JPH0140410B2 - - Google Patents

Info

Publication number
JPH0140410B2
JPH0140410B2 JP8443080A JP8443080A JPH0140410B2 JP H0140410 B2 JPH0140410 B2 JP H0140410B2 JP 8443080 A JP8443080 A JP 8443080A JP 8443080 A JP8443080 A JP 8443080A JP H0140410 B2 JPH0140410 B2 JP H0140410B2
Authority
JP
Japan
Prior art keywords
magnetic
film
signal
soft magnetic
soft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP8443080A
Other languages
Japanese (ja)
Other versions
JPS5712427A (en
Inventor
Hideki Matsuda
Toshiro Yamada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP8443080A priority Critical patent/JPS5712427A/en
Publication of JPS5712427A publication Critical patent/JPS5712427A/en
Publication of JPH0140410B2 publication Critical patent/JPH0140410B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B11/00Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor
    • G11B11/10Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field
    • G11B11/105Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field using a beam of light or a magnetic field for recording by change of magnetisation and a beam of light for reproducing, i.e. magneto-optical, e.g. light-induced thermomagnetic recording, spin magnetisation recording, Kerr or Faraday effect reproducing
    • G11B11/10532Heads
    • G11B11/10541Heads for reproducing
    • G11B11/10543Heads for reproducing using optical beam of radiation
    • G11B11/10547Heads for reproducing using optical beam of radiation interacting with the magnetisation of an intermediate transfer element, e.g. magnetic film, included in the head

