JPH0140341B2 - - Google Patents

Info

Publication number
JPH0140341B2
JPH0140341B2 JP55120779A JP12077980A JPH0140341B2 JP H0140341 B2 JPH0140341 B2 JP H0140341B2 JP 55120779 A JP55120779 A JP 55120779A JP 12077980 A JP12077980 A JP 12077980A JP H0140341 B2 JPH0140341 B2 JP H0140341B2
Authority
JP
Japan
Prior art keywords
photoreceptor
phthalocyanine
dispersed
resin
tetrathiafulvalene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55120779A
Other languages
Japanese (ja)
Other versions
JPS5745548A (en
Inventor
Akio Yagishita
Kyohide Muramatsu
Seiji Okada
Toshiaki Narisawa
Hirofumi Okuyama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP55120779A priority Critical patent/JPS5745548A/en
Publication of JPS5745548A publication Critical patent/JPS5745548A/en
Publication of JPH0140341B2 publication Critical patent/JPH0140341B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/06Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being organic
    • G03G5/0664Dyes
    • G03G5/0696Phthalocyanines
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/06Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being organic
    • G03G5/0622Heterocyclic compounds
    • G03G5/0624Heterocyclic compounds containing one hetero ring
    • G03G5/0627Heterocyclic compounds containing one hetero ring being five-membered
    • G03G5/0631Heterocyclic compounds containing one hetero ring being five-membered containing two hetero atoms
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/06Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being organic
    • G03G5/0622Heterocyclic compounds
    • G03G5/0644Heterocyclic compounds containing two or more hetero rings
    • G03G5/0661Heterocyclic compounds containing two or more hetero rings in different ring systems, each system containing at least one hetero ring

