JPH0140517B2 - - Google Patents

Info

Publication number
JPH0140517B2
JPH0140517B2 JP56142934A JP14293481A JPH0140517B2 JP H0140517 B2 JPH0140517 B2 JP H0140517B2 JP 56142934 A JP56142934 A JP 56142934A JP 14293481 A JP14293481 A JP 14293481A JP H0140517 B2 JPH0140517 B2 JP H0140517B2
Authority
JP
Japan
Prior art keywords
thin film
film
resistive
integrated circuit
space
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56142934A
Other languages
Japanese (ja)
Other versions
JPS5844760A (en
Inventor
Giichi Saito
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP56142934A priority Critical patent/JPS5844760A/en
Publication of JPS5844760A publication Critical patent/JPS5844760A/en
Publication of JPH0140517B2 publication Critical patent/JPH0140517B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/01Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate comprising only passive thin-film or thick-film elements formed on a common insulating substrate
    • H01L27/016Thin-film circuits

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Apparatuses And Processes For Manufacturing Resistors (AREA)

Description

【発明の詳細な説明】 本発明は薄膜混成集積回路、特にCR複合素子
を含む薄膜集積回路モジユールを1枚の基板上に
形成して作成される薄膜混成集積回路の製造方法
に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a thin film hybrid integrated circuit, and more particularly to a method for manufacturing a thin film hybrid integrated circuit that is produced by forming a thin film integrated circuit module including a CR composite element on a single substrate.

薄膜混成集積回路において、コンデンサ素子と
抵抗素子とが接続形成されてなる薄膜CR複合素
子は、一般に第1図に示す如くグレーズドアルミ
ナ基板1の上にタンタル酸化膜(Ta2O5)にてな
る絶縁層2を被着し、その上にタンタル(β−
Ta又はα−Ta)薄膜にてなる下部電極3と下部
電極3の一部表層を陽極酸化してなる誘電体層
(Ta2O3)4が形成される。そして、下部電極3
から少し離れた側方には窒化タンタル(Ta2N)
薄膜にてなる抵抗層5を形成し、抵抗層5の中央
露呈部窒化タンタルの酸化膜(Ta2NxOy)8を
形成させたのち、ニクロム(NiCr)を密着層6
とし金(Au)にてなる上部電極7は下部電極3
の露呈部上面と、誘電体層4から抵抗層5の一端
に連らなる上面と、抵抗層5の他端上面とにパタ
ーン形成される。次いで、CR積値が規格値とな
るように抵抗層5をレーザトリミングを施して完
成される。
In a thin film hybrid integrated circuit, a thin film CR composite element in which a capacitor element and a resistor element are connected is generally made of a tantalum oxide film (Ta 2 O 5 ) on a glazed alumina substrate 1 as shown in FIG. An insulating layer 2 is deposited, and tantalum (β-
A lower electrode 3 made of a Ta (Ta or α-Ta) thin film and a dielectric layer (Ta 2 O 3 ) 4 formed by anodizing a part of the surface layer of the lower electrode 3 are formed. And the lower electrode 3
Tantalum nitride (Ta 2 N) is placed on the side slightly away from the
After forming a resistive layer 5 made of a thin film and forming a tantalum nitride oxide film (Ta 2 NxOy) 8 on the central exposed part of the resistive layer 5, nichrome (NiCr) is applied to the adhesive layer 6.
The upper electrode 7 made of gold (Au) is the lower electrode 3
A pattern is formed on the upper surface of the exposed portion, the upper surface extending from the dielectric layer 4 to one end of the resistive layer 5, and the upper surface of the other end of the resistive layer 5. Next, the resistor layer 5 is completed by laser trimming so that the CR product value becomes a standard value.