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は軟磁性膜面垂直容易磁化膜を使用し、
光磁気効果に依り磁気記録を読出すようにした読
出し装置に関し、特に磁気記録媒体と軟磁性膜面
垂直容易磁化膜との相対移動速度の限界を延ばす
ための構成に関する。 先に磁気記録媒体より軟磁性膜面垂直容易磁化
膜を使用し、光磁気効果に依り磁気記録信号を読
み出す様にした磁気記録信号の読み出し装置とし
て第1図〜第3図に示す如きものが提案されてい
る。 即ち第1図に於いて、1は磁気テープを示し、
この磁気テープ1として通常のものを使用し、こ
の磁気テープ1は例えば矢印方向に19cm/secで
通常のテープレコーダと同様に走行する如くな
す。又この磁気テープ1には音声信号により周波
数変調された信号が磁気記録されているものとす
る。 この磁気テープ1に接触する位置に軟磁性膜面
垂直容易磁化膜装置2を設ける。この軟磁性膜面
垂直容易磁化膜装置2としては第2図に示す如く
例えば0.2〜0.5mmの厚さのGdGaガーネツトの基
板2aの磁気テープ1への対向面側に軟磁性膜面
垂直容易磁化膜2bを被着する。この軟磁性膜面
垂直容易磁化膜2bとしては例えばY1.92Sm0.1
Ca0.98Fe4.02Ge0.98O12等のYSmCaFeGe系ガーネ
ツトの厚さ6μmの膜を使用する。この場合GdGa
ガーネツト及びYSmCaFeGe系ガーネツトは共に
透明である。又この軟磁性膜面垂直容易磁化膜2
bの軟磁性の程度としては磁気テープ1の磁気記
録信号の漏洩磁束によつて実用上永久記録されな
い程度であることが必要である。この例では軟磁
性膜面垂直容易磁化膜の磁壁の抗磁力は0.3Oeで
ある。 又GdGaガーネツトの基板2aの磁気テープ1
への対向面と反対側に無反射コーテイング層2c
を設け、又軟磁性膜面垂直容易磁化膜2b上(第
2図では下側)に例えば0.2μmの厚さの二酸化シ
リコンより成る拡散防止膜2dを被着し、この拡
散防止膜2d上(第2図では下側)に例えば
0.3μmの厚さのアルミニユーム蒸着膜より成る反
射膜2eを被着する。この反射膜2e上(第2図
では下側)に磁気テープに対する耐摩耗性を高め
る為にこの反射膜2eの保護膜2fを被着する。
この保護膜2fとしては例えば0.5μmの厚さの二
酸化シリコンの層を使用する。尚、この軟磁性膜
面垂直容易磁化膜装置2に於いて拡散膜2dを省
略しても良い。 この場合この軟磁性膜面垂直容易磁化膜装置2
は保護膜2f側が磁気テープ1に対接する様に配
する。この軟磁性膜面垂直容易磁化膜装置2を磁
気テープ1に接触したときは第3図に示す如く軟
磁性膜面垂直容易磁化膜2bのメイズドメインは
磁気テープ1の磁気記録信号から生ずる漏洩磁界
に対応した変調を受ける。このとき磁気テープ1
の磁気記録信号は周波数変調されているのでこの
軟磁性膜面垂直容易磁化膜2bに出現する磁区は
第3図に示す如く縞状磁区1cで且つ磁区幅が周
波数変調されている。以後周波数変調された縞状
磁区群を信号磁区と称する。第3図に於いて1b
は記録トラツクである。 又この軟磁性膜面垂直容易磁化膜2bは軟磁性
であるので磁気テープ1の移動に伴い刻々と磁気
テープ1の磁気記録信号に対応した信号磁区を出
現する。 本例に於いてはこの軟磁性膜面垂直容易磁化膜
2bの信号磁区を光磁気効果を使用して読み出す
様にする。即ち第1図に於いて3は例えばHe−
Neレーザー光等の光源を発生する光源発生装置
を示し、この光源発生装置3から発生した光を偏
光子4を通して直線偏光となしビームスプリツタ
5を通つた光を対物レンズ6に依り軟磁性膜面垂
直容易磁化膜装置2の軟磁性膜面垂直容易磁化膜
2b上に集光させる。本例ではこの集光面での集
光スポツトの径を約3μmとする。この集光はこの
軟磁性膜面垂直容易磁化膜装置2の反射膜2eで
反射されて再び対物レンズ6に逆から入りビーム
スプリツタ5で直角に曲げられ検光子7に供給さ
れる。この間光は軟磁性膜面垂直容易磁化膜2b
のドメインの磁化方向に応じて左又は右にフアラ
デイ旋光を受け、この為検光子7の出力側に得ら
れる光はこの信号磁区に応じた幅変調を受けるこ
とになる。この光変調信号をフオトダイオード等
の光電変換素子8に供給し、この光電変換素子8
の出力端子9にこの光変調信号に対応した電気信
号を得、この出力端子9に得られる電気信号を
FM再生装置に供給し再生する。 上述装置に依れば磁気テープ1に周波数変調磁
気記録された信号を磁気テープ1が例えば19cm/
secで走行している状態で再生することができた。
この再生装置で特記すべき点は、(イ)軟磁性膜面垂
直容易磁化膜2b上の集光スポツトの径は約3μm
で充分であり従来のオーデイオ用磁気記録のトラ
ツク幅(約1mm)に比して300分の1程度となり
記録密度を300倍向上させることができる。(ロ)軟
磁性膜面垂直容易磁化膜2bを用いている為、偏
向ビーム方向と磁化方向とが平行であり、フアラ
デイ回転を最も有効に生かせ、且つ反射膜2eで
2倍のフアラデイ回転角が得られるので再生信号
のS/Nを向上できる。(ハ)従来の磁気バブル材を
用いた再生装置で磁気バブルを信号再生に利用す
る場合にはバブルを保持するバイアス磁界、バブ
ルを移動させる為の転送機構が必要であるし、硬
質磁性膜面垂直磁化膜を用いた装置では磁気信号
がこの硬質磁性膜面垂直磁化膜内に記憶されるた
め磁気信号が磁気テープにより刻々と送られてく
ると、記憶されている磁気信号を消磁する機構を
設けなければならない等の欠点があつたが、本装
置ではこれらの付帯機構が不用であり、極めて簡
単なので実用に一層適している。 尚上述実施例に於いては磁気テープ1に周波数
変調した信号を磁気記録したが、この代りにパル
スコード変調、パルス幅変調等した信号を磁気記
録しても上述同様の効果が得られる。 この様な装置を用いて、磁気テープへの記録波
長を変え、かつ磁気テープの走行速度を変える事
により、各波長での高速応答限界を測定した所、
第1表の如き結果が得られた。
The present invention uses a soft magnetic film with easy magnetization perpendicular to the film surface,
The present invention relates to a readout device that reads magnetic recording using the magneto-optical effect, and particularly to a configuration for extending the limit of relative movement speed between a magnetic recording medium and a soft magnetic film surface-perpendicular easily magnetized film. A magnetic recording signal readout device as shown in FIGS. 1 to 3 was first used as a magnetic recording signal readout device that used a soft magnetic film with easy magnetization perpendicular to the surface of the magnetic recording medium and read out magnetic recording signals using the magneto-optical effect. Proposed. That is, in FIG. 1, 1 indicates a magnetic tape,