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Light Receiving Elements (AREA)
  • Photoreceptors In Electrophotography (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はレーザプリンタ装置に用いる感光体に
係り、特に半導体レーザの発振波長領域に高い光
感度をもつ半導体レーザプリンタの感光体に関す
る。 可視光領域(波長;370〜720nm)の光に感度
を持つ感光体としては従来よりSe,Se―Te―
CdS,ZnOおよび有機光電導体等多数知られてお
り、これらのうち数種類は実際に電子写真方式複
写機やHe―Neレーザを入力とするレーザプリン
タに実用化されている。しかし、半導体レーザの
発振波長領域すなわち近赤外領域に感度をもつ感
光体は今だ数少なく、CdS,As―Te―Se系およ
びフタロシアニンが掲げられるに過ぎない。しか
し前二者は、有害物質(Cdは毒物および劇物取
締法の劇物指定並びに特定化学物質障害予防規則
の第2類物質;Seは毒物および劇物取締法の毒
物)であるため、公害の点、製造時の安全衛生の
点ならびに感光体製造時As―Te―Se系では蒸着
装置が必要等、製造性に大きな欠点がある。また
CdSは光感度は良好であるが帯電性が低く、特殊
な帯電方式を採らねばならないと云う欠点があ
る。一方フタロシアニン顔料は古くから光電導性
を示すことが知られ、早くから電子写真の分野で
複写機、レーザプリンタ用感光体への適用が研究
されてきた。このフタロシアニン顔料を用いた感
光体を作製するには、単体では製膜性がなく、ま
た蒸着が困難なため、フタロシアニン顔料、バイ
ンダを有機溶媒に分散させ、光電導塗液を作成し
これをドクターブレード、バーコータ、ロールコ
ーター等により導電性基板上に塗布し数μm〜10
数μmの感光体膜に形成する。 上記の如く形成した感光体膜に帯電させるため
には第1図に示す如きコロナ帯電器を用いて、例
えば放電電圧+6.8KVで正に帯電させる。図にお
いて1は放電電極、2は遮へい電極、3は導電性
支持体、4は導電性支持体上に塗布した感光体膜
である。 フタロシアニン顔料とフタロシアニン顔料分散
用の樹脂であるバインダとの割合、すなわち顔料
分散率(フタロシアニン顔料/フタロシアニン顔料+バ
インダ×100) をパラメータとして、縦軸に帯電電位で、横軸に
膜厚でプロツトした感光体の帯電特性の例を第2
図に示す。第2図から帯電電位を高くするには顔
料分散率を低くするか或は感光体膜厚を厚くすれ
ばよい。顔料分散率が低い場合、帯電電位と感光
体膜厚の間には比例関係があるが、顔料分散率が
高くなるにつれ、直線性からずれる。例えば顔料
分散率が40wt%では膜厚が数μm以上で直線性か
らずれはじめ、10μm以上では帯電電位は約500V
程度で飽和する。 従つて帯電電位と膜厚との関係を直線性を保
ち、かつ帯電電位を300V程度以上と高くするに
は顔料分散率がある程度低いことが望ましい。 しかしながら、顔料分散率が余り低くなると、
帯電電位と感光体膜厚の間には比例関係が得られ
てまた高い帯電電圧が得られるものの、樹脂の割
合が多くなり、光照射によりフタロシアニン中に
生ずる電荷が移動するのが困難となり、導電性支
持体に電荷が抜けるのが遅くなると云う欠点を生
ずる。従つて顔料分散率は大よそ35wt%程度で
あることが好ましい。顔料分散率が35wt%とな
るようにフタロシアニン顔料、バインダを有機溶
媒に分散させ、この分散液をドクターブレード,
バーコーダ,ロールコータ等により導電性基板上
に乾燥膜圧が7.0μmとなるように塗布して、作成
した感光体の分光感度曲線を第3図に示す。 図は、縦軸を帯電電位+500Vからの半減露光
量E1/2の逆数1/E1/2にとり、横軸を照射波長 (600〜900nm)にとつたものである。なお半減露
光量E1/2が小さいほど感度が高い。従つて第3
図の縦軸1/E1/2の値が大きい場合感度が高く、 小さい場合感度が低いことを示している。第3図
の分光感度曲線より、フタロシアニン顔料は可視
部から近赤外領域まで、幅広い感度を持つことが
わかるが、複写機、レーザプリンタ用としては、
未だ感度不足であり、特に半導体レーザの発振波
長領域では感度が低いと云う欠点がある。 本発明は上述の特に半導体レーザプリンタ用と
して光感度が低いと云う欠点を除去するもので、
近赤外光領域に光感度を持ち、無公害で耐光性、
対薬品性に優れたフタロシアニン顔料にテトラチ
アフルバレンを添加する事により飛躍的増感を実
現し、半導体レーザ光に対し高い光感度を持ちか
つ無公害で安価、製造が容易なプリンタ用感光体
を提供するにある。 本発明は、導電性基板上にフタロシアニンを樹
脂中に分散させた感光体膜を形成した電子写真用
感光体において、上記感光体膜がテトラチアフル
バレンを含む電子写真用感光体によつて達成され
る。 以下本発明を詳細に説明する。 本発明者は、感光体製造も容易であるため、こ
の〔フタロシアニン・バインダ〕系感光体の活用
を目的とし、種々の増感方法を鋭意検討した。 先ず、〔フタロシアニン顔料―バインダ〕分散
型感光体(P1)の感度不足がどこに由来するか
を調べるため、上記試料について、表面電位が
400Vとなるように帯電させた感光体に波長
632.8nmの光を照射し、表面電位の時間変化を観
測した。第4図にその結果を示す。図は縦軸を表
面電位で、横軸を光照射時間で、感光体の光減衰
特性を示したものであり、図中の実線が光を照射
した場合、点線は光を照射しない場合の暗減衰で
ある。残留電位率nと照射エネルギーE0の関係
を第5図に示す。 第5図は、光照射後t秒後に得られた潜像電位
をΔVt,ΔVtを得るに要した照射エネルギーをE0
として、縦軸に光感度の様子を知るため残留電位
率η=〔1−ΔVt/V0〕を、横軸にE0を対数目盛で プロツトしたものである。なおV0は光照射開始
時の表面電位である。なお第5図中の曲線P1
フタロシアニン顔料+バインダ分散型感光体P1
の光減衰特性を示す。この結果から、光照射直後
の減衰がきわめて小さい、すなわち照射エネルギ
ー効率よく使われていないことがわかる。(この
照射直後の現象を以下インダクシヨン現象と呼
ぶ)。すなわち〔フタロシアニン顔料+バインダ〕
分散型感光体を高感度にする為には、このインダ
クシヨン現象を取り除かねばならないことがわか
つた。このため我々は、鋭意努力し、多数の化合
物について増感効果を調べた。 多数の化合物について増感効果を調べるため
に、第7図の如き積層構造P2を有する感光体を
形成し、その帯電特性を調べた。すなわち、第6
図に示す如く導電性支持体3上にフタロシアニン
顔料を樹脂に分散させた電荷発生層4を形成した
構造P1を基本構造とし、この電荷発生層4の上
に増感効果を調べる化合物を樹脂中に分散させた
層を形成し、第7図の如き積層構造P2としたも
のである。このようにすると多数の化合物につい
て下地を同一条件にすることができる他に、増感
効果を調べる化合物とフタロシアニン顔料との反
応或は相互作用等を避けることが出来増感効果有
無の評価を単純にすることができる。また、工程
的にもP1構造の感光体を多数形成しておき、そ
の上に所定の化合物を添加した塗液を塗布して感
光体を形成すればよいので、多数の化合物を調べ
るには便利である。 このようにして形成した積層構造P2を有する
感光体を帯電させた後波長632.8nmの光を照射
し、表面電位の時間変化を測定し、残留電位率η
=(1−ΔVt/V0)と照射エネルギーE0の関係を求 めた。多数の化合物について増感効果を調べた中
で、テトラチアフルバレンを添加した感光体P2
で第5図の曲線P2で示す特性が得られた。 半減露光量は従来のP1とあまりかわらないか
もしくは大きくなるものの初期状態について比較
すると、インダクシヨン現象が消滅していること
が判る。そこで本発明者はこの点に着目し、テト
ラチアフルバレンの組成、感光体の構造、形成方
法につき特性向上を追求した。インダクシヨン現
象は光照射によりフタロシアニン顔料内に生じた
キヤリアがフタロシアニンとバインダとの界面を
移動しにくいためであると考えられる。すなわ
ち、フタロシアニン顔料の回りに電荷が移動しや
すい例えばテトラチアフルバレン等のように電子
的活性な分子があるとキヤリア移動率が向上し、
インダクシヨン現象が除かれる。 前述の第7図に示す積層構造P2の感光体では
界面7近傍のフタロシアニン顔料だけがテトラチ
アフルバレンに接触しかこまれることになり効率
が悪い。そこで第8図に示す如く、フタロシアニ
ン顔料とテトラチアフルバレンの如き電子的活性
な化合物とを同時に混合して、樹脂中に分散させ
た層8を用いることにより、フタロシアニン顔料
と電子的活性な化合物との接触を良くし、キヤリ
ア移動度を高くした感光体P3に至つた。 この感光体P3の光感度は以下実施例で例示す
るが近赤外領域の光に対し、従来のP1から比較
して、飛躍的に高感度となつた。 (実施例 1) 第1表に掲げた組成物をポリエチレン製広口ビ
ン(1)に入れ、80時間ミリングした。この塗
液をアルミ板上にドクターブレード法により、乾
燥後の膜厚が8.0μmになるよう塗布した。