第2図は上記CR複合素子の形成工程を順次示
したものであり、まず第2図aに示す如く、下部
電極3の一部に誘電体層4を形成したのち、全面
を覆うようにして窒化タンタル膜5′が被着され
る。次いで、窒化タンタル膜5′を選択的に除去
して第2図bに示す如く、抵抗層5をパターン形
成したのち、第2図cに示す如き密着層6と上部
電極7とが積層形成される。
FIG. 2 shows the steps for forming the above-mentioned CR composite element. First, as shown in FIG. 2a, a dielectric layer 4 is formed on a part of the lower electrode 3, and then the dielectric layer 4 is formed to cover the entire surface. A tantalum nitride film 5' is deposited. Next, the tantalum nitride film 5' is selectively removed and the resistive layer 5 is patterned as shown in FIG. 2b, after which an adhesive layer 6 and an upper electrode 7 are laminated as shown in FIG. Ru.

かかる薄膜構成にてなるCR複合素子を含み1
枚の基板から複数個採取する薄膜混成集積回路に
おいて、抵抗層5の抵抗値を所望値とするため抵
抗膜5′の面積抵抗値(Ω/□)を、複数個の薄
膜集積回路モジユールを隣接し、かつ、コンデン
サ素子用誘電体層4がすでに形成された基板1の
上面で測定することは、誘電体層4の影響を受け
て正しく測定することができない。そのため、従
来はコンデンサ素子構成膜を被着しないダミー基
板上に、抵抗膜5′の被着と同時に抵抗膜を被着
させ該抵抗膜の面積抵抗値を測定していた。
Including a CR composite element with such a thin film configuration 1
In order to obtain the desired resistance value of the resistive layer 5 in thin film hybrid integrated circuits in which multiple thin film integrated circuits are sampled from a single substrate, the sheet resistance value (Ω/□) of the resistive film 5' is adjusted to However, if the measurement is performed on the upper surface of the substrate 1 on which the capacitor element dielectric layer 4 has already been formed, the measurement cannot be performed correctly due to the influence of the dielectric layer 4. Therefore, conventionally, a resistive film was deposited on a dummy substrate on which no capacitor element constituent film was deposited at the same time as the resistive film 5' was deposited, and the sheet resistance value of the resistive film was measured.

しかし、ダミー基板上の抵抗膜の面積抵抗値と
製品基板上の抵抗膜5′の面積抵抗値とは許容範
囲を越えて異なることがあり、CRモジユールの
特に固定容量値、固定抵抗値からはずれるものが
あり、そのことによる不良率は数%に及ぶことが
あつた。
However, the sheet resistance value of the resistive film on the dummy board and the sheet resistance value of the resistive film 5' on the product board may differ beyond the permissible range, which may deviate from the fixed capacitance value and fixed resistance value of the CR module. This caused the defective rate to reach several percent.

本発明の目的は上記欠点を除去することであ
り、この目的は複数個の薄膜集積回路モジユール
が形成される絶縁基板の中央部に抵抗膜の面積抵
抗測定用スペースを設け、前記各モジユールの
CR複合素子用誘電体層及び前記スペースを覆う
抵抗膜を被着し、その抵抗膜の面積抵抗値は誘電
体層を形成しない前記スペースにおいて測定する
ことを特徴とした薄膜混成集積回路の製造方法を
提供して達成される。
An object of the present invention is to eliminate the above-mentioned drawbacks, and the object is to provide a space for measuring the area resistance of a resistive film in the center of an insulating substrate on which a plurality of thin film integrated circuit modules are formed, and to measure the area resistance of each of the modules.
A method for manufacturing a thin film hybrid integrated circuit, characterized in that a dielectric layer for a CR composite element and a resistive film covering the space are deposited, and the sheet resistance value of the resistive film is measured in the space where the dielectric layer is not formed. This is achieved by providing.

以下、図面を用いて本発明方法を説明する。 The method of the present invention will be explained below using the drawings.