A normal magnetic tape 1 is used, and the magnetic tape 1 is configured to run, for example, at 19 cm/sec in the direction of the arrow in the same manner as in a normal tape recorder. It is also assumed that a signal frequency-modulated by an audio signal is magnetically recorded on the magnetic tape 1. An easily magnetized film device 2 perpendicular to the soft magnetic film surface is provided at a position in contact with the magnetic tape 1. As shown in FIG. 2, the soft magnetic film easily magnetized perpendicularly to the surface of the soft magnetic film is attached to the surface of the GdGa garnet substrate 2a having a thickness of 0.2 to 0.5 mm on the side facing the magnetic tape 1. Deposit membrane 2b. This soft magnetic film surface perpendicular easily magnetized film 2b has, for example, Y 1.92 Sm 0.1
A 6 μm thick film of YSmCaFeGe garnet such as Ca 0.98 Fe 4.02 Ge 0.98 O 12 is used. In this case GdGa
Both garnet and YSmCaFeGe-based garnet are transparent. Also, this soft magnetic film surface perpendicular easily magnetized film 2
The degree of soft magnetism b needs to be such that leakage magnetic flux of the magnetic recording signal of the magnetic tape 1 does not cause permanent recording in practice. In this example, the coercive force of the domain wall of the easily magnetized film perpendicular to the soft magnetic film surface is 0.3 Oe. Also, the magnetic tape 1 on the GdGa garnet substrate 2a
Anti-reflective coating layer 2c on the opposite side to the facing surface.
A diffusion prevention film 2d made of silicon dioxide with a thickness of 0.2 μm, for example, is deposited on the soft magnetic film surface perpendicular easily magnetized film 2b (lower side in FIG. 2), and on this diffusion prevention film 2d ( For example, the lower side in Figure 2)
A reflective film 2e made of a vapor-deposited aluminum film with a thickness of 0.3 μm is deposited. A protective film 2f of the reflective film 2e is deposited on the reflective film 2e (on the lower side in FIG. 2) in order to increase the abrasion resistance against the magnetic tape.
As this protective film 2f, for example, a layer of silicon dioxide having a thickness of 0.5 μm is used. Incidentally, the diffusion film 2d may be omitted in this soft magnetic film surface perpendicular easily magnetized film device 2. In this case, this soft magnetic film surface perpendicular easily magnetized film device 2
is arranged so that the protective film 2f side faces the magnetic tape 1. When this soft magnetic film surface perpendicular easily magnetized film device 2 is brought into contact with the magnetic tape 1, as shown in FIG. receives modulation corresponding to At this time, magnetic tape 1
Since the magnetic recording signal is frequency modulated, the magnetic domains appearing in the soft magnetic film surface perpendicular easily magnetized film 2b are striped magnetic domains 1c as shown in FIG. 3, and the domain width is frequency modulated. Hereinafter, the group of frequency-modulated striped magnetic domains will be referred to as signal magnetic domains. 1b in Figure 3
is the recording track. Also, since the soft magnetic film surface perpendicular easily magnetized film 2b is soft magnetic, signal magnetic domains corresponding to the magnetic recording signals of the magnetic tape 1 appear every moment as the magnetic tape 1 moves. In this example, the signal magnetic domain of the soft magnetic film surface perpendicular easily magnetized film 2b is read out using the magneto-optical effect. That is, in Fig. 1, 3 is, for example, He-