The present invention relates to a photoreceptor used in a laser printer device, and more particularly to a photoreceptor for a semiconductor laser printer that has high photosensitivity in the oscillation wavelength region of a semiconductor laser. Conventionally, Se, Se-Te-
A large number of materials are known, including CdS, ZnO, and organic photoconductors, and several of these have actually been put into practical use in electrophotographic copiers and laser printers that use He--Ne lasers as input. However, there are still only a few photoreceptors that are sensitive to the oscillation wavelength region of semiconductor lasers, that is, the near-infrared region, and only CdS, As--Te--Se systems, and phthalocyanine are mentioned. However, the former two are hazardous substances (Cd is designated as a hazardous substance under the Poisonous and Deleterious Substances Control Law and is a Class 2 substance under the Specified Chemical Substances Hazard Prevention Regulations; Se is a poisonous substance under the Poisonous and Deleterious Substances Control Law), so they cause pollution. There are major drawbacks in terms of manufacturing efficiency, such as safety and hygiene during manufacturing, and the need for vapor deposition equipment for the As-Te-Se system when manufacturing photoreceptors. Also
Although CdS has good photosensitivity, it has low charging properties and has the disadvantage of requiring a special charging method. On the other hand, phthalocyanine pigments have been known for a long time to exhibit photoconductivity, and their application to photoreceptors for copying machines and laser printers has been studied for a long time in the field of electrophotography. In order to produce a photoreceptor using this phthalocyanine pigment, since it does not have film-forming properties when used alone and is difficult to vapor-deposit, the phthalocyanine pigment and binder are dispersed in an organic solvent to create a photoconductive coating liquid. Coat on a conductive substrate using a blade, bar coater, roll coater, etc.
Formed on a photoreceptor film of several micrometers. In order to charge the photoreceptor film formed as described above, a corona charger as shown in FIG. 1 is used to positively charge it at a discharge voltage of +6.8 KV, for example. In the figure, 1 is a discharge electrode, 2 is a shielding electrode, 3 is a conductive support, and 4 is a photoreceptor film coated on the conductive support. The ratio of the phthalocyanine pigment to the binder, which is a resin for dispersing the phthalocyanine pigment, or the pigment dispersion rate (phthalocyanine pigment/phthalocyanine pigment + binder x 100) was plotted as a parameter, with the vertical axis representing the charging potential and the horizontal axis representing the film thickness. The second example of the charging characteristics of the photoreceptor is
As shown in the figure. From FIG. 2, in order to increase the charging potential, the pigment dispersion rate may be lowered or the photoreceptor film thickness may be increased. When the pigment dispersion rate is low, there is a proportional relationship between the charging potential and the photoreceptor film thickness, but as the pigment dispersion rate increases, the relationship deviates from linearity. For example, when the pigment dispersion rate is 40wt%, the film starts to deviate from linearity when the film thickness exceeds several μm, and when the film thickness exceeds 10μm, the charging potential is approximately 500V.
Saturation occurs at a certain level. Therefore, in order to maintain linearity in the relationship between charging potential and film thickness and to increase the charging potential to about 300 V or more, it is desirable that the pigment dispersion rate be low to some extent. However, if the pigment dispersion rate becomes too low,