第3図は本発明の一実施例に係わる面積抵抗測
定用スペースを設けた絶縁基板の平面図であり、
グレーズドアルミナ基板10の上面にはX方向へ
5個、Y方向へ9個の薄膜集積回路モジユール領
域11が設定され、斜線で示す中央領域12は抵
抗膜の面積抵抗測定用スペースである。そして44
個のモジユール領域には前述したCR複合素子を
含む集積回路が形成されるが、CR複合素子の形
成過程において第2図aに示す如く、抵抗膜5′
を被着したときスペース12では、基板10上の
絶縁層2の上に抵抗膜5′が同時被着される。従
つて、抵抗膜5′の面積抵抗値を例えば四探針法
で測定しようとするときは、スペース12上で測
定すれば誘電体層4に影響されることなく正確な
値が得られる。
FIG. 3 is a plan view of an insulating substrate provided with a space for sheet resistance measurement according to an embodiment of the present invention;
Five thin film integrated circuit module areas 11 are set in the X direction and nine in the Y direction on the upper surface of the glazed alumina substrate 10, and the central area 12 shown by diagonal lines is a space for measuring the sheet resistance of the resistive film. and 44
An integrated circuit including the above-mentioned CR composite element is formed in each module area, but in the process of forming the CR composite element, as shown in FIG. 2a, the resistive film 5'
When the resistive film 5' is deposited, the resistive film 5' is simultaneously deposited on the insulating layer 2 on the substrate 10 in the space 12. Therefore, when measuring the sheet resistance value of the resistive film 5' using, for example, the four-probe method, an accurate value can be obtained without being affected by the dielectric layer 4 by measuring on the space 12.

第4図は前記基板10に抵抗膜を被着するスパ
ツタリング時間と、基板スペース12で測定した
前記抵抗膜の面積抵抗値との関係例を示す図であ
る。ただし、図中のX印はダミー基板を使用した
基準抵抗値であり、・印は基板上スペース12に
おける実測抵抗値をプロツトしたものである。従
つて、スパツタリング中の異常放電等により面積
抵抗値が大きくなつた異常抵抗膜(測定点A)、
又は小さくなつた異常抵抗膜(測定点B)は、そ
の実測値に基づき、抵抗層5にパターン形成した
のちの抵抗化成時に、形成されるタンタル酸化膜
8の厚さを調整することにより所望抵抗値のCR
複合素子が得られるようになる。
FIG. 4 is a diagram showing an example of the relationship between the sputtering time for depositing the resistive film on the substrate 10 and the sheet resistance value of the resistive film measured in the substrate space 12. However, the X mark in the figure is a reference resistance value using a dummy board, and the * mark is a plot of the actually measured resistance value in the space 12 on the board. Therefore, an abnormal resistance film (measurement point A) whose sheet resistance value has increased due to abnormal discharge during sputtering, etc.
Alternatively, the abnormal resistance film (measurement point B) which has become smaller can be made to have a desired resistance by adjusting the thickness of the tantalum oxide film 8 formed during resistance formation after patterning the resistance layer 5 based on the actual measurement value. CR of value
Composite elements can now be obtained.

以上説明した如く本発明方法によれば、製品基
板に被着した抵抗膜特性を検知できるため、該特
性に基ずくトリミングを可能ならしめ、CR複合
素子を含み複数個取りしてなる薄膜混成集積回路
の製造歩留りを向上し得た効果がある。
As explained above, according to the method of the present invention, the characteristics of the resistive film adhered to the product substrate can be detected, so trimming can be performed based on the characteristics. This has the effect of improving the manufacturing yield of circuits.

なお、本発明は上記実施例に限定するものでな
く、「特許請求の範囲」内において適宜実施し得
るものである。
It should be noted that the present invention is not limited to the above-mentioned embodiments, but can be implemented as appropriate within the scope of the claims.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は薄膜混成集積回路に膜形成されたCR
複合素子の一般的構造を示す側断面図、第2図は
前記CR複合素子の形成工程を順次示した側断面
図、第3図は本発明の一実施例に係わる面積抵抗
測定用スペースを設けた薄膜混成集積回路用基板
の平面図、第4図は第3図に示した基板に抵抗膜
を被着するスパツタリング時間と該基板の所定ス
ペースで測定した前記抵抗膜の面積抵抗値との関
係例を示す図である。 なお、図中において、1,10はグレーズド基
板、5は抵抗層、5′は抵抗膜、8は抵抗化成に
よる窒化タンタル酸化膜、11は薄膜集積回路モ
ジユール、12は面積抵抗測定用スペース、A,
Bは異常抵抗測定値を示す。
Figure 1 shows CR film formed on a thin film hybrid integrated circuit.
2 is a side sectional view showing the general structure of the composite element, FIG. 2 is a side sectional view sequentially showing the steps of forming the CR composite element, and FIG. FIG. 4 is a plan view of a thin film hybrid integrated circuit substrate shown in FIG. 3, and shows the relationship between the sputtering time for depositing a resistive film on the substrate shown in FIG. It is a figure which shows an example. In the figure, 1 and 10 are glazed substrates, 5 is a resistive layer, 5' is a resistive film, 8 is a tantalum nitride oxide film formed by resistor formation, 11 is a thin film integrated circuit module, 12 is a space for measuring sheet resistance, A ,
B shows abnormal resistance measurements.