A light source generating device that generates a light source such as a Ne laser beam is shown. The light generated from the light source generating device 3 is passed through a polarizer 4 to become linearly polarized light, and the light that has passed through a beam splitter 5 is passed through an objective lens 6 to a soft magnetic film. The light is focused on the soft magnetic film 2b of the perpendicular easily magnetized film device 2. In this example, the diameter of the light focusing spot on this light focusing surface is approximately 3 μm. This focused light is reflected by the reflective film 2e of the soft magnetic film surface perpendicular easily magnetized film device 2, enters the objective lens 6 from the opposite direction, is bent at a right angle by the beam splitter 5, and is supplied to the analyzer 7. During this time, the light is perpendicular to the soft magnetic film surface easily magnetized film 2b.
The signal undergoes Faraday optical rotation to the left or right depending on the magnetization direction of the domain, and therefore the light obtained on the output side of the analyzer 7 undergoes width modulation in accordance with this signal magnetic domain. This optical modulation signal is supplied to a photoelectric conversion element 8 such as a photodiode, and the photoelectric conversion element 8
An electrical signal corresponding to this optical modulation signal is obtained at the output terminal 9 of the
Supplied to FM playback device and played. According to the above-mentioned apparatus, the magnetic tape 1 receives signals recorded frequency-modulated magnetically on the magnetic tape 1, for example, at 19 cm/
I was able to play it while running at sec.
What should be noted in this reproducing device is (a) The diameter of the condensing spot on the easily magnetized film 2b perpendicular to the soft magnetic film surface is approximately 3 μm.
This is sufficient, and the track width is approximately 1/300 of the track width of conventional audio magnetic recording (approximately 1 mm), making it possible to improve the recording density by 300 times. (b) Since the soft magnetic film surface perpendicular easily magnetized film 2b is used, the direction of the deflected beam and the magnetization direction are parallel, and the Faraday rotation can be utilized most effectively, and the Faraday rotation angle can be doubled by the reflective film 2e. Therefore, the S/N of the reproduced signal can be improved. (c) When using magnetic bubbles for signal reproduction in a reproduction device using conventional magnetic bubble materials, a bias magnetic field to hold the bubbles, a transfer mechanism to move the bubbles, and a hard magnetic film surface are required. In a device using a perpendicular magnetization film, magnetic signals are stored in the perpendicular magnetization film on the surface of this hard magnetic film, so when magnetic signals are sent moment by moment by a magnetic tape, a mechanism is used to demagnetize the stored magnetic signals. However, this device does not require these additional mechanisms and is extremely simple, making it more suitable for practical use. In the above-described embodiment, a frequency-modulated signal was magnetically recorded on the magnetic tape 1, but the same effect as described above can be obtained by magnetically recording a pulse-code modulated, pulse-width modulated, etc. signal instead. Using such a device, we measured the high-speed response limit at each wavelength by changing the recording wavelength on the magnetic tape and changing the running speed of the magnetic tape.
The results shown in Table 1 were obtained.

