JPH0140295Y2 - - Google Patents

Info

Publication number
JPH0140295Y2
JPH0140295Y2 JP1983004034U JP403483U JPH0140295Y2 JP H0140295 Y2 JPH0140295 Y2 JP H0140295Y2 JP 1983004034 U JP1983004034 U JP 1983004034U JP 403483 U JP403483 U JP 403483U JP H0140295 Y2 JPH0140295 Y2 JP H0140295Y2
Authority
JP
Japan
Prior art keywords
field
core
coil
slot
field core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1983004034U
Other languages
Japanese (ja)
Other versions
JPS59109240U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1983004034U priority Critical patent/JPS59109240U/en
Publication of JPS59109240U publication Critical patent/JPS59109240U/en
Application granted granted Critical
Publication of JPH0140295Y2 publication Critical patent/JPH0140295Y2/ja
Granted legal-status Critical Current

Links

Description

【考案の詳細な説明】 この本考案は、たとえば交流発電機等の回転電
機における界磁鉄心の改良に関するものである。
[Detailed Description of the Invention] The present invention relates to an improvement of a field core in a rotating electrical machine such as an alternating current generator.

一般に、この種交流発電機として広く使用され
ている形式は電機子を固定子とし、界磁鉄極を回
転子とする同期発電機が多く、この同期発電機の
回転界磁鉄心は第1図に示すような突極形であ
り、けい素鋼板などの薄板鋼板材料をプレス加工
によつて第2図に示すような形状に打抜き、これ
を所定厚さに積層して複数のリベツトにより一体
に固定した磁極片1の鳩尾形突起1aを、回転軸
2と一体をなす第3図に示すような輻鉄3の外周
に所定間隔をあけて形成された鳩尾形溝4に嵌合
固定して第1図に示すような回転界磁鉄心を製作
しているが、このように構成された従来の回転界
磁鉄心においては、各磁極片1と、この各磁極片
1に巻回された比較的重量の重い界磁コイル(図
示せず)による強大な遠心力に耐え、しかも各磁
極片1の極間ピツチを正確に等間隔に支持する輻
鉄3を製作するに当たつて、相当の手間と費用と
を必要とするばかりでなく、上記磁極片1に巻回
されるコイル(図示せず)の支持手段も比較的面
倒で、しかもこのコイル内への冷却風の流通が悪
いためにコイル温度が上昇し易い欠点がある。
In general, the most widely used type of alternating current generator is a synchronous generator in which the armature is the stator and the field iron pole is the rotor.The rotating field iron core of this synchronous generator is shown in Figure 1. It has a salient pole shape as shown in Figure 2, and is made by punching thin steel sheets such as silicon steel plates into the shape shown in Figure 2 by press working, laminating them to a predetermined thickness and joining them together with multiple rivets. The dovetail-shaped protrusion 1a of the fixed magnetic pole piece 1 is fitted and fixed into the dovetail-shaped groove 4 formed at a predetermined interval on the outer periphery of a beam 3 as shown in FIG. 3 which is integral with the rotating shaft 2. A rotating field core as shown in Fig. 1 is manufactured, but in the conventional rotating field core configured in this way, each magnetic pole piece 1 and the comparison winding around each magnetic pole piece 1 are A considerable amount of effort was required to manufacture the radial iron 3 that can withstand the strong centrifugal force caused by the heavy field coil (not shown) and that also supports the pitches between the poles of each magnetic pole piece 1 at exactly equal intervals. Not only is it time consuming and expensive, but the means for supporting the coil (not shown) wound around the magnetic pole piece 1 is also relatively troublesome, and furthermore, the circulation of cooling air into this coil is poor. The disadvantage is that the coil temperature tends to rise.

かかる欠点に対処する手段として、第5図に示
すように、けい素鋼板などの薄板鋼板材料をプレ
ス加工により、第5図に示すような形状、すなわ
ち、その中心部に回転軸2を挿入するための中心
孔5と、その外側に冷却空気を流通させるための
通風路6と、外周にコイル(図示せず)を巻回す
るための多数のスロツト7と、このスロツト7の
ない所定数の主極8とをそれぞれ一体に打抜いて
形成し、これを所定厚さに積層して第6図に示す
ように、両側の一対の押え板9,9を介して複数
のリベツト10により一体に固定して回転界磁鉄
心12を形成するようにしたものが用いられてい
る。
As a means to deal with this drawback, as shown in FIG. 5, a thin steel plate material such as a silicon steel plate is pressed into a shape as shown in FIG. 5, that is, a rotating shaft 2 is inserted in the center thereof. A central hole 5 for cooling, a ventilation passage 6 for circulating cooling air outside the central hole 5, a large number of slots 7 for winding coils (not shown) on the outer periphery, and a predetermined number of slots 7 without slots 7. The main poles 8 are punched out and formed into one piece, and then laminated to a predetermined thickness, as shown in FIG. A type that is fixed to form the rotating field iron core 12 is used.