Although a proportional relationship can be obtained between the charging potential and the photoreceptor film thickness, and a high charging voltage can be obtained, the ratio of resin increases, and it becomes difficult for the charge generated in the phthalocyanine by light irradiation to move, resulting in a lack of conductivity. This has the disadvantage that the charge is slowly removed from the support. Therefore, it is preferable that the pigment dispersion rate is approximately 35 wt%. Phthalocyanine pigment and binder are dispersed in an organic solvent so that the pigment dispersion rate is 35wt%, and this dispersion is mixed with a doctor blade.
FIG. 3 shows the spectral sensitivity curve of a photoreceptor prepared by coating it onto a conductive substrate using a barcoder, roll coater, etc. so that the dry film thickness was 7.0 μm. In the figure, the vertical axis is the reciprocal 1/E1/2 of the half-decreased exposure amount E1/2 from the charging potential +500V, and the horizontal axis is the irradiation wavelength (600 to 900 nm). Note that the smaller the half-life exposure amount E1/2, the higher the sensitivity. Therefore, the third
A large value on the vertical axis 1/E1/2 in the figure indicates high sensitivity, and a small value indicates low sensitivity. From the spectral sensitivity curve in Figure 3, it can be seen that phthalocyanine pigments have a wide range of sensitivity from the visible region to the near-infrared region, but for copying machines and laser printers,
The disadvantage is that the sensitivity is still insufficient, especially in the oscillation wavelength region of semiconductor lasers. The present invention eliminates the above-mentioned disadvantage of low photosensitivity especially for semiconductor laser printers.
Light-sensitive in the near-infrared region, non-polluting and light-resistant.
By adding tetrathiafulvalene to a phthalocyanine pigment with excellent chemical resistance, we have achieved dramatic sensitization, creating a photoreceptor for printers that has high photosensitivity to semiconductor laser light and is pollution-free, inexpensive, and easy to manufacture. It is on offer. The present invention provides an electrophotographic photoreceptor in which a photoreceptor film in which phthalocyanine is dispersed in a resin is formed on a conductive substrate, wherein the photoreceptor film contains tetrathiafulvalene. Ru. The present invention will be explained in detail below. Since the photoreceptor is easy to manufacture, the present inventor has intensively investigated various sensitization methods with the aim of utilizing this [phthalocyanine binder] type photoreceptor. First, in order to investigate where the lack of sensitivity of the [phthalocyanine pigment-binder] dispersed photoreceptor (P 1 ) originates, we investigated the surface potential of the above sample.
Wavelength is applied to a photoreceptor charged to 400V.
We irradiated it with 632.8 nm light and observed changes in surface potential over time. Figure 4 shows the results. The figure shows the light attenuation characteristics of the photoconductor, with the vertical axis representing the surface potential and the horizontal axis representing the light irradiation time.The solid line in the figure represents the dark state when light is irradiated, and the dotted line represents the dark state when no light is irradiated. It is attenuation. The relationship between the residual potential rate n and the irradiation energy E 0 is shown in FIG. Figure 5 shows the latent image potential obtained t seconds after light irradiation as ΔVt, and the irradiation energy required to obtain ΔVt as E 0
The residual potential rate η=[1-ΔVt/V 0 ] is plotted on the vertical axis in order to understand the state of photosensitivity, and E 0 is plotted on the horizontal axis on a logarithmic scale. Note that V 0 is the surface potential at the start of light irradiation. Note that the curve P 1 in Fig. 5 is the phthalocyanine pigment + binder dispersed photoreceptor P 1
shows the optical attenuation characteristics of This result shows that the attenuation immediately after light irradiation is extremely small, that is, the irradiation energy is not used efficiently. (This phenomenon immediately after irradiation is hereinafter referred to as induction phenomenon). That is, [phthalocyanine pigment + binder]