【表】 したがつて、この装置は音声用のテープレコー
ダに使用する事は出来るが、複数トラツクを同時
に使用しないとビデオ信号の再生には使えない。
例えば、軟磁性膜面垂直容易磁化膜(以下磁性ガ
ーネツト膜と称する)の材料を選べば、転写再生
できる最短記録波長は4μm程度に出来るが、ビデ
オ信号の如き帯域5MHzの信号を搬送波長を10μm
としたFMとして再生するには、少なくとも限界
速度として50m/secが要求されるので、従来の
装置では再生不可能であつた。 本発明は、上述した限界速度を決定している原
因を見だし、これに対する対策を考慮してビデオ
信号の再生にも使える読出し装置を実現したもの
である。 従来の磁性ガーネツト膜内に生じている磁壁
は、磁区表面の磁極から発生する磁界によりツイ
スト磁壁となつている。したがつて外部より信号
磁界を与えない時に生じている磁壁中の厚み方向
の磁化の方位角φを調べると第4図のNの曲線の
如くなる。これは信号波長30μmの外部磁界を与
えると、そのパターンはガーネツト膜に転写され
ると共にその外部磁界の持つている膜面内成分の
影響で第4図中のH及びMの如く磁化の方位角φ
は変化する。Mは最大信号を与えた時を、Hはそ
の中間値を与えた時を示し、膜面内磁界があると
磁化の方位角曲線が立ち、上面の下面との磁化の
方位角の差が少なくなる。 次に、同一の波長の信号磁界が一定速度で移動
している時の、磁壁の構造を計算により求めると
第5図のA,Bの如くなる事が分つた。つまり0
〜9.5m/secの範囲では第5図Aの如き構造で、
磁界の移動に対する磁壁の移動速度は同一で、位
相のずれも生じない。しかし、10m/sec〜
26.5m/secの範囲では第5図Bの如き構造とな
り、いわゆる水平ブロツホラインが磁壁に発生
し、磁壁の移動速度の低下や、位相遅れ等が起
き、これより高速には追従しなくなる事が、分つ
た。この数値は信号磁界が最大の時であるが、そ
の半分の磁界の時の計算値では33.5m/secとな
り、上述の限界速度の実測値は、この両者の平均
とほぼ一致する。したがつて、従来の装置におけ
る限界速度は、水平ブロツホラインの発生による
ものと推定される。 ところで第5図に示す様に、水平ブロツホライ
ンが発生する様な速度になると、φの変化が大き
くなり、曲線のねている部分が多くなる。したが
つて、これを立てる方法があれば、水平ブロツホ
ラインの発生を防ぎ、ひいては限界速度を高くす
る事が出来るのではないかとの考えに到達した。 つまり、従来の磁性ガーネツト膜の代りに斜方
対称磁気異方性を有する磁性ガーネツト薄膜を使
えば、膜面に垂直方向への一軸異方性の他に面内
異方性を有するので、面内異方性の方向を磁壁と
直交させれば、磁壁内の厚さ方向の中点での磁化
を磁壁面に垂直にできる事に気づいた。 この為磁性ガーネツト膜としてEu2.09La0.75
Ca0.16Ge0.16Al0.55Ga0.12Fe4.17O12より成る薄膜を、
上記装置と同様の基板2aの(110)方位の面上
に成長・被着し、第1図と同様の装置を用い、面
内異方性の方向を磁気テープの走行方向と平行に
なる様に選んで、実験を行つた。この薄膜は
Ku/2πMs2(Kuは一軸異方性定数、Msは飽和磁化) が7.4で、Δ/2πMs2(Δは面内の異方性定数)が4.0 であるので、従来のガーネツト膜と同様信号磁界
により信号磁区が生じ、光磁気効果により電気信
号に変換できた。しかも面内異方性があるので、
これが水平ブロツホラインの発生を防いでいるら
しく、限界速度の実測値は次の第2表の如くな
り、ビデオ信号の再生という所期の目的が達成で
きる事が分つた。
[Table] Therefore, although this device can be used as an audio tape recorder, it cannot be used to reproduce video signals unless multiple tracks are used simultaneously.
For example, if the material of the soft magnetic film surface perpendicularly easily magnetized film (hereinafter referred to as magnetic garnet film) is selected, the shortest recording wavelength that can be transferred and reproduced can be about 4 μm, but when transmitting a signal with a band of 5 MHz such as a video signal, the carrier wavelength can be reduced to 10 μm.
In order to reproduce this as an FM, at least a critical speed of 50 m/sec is required, making it impossible to reproduce with conventional equipment. The present invention discovers the causes that determine the above-mentioned speed limit, and takes countermeasures against them to realize a reading device that can also be used for reproducing video signals. The domain walls that occur in conventional magnetic garnet films are twisted domain walls due to the magnetic field generated from the magnetic poles on the surface of the magnetic domains. Therefore, if we examine the azimuth angle φ of the magnetization in the thickness direction in the domain wall that occurs when no signal magnetic field is applied from the outside, the curve N in FIG. 4 will be obtained. When an external magnetic field with a signal wavelength of 30 μm is applied, the pattern is transferred to the garnet film, and due to the influence of the in-plane component of the external magnetic field, the azimuth of magnetization changes as shown by H and M in Figure 4. φ
changes. M indicates the time when the maximum signal is given, and H indicates the time when the intermediate value is given. When there is an in-plane magnetic field, the magnetization azimuth angle curve stands, and the difference in the magnetization azimuth angle between the top surface and the bottom surface is small. Become. Next, when the structure of the domain wall was determined by calculation when signal magnetic fields of the same wavelength were moving at a constant speed, it was found that the structure was as shown in A and B in FIG. 5. In other words, 0
In the range of ~9.5m/sec, the structure is as shown in Figure 5A,
The speed of movement of the domain wall relative to the movement of the magnetic field is the same, and no phase shift occurs. However, 10m/sec~
In the range of 26.5 m/sec, the structure becomes as shown in Figure 5B, and a so-called horizontal brochure line occurs on the domain wall, causing a decrease in the moving speed of the domain wall, a phase lag, etc., and it becomes impossible to follow higher speeds. Divided. This value is when the signal magnetic field is at its maximum, but the calculated value when the magnetic field is half that is 33.5 m/sec, and the actual measured value of the above-mentioned critical speed almost matches the average of both. Therefore, it is assumed that the critical speed in the conventional device is due to the occurrence of horizontal Bloch lines. By the way, as shown in FIG. 5, when the speed reaches such a level that a horizontal bloch line occurs, the change in φ becomes large and the curve has many curved parts. Therefore, I came up with the idea that if there was a way to set this up, it would be possible to prevent the occurrence of horizontal brochure lines and, in turn, increase the critical speed. In other words, if a magnetic garnet thin film with orthorhombically symmetric magnetic anisotropy is used instead of the conventional magnetic garnet film, it will have in-plane anisotropy in addition to uniaxial anisotropy perpendicular to the film surface. We realized that if the direction of the internal anisotropy is set perpendicular to the domain wall, the magnetization at the midpoint in the thickness direction within the domain wall can be made perpendicular to the domain wall surface. Therefore, as a magnetic garnet film, Eu 2.09 La 0.75
A thin film consisting of Ca 0.16 Ge 0.16 Al 0.55 Ga 0.12 Fe 4.17 O 12 is
It is grown and deposited on the (110) oriented surface of the substrate 2a similar to the above device, and the direction of in-plane anisotropy is made parallel to the running direction of the magnetic tape using the same device as shown in FIG. I chose it and conducted an experiment. This thin film
Ku/2πMs 2 (Ku is the uniaxial anisotropy constant, Ms is the saturation magnetization) is 7.4, and Δ/2πMs 2 (Δ is the in-plane anisotropy constant) is 4.0, so the signal is similar to the conventional garnet film. A signal magnetic domain was generated by the magnetic field, which could be converted into an electrical signal by the magneto-optical effect. Moreover, since there is in-plane anisotropy,
This seems to prevent the occurrence of horizontal bloat lines, and the actual measured values of the critical speed are shown in Table 2 below, indicating that the intended purpose of reproducing video signals can be achieved.