この鉄心12のスロツトに、第13図に示すよ
うな同心状単層巻の界磁コイル30が挿入され
る。この挿入される状態を模式的に第16図に示
す。この場合、コイル30の幅Lは、実際にはコ
イルの内周側(下部)がL1,外周側(上部)が
L2であり、L2>L1となつていて、このコイ
ルを2個のスロツト7,7にまたがつて挿入しよ
うとするときは、内周側の幅L1とL2に拡げる
ようにして挿入しなければならないので、挿入作
業は面倒であり、又、絶縁物がマイカ等を含むと
きは破損するおそれがあつた。
A concentric single-layer field coil 30 as shown in FIG. 13 is inserted into the slot of the iron core 12. This inserted state is schematically shown in FIG. 16. In this case, the width L of the coil 30 is actually L1 on the inner side (lower part) of the coil and L2 on the outer side (upper side), and L2>L1. , 7, the insertion work is troublesome because it has to be expanded to the widths L1 and L2 on the inner circumferential side.Also, when the insulating material contains mica, etc. There was a risk of damage.

第7図は以上述べた回転界磁鉄心12の具体例
を示すもので、4個の主極8のそれぞれの周方向
の幅はスロツト7の4個分をスキツプするととも
に、各主極8間は6個のスロツト7を形成してお
り、上記各主極8には同芯界磁コイル(単層巻コ
イル)(図示せず)を3個巻線し、各主極8の極
性が「N」「S」「N」「S」となるように形成さ
れており、上記スロツト7、および各主極8にお
いてスキツプしたスロツト7のピツチPはすべて
一定になされており、このように構成された円筒
形においては、上述した従来の突極形よりも製作
しやすく、しかもコイルの冷却、およびコイルの
鉄心への装着手段は巻線形誘導機ロータ、あるい
は直流機電機子とほぼ同一である。ただし、巻線
形誘導機と直流機が何れも2層巻ダイヤモンドコ
イルが多いが、円筒形同期機においては、主極に
巻回される同芯巻単層コイルである相違はある
が、コイルエンドのバインド構造は類似手法によ
つて処理されている。そして、この円筒形同期機
の励磁電流は、直流を使用するから、回転界磁鉄
心12は必ずしも積層する必要はない。
FIG. 7 shows a specific example of the above-mentioned rotating field core 12, in which the width of each of the four main poles 8 in the circumferential direction skips four slots 7, and the width between each main pole 8 is has six slots 7, and three concentric field coils (single-layer winding coils) (not shown) are wound around each main pole 8, and the polarity of each main pole 8 is The slots 7 and the pitches P of the skipped slots 7 in each main pole 8 are all constant. The cylindrical shape is easier to manufacture than the conventional salient pole type described above, and the means for cooling the coil and attaching the coil to the iron core are almost the same as those for a wound induction machine rotor or a DC machine armature. However, although both wound induction machines and DC machines often use double-layer diamond coils, cylindrical synchronous machines use concentrically wound single-layer coils wound around the main pole. The binding structure of is handled by a similar method. Since direct current is used as the exciting current for this cylindrical synchronous machine, the rotating field core 12 does not necessarily need to be laminated.

この考案は、かかる点に着目してなされたもの
で、工作が簡単で生産性が高く、しかも電気的持
性の優れた回転電機の界磁鉄心を提供しようとす
るものである。
This invention was made with attention to this point, and is intended to provide a field core for a rotating electric machine that is easy to work, has high productivity, and has excellent electrical durability.