It has been found that this induction phenomenon must be eliminated in order to make the dispersion type photoreceptor highly sensitive. For this reason, we have made extensive efforts to investigate the sensitizing effects of a large number of compounds. In order to investigate the sensitizing effects of a number of compounds, a photoreceptor having a laminated structure P2 as shown in FIG. 7 was formed and its charging characteristics were investigated. That is, the sixth
As shown in the figure, the basic structure is a structure P1 in which a charge generation layer 4 in which a phthalocyanine pigment is dispersed in a resin is formed on a conductive support 3, and a compound whose sensitizing effect is to be examined is placed on the charge generation layer 4 using a resin. A layer dispersed therein is formed to form a laminated structure P2 as shown in FIG. In this way, in addition to being able to use the same base conditions for many compounds, it is also possible to avoid reactions or interactions between the compound whose sensitizing effect is to be tested and the phthalocyanine pigment, making it easier to evaluate the presence or absence of a sensitizing effect. It can be done. In addition, in terms of process, it is sufficient to form a large number of photoreceptors with the P 1 structure and then apply a coating liquid containing a predetermined compound thereon to form the photoreceptor, so it is possible to investigate a large number of compounds. It's convenient. After charging the photoreceptor having the laminated structure P 2 formed in this way, it was irradiated with light with a wavelength of 632.8 nm, the time change in surface potential was measured, and the residual potential rate η
The relationship between = (1-ΔVt/V 0 ) and irradiation energy E 0 was determined. Among the sensitizing effects of many compounds investigated, photoreceptor P 2 containing tetrathiafulvalene was found.
The characteristics shown by curve P2 in FIG. 5 were obtained. Although the half-decrease exposure amount is not much different or larger than that of the conventional P1 , a comparison of the initial state shows that the induction phenomenon has disappeared. The present inventor focused on this point and sought to improve the properties of the composition of tetrathiafulvalene, the structure of the photoreceptor, and the method of forming it. The induction phenomenon is thought to be because carriers generated in the phthalocyanine pigment due to light irradiation are difficult to move across the interface between the phthalocyanine and the binder. In other words, if there is an electronically active molecule, such as tetrathiafulvalene, that allows charge to easily move around the phthalocyanine pigment, the carrier transfer rate will improve.
Induction phenomenon is eliminated. In the photoreceptor having the laminated structure P2 shown in FIG. 7, only the phthalocyanine pigment near the interface 7 comes into contact with the tetrathiafulvalene, resulting in poor efficiency. Therefore, as shown in FIG. 8, by using a layer 8 in which a phthalocyanine pigment and an electronically active compound such as tetrathiafulvalene are simultaneously mixed and dispersed in a resin, the phthalocyanine pigment and an electronically active compound can be mixed together. The photoconductor P 3 has been developed with improved carrier mobility and improved carrier mobility. The photosensitivity of this photoreceptor P3 will be exemplified in the following examples, but it has become dramatically more sensitive to light in the near-infrared region than the conventional photoreceptor P1 . (Example 1) The composition listed in Table 1 was placed in a polyethylene wide-mouth bottle (1) and milled for 80 hours. This coating liquid was applied onto an aluminum plate by a doctor blade method so that the film thickness after drying was 8.0 μm.