【表】 この様に斜方対称磁気異方性を有する磁性ガー
ネツト薄膜を用い、面内磁気異方性の方向を磁気
記録媒体の走行方向に平行に選ぶ事により、従来
のガーネツト薄膜の場合に比べて、磁壁の最高速
度は2〜10倍に出来る事が分つた。種々の実験及
び計算によると、この目的に利用出来る材料とし
ては、転写可能な波長域を大きくし、かつ磁壁の
移動度を大きくするに、Ku/2πMs2は小さいも
のを選ぶと良いが、磁化を上述の如く膜面に対し
て垂直に立たせ、限界速度を上げるにはKu/
2πMs2>Δ/2πMs21を満たすものが必要であ
る。尚、この不等式では、信号磁界の持つている
面内磁界を考慮していないが、実際に必要とされ
る膜面内磁界としては、8Ms以上の磁化となる様
にすれば良い。したがつて、面内磁気異方性Δの
大きさとしては、信号磁界による磁界との総和が
8Msを越せば実用上問題なく、したがつて上述の
不等式を満足するΔより、少し小さい値のΔを持
つ材料でも、信号磁界の強さによつて使用可能と
なる。 尚、上述の材料以外に、斜方対称磁気異方性を
有するBi入りの磁性ガーネツト薄膜等も使用で
きる。 尚上述実施例に於いては本発明を磁気テープに
適用した例につき述べたが、この代りに磁気シー
ト等その他の磁気記録媒体に適用できることは勿
論である。又本発明は上述本発明に限ることなく
本発明の要旨を逸脱することなく、その他種々の
構成が取り得ることは勿論である。
[Table] By using a magnetic garnet thin film with orthorhombically symmetrical magnetic anisotropy and selecting the direction of in-plane magnetic anisotropy parallel to the running direction of the magnetic recording medium, it is possible to In comparison, it was found that the maximum speed of the domain wall could be increased by 2 to 10 times. According to various experiments and calculations, materials that can be used for this purpose should be selected with a small value of Ku/2πMs 2 in order to widen the transferable wavelength range and increase the mobility of the domain wall. To increase the critical speed by standing perpendicular to the membrane surface as described above, Ku/
2πMs 2 >Δ/2πMs 2 1 is required. Note that this inequality does not take into account the in-plane magnetic field of the signal magnetic field, but the in-plane magnetic field that is actually required should be set to have a magnetization of 8 Ms or more. Therefore, the magnitude of the in-plane magnetic anisotropy Δ is the sum of the magnetic field due to the signal magnetic field.
If it exceeds 8 Ms, there is no practical problem, and therefore even a material with a value of Δ slightly smaller than the Δ that satisfies the above-mentioned inequality can be used depending on the strength of the signal magnetic field. In addition to the above-mentioned materials, a magnetic garnet thin film containing Bi having orthorhombically symmetrical magnetic anisotropy can also be used. In the above embodiments, the present invention was applied to a magnetic tape, but it is of course possible to apply the present invention to other magnetic recording media such as a magnetic sheet. Furthermore, it goes without saying that the present invention is not limited to the above-described present invention, and that various other configurations can be taken without departing from the gist of the present invention.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は磁気記録信号読出し装置の例を示す構
成図、第2図は軟磁性膜面垂直容易磁化膜装置の
例を示す断面図、第3図は第1図の説明に供する
線図、第4図及び第5図は夫々磁性ガーネツト薄
膜中の磁壁構造を示す線図である。 1は磁気テープ、1b1,1b2,1b3……は夫々
信号トラツク、2は軟磁性膜面垂直容易磁化膜装
置である。
FIG. 1 is a configuration diagram showing an example of a magnetic recording signal readout device, FIG. 2 is a sectional view showing an example of a soft magnetic film surface perpendicular easy magnetization film device, and FIG. 3 is a diagram for explaining FIG. 1. FIGS. 4 and 5 are diagrams showing the domain wall structure in a magnetic garnet thin film, respectively. 1 is a magnetic tape, 1b 1 , 1b 2 , 1b 3 . . . are signal tracks, and 2 is a soft magnetic film device with easy magnetization perpendicular to the surface.