Claims (1)

【特許請求の範囲】[Claims] 1 コンデンサ素子と抵抗素子とが接続形成され
てなるCR複合素子を含む複数個の薄膜集積回路
モジユールが1枚の絶縁基板上に形成されて作成
される薄膜混成集積回路の製造方法において、絶
縁基板の中央部に抵抗膜の面積抵抗測定用スペー
スを設け、各薄膜集積回路モジユールのCR複合
素子用誘電体層及び前記スペースを覆うように被
着した抵抗膜の面積抵抗値は、誘電体層を形成し
ない前記スペースにおいて測定することを特徴と
した薄膜混成集積回路の製造方法。
1. In a method for manufacturing a thin film hybrid integrated circuit in which a plurality of thin film integrated circuit modules including a CR composite element formed by connecting a capacitor element and a resistor element are formed on a single insulating substrate, the insulating substrate A space for measuring the area resistance of the resistive film is provided in the center of the area. A method for manufacturing a thin film hybrid integrated circuit, characterized in that measurement is performed in the space that is not formed.
JP56142934A 1981-09-10 1981-09-10 Manufacture of thin film hybrid integrated circuit Granted JPS5844760A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56142934A JPS5844760A (en) 1981-09-10 1981-09-10 Manufacture of thin film hybrid integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56142934A JPS5844760A (en) 1981-09-10 1981-09-10 Manufacture of thin film hybrid integrated circuit

Publications (2)

Publication Number Publication Date
JPS5844760A JPS5844760A (en) 1983-03-15
JPH0140517B2 true JPH0140517B2 (en) 1989-08-29

Family

ID=15327036

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56142934A Granted JPS5844760A (en) 1981-09-10 1981-09-10 Manufacture of thin film hybrid integrated circuit

Country Status (1)

Country Link
JP (1) JPS5844760A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0748407B2 (en) * 1989-06-16 1995-05-24 株式会社日立製作所 Method of manufacturing thin film resistor
JPH0319301A (en) * 1989-06-16 1991-01-28 Hitachi Ltd Film formation for thin film resistor

Also Published As

Publication number Publication date
JPS5844760A (en) 1983-03-15

Similar Documents

Publication Publication Date Title
US5896081A (en) Resistance temperature detector (RTD) formed with a surface-mount-device (SMD) structure
US5502885A (en) Method of manfacturing a chip-type composite electronic part
JP4204029B2 (en) Chip resistor
US4780702A (en) Chip resistor and method for the manufacture thereof
JPH0630292B2 (en) Manufacturing method of composite parts
JPH0140517B2 (en)
JP4384787B2 (en) Chip resistor
JP3190120B2 (en) Measuring resistor and manufacturing method thereof
JPS5952073B2 (en) Diode matrix integrated thermal head
US5169493A (en) Method of manufacturing a thick film resistor element
JP2707717B2 (en) Hybrid integrated circuit
JP2003297670A (en) Chip type composite part
JPS6239927B2 (en)
JP3134067B2 (en) Low resistance chip resistor and method of manufacturing the same
JPS6225977B2 (en)
JPH11283802A (en) Chip resistor
JPH0129249B2 (en)
JPS63169058A (en) Thin film integrated circuit
JPS6259767B2 (en)
JP4326670B2 (en) Chip resistor manufacturing method
JPH0140515B2 (en)
JPH01152701A (en) Chip-type electronic component
JP3466353B2 (en) Manufacturing method of thick film capacitor
JP2822793B2 (en) Magnetoresistive element and method of manufacturing the same
JPS6330771B2 (en)