【表】 この感光体にコロナ帯電器(放電電圧
6.8KV)で帯電させたところ、表面電位は感光体
Aが340V、感光体Bは300Vであつた。ここで波
長632.8nmの光(照射強度10μW/cm2)を照射し
たところ、光感度特性は第9図のようであつた。
第9図から本発明の感光体が従来知られているも
のに比べ飛躍的に高感度であることが認められ
る。すなわち従来の感光体の光感度特性は曲線B
(点線)で示されるように照射エネルギーE0が3
〜4μJ/cm2では電位減衰が極めて小さい。また半
減露光量も10μJ/cm2と大きいのに本発明の感光
体の光感度特性は曲線A(実線)で示される如く、
インダクシヨン現象が改良されると共に半減露光
量も4μJ/cm2と高感度になつた。 なお本発明の増感剤として用いるテトラチアフ
ルバレンは の構造を持ちL.R.Melty(J.Qrg.Chem,39,2456
(,74))やM.V.Lakshmikan Thanら(J.Org.
Chem 41,879(76))によりその合成法が示さ
れている。 (実施例 2) 下記組成の塗液を実施例1と同様の工程で感光
体に形成した。
[Table] This photoreceptor is equipped with a corona charger (discharge voltage
When charged at 6.8 KV), the surface potential of photoreceptor A was 340V and that of photoreceptor B was 300V. When irradiated with light having a wavelength of 632.8 nm (irradiation intensity 10 μW/cm 2 ), the photosensitivity characteristics were as shown in FIG. 9.
It can be seen from FIG. 9 that the photoreceptor of the present invention has significantly higher sensitivity than conventionally known photoreceptors. In other words, the photosensitivity characteristic of the conventional photoreceptor is curve B.
As shown by the (dotted line), the irradiation energy E 0 is 3
The potential attenuation is extremely small at ~4 μJ/cm 2 . Furthermore, although the half-decrease exposure amount is as large as 10 μJ/cm 2 , the photosensitivity characteristics of the photoreceptor of the present invention are as shown by curve A (solid line).
The induction phenomenon has been improved, and the half-decrease exposure has become 4 μJ/cm 2 , making it highly sensitive. Note that tetrathiafulvalene used as a sensitizer in the present invention is It has the structure LRMelty (J.Qrg.Chem, 39, 2456
(, 74)) and MV Lakshmikan Than et al. (J.Org.
Chem 41 , 879 (76)) describes its synthesis method. (Example 2) A coating liquid having the following composition was formed on a photoreceptor in the same process as in Example 1.

