene as a raw material, there is no amorphous carbon other than graphite at a heat treatment temperature of 2500℃ as far as observed by Raman, but when benzene is used as a raw material, the heat treatment temperature is 2500℃. Even when the temperature exceeds 3000℃, amorphous carbon still exists. In this way, when cyanoacetylene is used as a raw material,
Compared to conventional methods, graphite with higher crystallinity can be obtained at lower temperatures. Example 4 Dicyanoacetylene was produced by the method of Example 1.
The Raman spectrum of graphite obtained by thermal decomposition at 1400°C and then heat treatment at 2800°C for 20 minutes in argon was measured. No peak at 1350 cm -1 due to amorphous carbon was observed, and Raman revealed that the material was completely graphite. Example 5 Samples obtained at 1500°C and 1800°C by the method of Example 1 were heat treated at 3000°C in argon for 30 minutes. The magnetoresistance of these samples was measured at 77k, 10 kilogauss. Magnetoresistance sensitively reflects the crystallinity of graphite. The magnetic resistance of the sample made at 1800°C is 60%, but the value of the sample made at 1500°C is 250%, and the graphitization rate of the sample made at 1500°C is high. Next, use benzene instead of cyanoacetylene. Pyrolyzed at 1500℃, 3000℃
The magnetic reluctance of the sample fired with is 50%, which is lower than that of the sample made from cyanoacetylene. Comparative example 1 Carbon fiber M-40 manufactured by Toray Industries, Ltd. was heated for 15 minutes in an argon atmosphere.
It was set in a quartz reaction tube with a diameter of 45 cm and was heated to 2200°C.
The carbon was introduced onto the carbon fibers at mmHg. The reaction time was 60 minutes. When the electrical conductivity of the fiber thus obtained was measured, it was 800 S/cm. Further, when X-ray diffraction was performed in the same manner using the same X-ray generator as in Example 2, the interplanar spacing was 3.430 Å. In addition, the obtained fibers were heated at 3000 °C in an argon stream.
After heat treatment at a temperature of 30°C for 30 minutes, the conductivity was measured again and found to be 1200 S/cm. (Effects of the invention) By synthesizing graphite using a two-step method using the cyanoacetylene proposed in the present invention as a raw material, graphite with higher crystallinity can be obtained at a lower temperature than with conventional methods. I can do it.

【特許請求の範囲】[Claims]

1 Ni、Mn、Rh、Cu()、Agの1つ又は2つ
以上の混合物を担持させた吸着剤を用いて、
PSA法により、少なくともCO2とCOとを含有す
る混合ガス中のCOを分離、濃縮又は除去する方
法において、150℃を越え250℃以下の温度で、
COを優先的に分離することを特徴とするCOの分
離方法。
1 Using an adsorbent carrying one or a mixture of two or more of Ni, Mn, Rh, Cu(), and Ag,
In a method of separating, concentrating or removing CO in a mixed gas containing at least CO 2 and CO by the PSA method, at a temperature of more than 150°C and less than 250°C,
A CO separation method characterized by preferentially separating CO.

JP59183734A 1984-09-04 1984-09-04 Production of graphite having high electrical conductivity Granted JPS6163512A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59183734A JPS6163512A (en) 1984-09-04 1984-09-04 Production of graphite having high electrical conductivity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59183734A JPS6163512A (en) 1984-09-04 1984-09-04 Production of graphite having high electrical conductivity

Publications (2)

Publication Number Publication Date
JPS6163512A JPS6163512A (en) 1986-04-01
JPH0140763B2 true JPH0140763B2 (en) 1989-08-31

Family

ID=16141035

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59183734A Granted JPS6163512A (en) 1984-09-04 1984-09-04 Production of graphite having high electrical conductivity

Country Status (1)

Country Link
JP (1) JPS6163512A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63293163A (en) * 1987-05-27 1988-11-30 Agency Of Ind Science & Technol Manufacture of carbon material

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS497173A (en) * 1972-05-12 1974-01-22

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS497173A (en) * 1972-05-12 1974-01-22

Also Published As

Publication number Publication date
JPS6163512A (en) 1986-04-01

Similar Documents

Publication Publication Date Title
EP0203581B1 (en) Process for producing graphite
JPH0157044B2 (en)
CZ292640B6 (en) Method for increasing regularity of carbon particle nanostructure
CA1179479A (en) Method for producing a carbon filament and derivatives thereof
Demichelis et al. Microcrystallization formation in silicon carbide thin films
JPH0149642B2 (en)
Mochida et al. Carbonization of aromatic hydrocarbons. II. Carbonization of modified pyrene in the presence of aluminum chloride.
JPH0140763B2 (en)
EP0943706A4 (en) Hollow microfiber and process for preparing the same
JPS62275190A (en) Fluorinated pitch and production of the same
EP0421306A2 (en) Fluorinated graphite fibers and method of manufacturing them
Ricci et al. Physical properties of plasma-enhanced chemically vapour deposited hydrogenated and nitrogenated amorphous carbons
EP0477297A4 (en) Process for production of graphite flakes and films via low temperature pyrolysis
JPH0445977B2 (en)
JPS61275114A (en) Production of graphite
Matsumura et al. Structure and electrical conductivity of graphite fibers prepared by pyrolysis of cyanoacetylene
Sano et al. The Electrical Conductivity of Graphite Filaments and Their Alkali-metal Intercalation Compounds
JPS61275115A (en) Production of graphite
CN115367755B (en) Two-dimensional transition metal compound, preparation method thereof, electronic device and application
JPS59152298A (en) New production process for carbon fiber
JPH0362791B2 (en)
KR101151299B1 (en) Synthesis of SiC powder with carbon deposition on the silicon powder
Andrade et al. Polyimide as carbon and ceramic polysilazane precursors to obtain high carbon content ceramic for high-temperature applications
JP2629772B2 (en) Method for producing carbon film
CA1156246A (en) Pyrolysis of aromatic compounds and resultant products

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term