Claims (1)

【特許請求の範囲】[Claims] 1 磁気記録媒体上に軟磁性膜面垂直容易磁化膜
を配置し互いに相対的に移動し、該軟磁性膜面垂
直容易磁化膜に形成された信号磁区を光磁気効果
を利用して読出す装置に於て、上記軟磁性膜面垂
直容易磁化膜として面内磁気異方性も有する磁化
膜を用い、該面内磁気異方性の方向を上記磁気記
録媒体と軟磁性膜面垂直容易磁化膜との相対移動
方向と平行する様に選んだ事を特徴とする磁気記
録信号の読出し装置。
1. A device for disposing soft magnetic easily magnetized films perpendicular to the magnetic recording medium, moving them relative to each other, and reading out signal magnetic domains formed in the soft magnetic easily magnetized films perpendicular to the surface by using the magneto-optical effect. In this method, a magnetized film that also has in-plane magnetic anisotropy is used as the soft magnetic easily perpendicularly magnetized film, and the direction of the in-plane magnetic anisotropy is set between the magnetic recording medium and the soft magnetic easily perpendicularly magnetized film. A magnetic recording signal reading device characterized in that the magnetic recording signal is selected so as to be parallel to the direction of relative movement with respect to the magnetic recording signal.
JP8443080A 1980-06-20 1980-06-20 Reading device of magnetic record signal Granted JPS5712427A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8443080A JPS5712427A (en) 1980-06-20 1980-06-20 Reading device of magnetic record signal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8443080A JPS5712427A (en) 1980-06-20 1980-06-20 Reading device of magnetic record signal