【表】 膜厚6.2μmの感光体の最大帯電電位は570V表
面電位500Vからの半減露光量(波長632.8nmに
対する)は5μJ/cm2であつた。 以上の説明から明らかな如く、本発明のフタロ
シアニンと電子供与性の化合物であるテトラチア
フルバレンとを樹脂中に分散させた感光体を用い
ることにより、近赤外領域の光に対し、従来のフ
タロシアニンを樹脂中に分散させた感光体に比較
して飛躍的に高感度とすることができた。 なお本実施例ではフタロシアニンを樹脂中に分
散させた電荷発生層及び電子的に活性なテトラチ
アフルバレンを樹脂中に分散させた層(電荷輸送
層)を積層した構造の感光体材料、フタロシアニ
ンとテトラチアフルバレンとの混合物を樹脂中に
分散させた感光体材料について述べたが、当然の
こととしてフタロシアニンを樹脂中に分散させた
層、フタロシアニンとテトラチアフルバレンの如
き電子的活性な化合物との混合物を樹脂中に分散
させた層、テトラチアフルバレンの如き電子的活
性な化合物を樹脂中に分散させた層のうちいずれ
かを積層した構造の感光体材料であつても良い。
[Table] The maximum charging potential of the photoreceptor with a film thickness of 6.2 μm was 570V, and the half-reduction exposure amount (for a wavelength of 632.8 nm) from the surface potential of 500V was 5 μJ/cm 2 . As is clear from the above explanation, by using a photoreceptor in which the phthalocyanine of the present invention and tetrathiafulvalene, which is an electron-donating compound, are dispersed in a resin, it is possible to improve Compared to a photoreceptor in which the photoreceptor is dispersed in a resin, the sensitivity can be dramatically increased. In this example, a photoreceptor material having a laminated structure of a charge generation layer in which phthalocyanine is dispersed in a resin and a layer (charge transport layer) in which electronically active tetrathiafulvalene is dispersed in a resin, phthalocyanine and tetra Although we have described a photoreceptor material in which a mixture with thiafulvalene is dispersed in a resin, it goes without saying that a layer in which a phthalocyanine is dispersed in a resin and a mixture of phthalocyanine and an electronically active compound such as tetrathiafulvalene can also be used. The photoreceptor material may have a structure in which either a layer in which an electronically active compound such as tetrathiafulvalene is dispersed in a resin is laminated.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は感光体に帯電させるコロナ帯電器の説
明図、第2図はフタロシアニンを樹脂で分散した
感光体の帯電特性、第3図は上記感光体の分光感
度曲線、第4図は上記感光体の光減衰特性、第5
図及び第9図は従来及び本発明の感光体の光減衰
特性、第6図は従来の感光体、第7図、第8図は
本発明の感光体の構造の模式図である。
Figure 1 is an explanatory diagram of a corona charger that charges a photoreceptor, Figure 2 is the charging characteristics of a photoreceptor with phthalocyanine dispersed in resin, Figure 3 is the spectral sensitivity curve of the photoreceptor, and Figure 4 is the photoreceptor. Light attenuation properties of the body, 5th
9 and 9 are light attenuation characteristics of the conventional photoconductor and the present invention, FIG. 6 is a conventional photoconductor, and FIGS. 7 and 8 are schematic diagrams of the structure of the present invention photoconductor.