Publications (2)

Publication Number Publication Date
JPS5712427A JPS5712427A (en) 1982-01-22
JPH0140410B2 true JPH0140410B2 (en) 1989-08-29

Family

ID=13830362

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8443080A Granted JPS5712427A (en) 1980-06-20 1980-06-20 Reading device of magnetic record signal

Country Status (1)

Country Link
JP (1) JPS5712427A (en)

Also Published As

Publication number Publication date
JPS5712427A (en) 1982-01-22

Similar Documents

Publication Publication Date Title
JPS6130331B2 (en)
EP0107754B1 (en) Apparatus for magneto-optical information storage
JPH07101523B2 (en) Magneto-optical signal reproducing device
US4518657A (en) Recording medium and recording-reproduction system provided with the recording medium
KR920006917A (en) Magnetic recording media for digital recording
GB2120000A (en) Magnetic recording and reproduction
US3394360A (en) Magneto-optical translator
JPH01237945A (en) Magneto-optical recording medium
JPH0140410B2 (en)
US4564877A (en) Magnetic recording/reproducing system with wide-gapped transducer and method for using same
JPS56153546A (en) Magnetic recording medium
JPH0522305B2 (en)
Nomura A new magneto-optic readout head using bi-substituted magnetic garnet film
US5359579A (en) Magneto-optical recording method and medium for recording three-value information
US6400656B1 (en) Magneto-optical recording medium comprising recording layer and reproducing layer
JP3229907B2 (en) Optical recording medium and optical recording medium reproducing apparatus
KR0166744B1 (en) High density magneto-optical disk device
US6396774B1 (en) Information reproducing device, information recording/reproducing head, and information reproducing method utilizing mono-magnetic domain structure
JP3333389B2 (en) Magneto-optical information storage medium and reproducing method thereof
US5065378A (en) System for reproducing a signal recorded in a magnetic recording medium by using a magnetostatic wave
JPS62241155A (en) Magneto-optical type reproducing magnetic head
JPS5813450Y2 (en) magnetic recording medium
Kishida et al. Optical reading from videotapes using magnetic garnet film
JPH0329781Y2 (en)
JPS6023401B2 (en) Magnetic recording and reproducing method