Claims (1)

【特許請求の範囲】 1 導電性基板上にフタロシアニンを樹脂中に分
散させた感光体膜を形成した電子写真用感光体に
おいて、上記感光体膜がテトラチアフルバレンを
含むことを特徴とする電子写真用感光体。 2 上記フタロシアニンが銅フタロシアニンであ
ることを特徴とする特許請求の範囲第1項記載の
電子写真用感光体。
[Scope of Claims] 1. An electrophotographic photoreceptor in which a photoreceptor film in which phthalocyanine is dispersed in a resin is formed on a conductive substrate, wherein the photoreceptor film contains tetrathiafulvalene. Photoreceptor for use. 2. The electrophotographic photoreceptor according to claim 1, wherein the phthalocyanine is copper phthalocyanine.
JP55120779A 1980-09-01 1980-09-01 Material for electrophotographic receptor Granted JPS5745548A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP55120779A JPS5745548A (en) 1980-09-01 1980-09-01 Material for electrophotographic receptor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55120779A JPS5745548A (en) 1980-09-01 1980-09-01 Material for electrophotographic receptor

Publications (2)

Publication Number Publication Date
JPS5745548A JPS5745548A (en) 1982-03-15
JPH0140341B2 true JPH0140341B2 (en) 1989-08-28

Family

ID=14794792

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55120779A Granted JPS5745548A (en) 1980-09-01 1980-09-01 Material for electrophotographic receptor

Country Status (1)

Country Link
JP (1) JPS5745548A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4728593A (en) * 1985-07-12 1988-03-01 E. I. Du Pont De Nemours And Company Photoconductive polyimide-electron donor charge transfer complexes
JPH01215069A (en) * 1988-02-24 1989-08-29 Ricoh Co Ltd Photoelectric conversion element

Also Published As

Publication number Publication date
JPS5745548A (en) 1982-03-15

Similar Documents

Publication Publication Date Title
EP0056727A1 (en) Infrared sensitive photoconductive element
JPH01237555A (en) Electrophotographic sensitive body
JPH0140341B2 (en)
JPS63158560A (en) Electrophotographic sensitive body
JPH0331847A (en) Electrophotographic recording material
JPS6338942A (en) Electrophotographic sensitive body
US3418115A (en) Bleaching out electrophotographic sensitizers by simultaneous exposure to light and corona discharge
JP2625868B2 (en) Manufacturing method of electrophotographic photoreceptor
JPS61188543A (en) Electrophotographic sensitive body
JP3001453B2 (en) Electrophotographic photoreceptor
JPH07244390A (en) Electrophotographic photoreceptor
JP3063439B2 (en) Laminated electrophotographic photoreceptor and paint for charge generation layer
JPH02293854A (en) Laminate type electrophotographic sensitive body
JPS62150255A (en) Composite type electrophotographic sensitive body
JPS60128452A (en) Electrophotographic sensitive body
JPH0466350B2 (en)
JPS6046708B2 (en) Image forming method
JPS5844442A (en) Electrophotographic sensitive material
JPH02244061A (en) Electrophotographic sensitive body
JP2002258500A (en) Electrophotographic receptor
JPH09218522A (en) Electrophotographic photoreceptor and its production
JPH02251857A (en) Electrophotographic organic sensitive body
JPS58176639A (en) Electrophotographic receptor
JPH0447814B2 (en)
JPH0524505B2 (en)