すなわち、第8図はこの考案の一実施例を示す
斜視図で、13は厚さtが、5〜100m/mの厚
鋼板によつて作られた回転界磁鉄心で、外周のス
ロツト14と、各主極15は、5〜10枚重ねられ
た厚鋼板材料を倣いガス切断、プラズマ切断、ま
たはレーザ切断等の高エネルギー密度切断手段に
よつて形紙と同一の形状に同時に切り抜くように
なされており、また中心孔16,通風路17,お
よびキー溝18も同様に倣いガス切り機によつて
切り抜くようになされている。ただし、上記中心
孔16の内周、キー溝18、および鉄心13の外
周は機械加工によつて高精度に仕上げられること
はいうまでもない。
That is, FIG. 8 is a perspective view showing an embodiment of this invention, in which 13 is a rotating field core made of a thick steel plate with a thickness t of 5 to 100 m/m, and a slot 14 on the outer periphery is connected to the rotary field core 13. , each main pole 15 is made by copying 5 to 10 stacked thick steel plates and simultaneously cutting them into the same shape as the paper pattern using high energy density cutting means such as gas cutting, plasma cutting, or laser cutting. The center hole 16, ventilation passage 17, and keyway 18 are similarly cut out using a copying gas cutter. However, it goes without saying that the inner periphery of the center hole 16, the keyway 18, and the outer periphery of the iron core 13 are finished with high precision by machining.

以上のように所定の形状に切除して作られた複
数の回転界磁鉄心13は、第9図に示すように、
回転軸19に挿入されるとともに、各鉄心13間
には通風ダクト20が形成され、その各通風ダク
ト20のそれぞれのギヤツプ寸法は、電機子と界
磁コイルのジユール熱による温度上昇に対応して
温風できるように、適宜調節し得られるように構
成されている。また、上記各回転界磁鉄心13の
厚さtも、すべてが同一ではなく、通風と、発生
熱量、および磁束通過量に対応して適宜選択し得
るようになされている。
The plurality of rotating field cores 13 cut into predetermined shapes as described above are as shown in FIG.
A ventilation duct 20 is formed between each iron core 13 while being inserted into the rotating shaft 19, and the gap dimensions of each ventilation duct 20 are set in accordance with the temperature rise due to the Joule heat of the armature and field coil. It is constructed so that it can be adjusted appropriately to provide warm air. Further, the thickness t of each of the rotating field cores 13 is not all the same, but can be appropriately selected depending on the ventilation, the amount of heat generated, and the amount of magnetic flux passing through.

このようにして回転軸19に複数個の界磁鉄心
13を、通風ダクト20を形成するように間隔を
おいて嵌着固定したのちにこの界磁鉄心13のス
ロツトに、第13図に示すような界磁コイル30
を挿入する。このようにして、第14図に示す回
転子が形成される。
After a plurality of field cores 13 are fitted and fixed to the rotating shaft 19 at intervals so as to form a ventilation duct 20 in this manner, the field cores 13 are inserted into the slots of the field cores 13 as shown in FIG. field coil 30
Insert. In this way, the rotor shown in FIG. 14 is formed.

この場合、、第9図に示すように、鉄心13の
厚さt又は通風ダクト20の間隔を必要に応じて
変化できるので、通風量の選択が自由にでき、例
えば、鉄心やコイルの軸方向中心部の温度を軸方
向端部並みに下げることができ、コイルや鉄心の
冷却がより有効にできるようになる。
In this case, as shown in FIG. 9, the thickness t of the core 13 or the interval between the ventilation ducts 20 can be changed as necessary, so the amount of ventilation can be freely selected. The temperature at the center can be lowered to the same level as at the axial ends, and the coil and core can be cooled more effectively.

この考案は回転界磁鉄心は、上述したように比
較的厚さの厚い厚鋼板を用い、この厚鋼板を複数
枚重ねて倣いガス切断機により所定の形状に同時
に切り抜くことができるので、工作が簡単で工期
短縮等の生産性が著しく高く、しかも電気的およ
び磁気的特性の優れた回転電機の界磁鉄心を提供
することができるばかりでなく、回転軸に挿入し
た複数の各界磁鉄心間に通風ダクトを形成するよ
うにしたので、この各通風ダクトのそれぞれのギ
ヤツプ寸法は、電機子と界磁コイルのジユール熱
による温度上昇に対応して通風できるように適宜
調節することができる効果もある。また、この考
案の界磁鉄心は、従来のように、けい素鋼板など
の薄板鋼板材料をプレス加工によつて製作するよ
うにしたものと比較して、主極15と、スロツト
14の形状、およびその配置に自由性があり、設
計変更が容易であるばかりでなく、専用工具が不
必要になる効果も有している。さらに、上記倣い
ガス切断機による厚鋼板の切断速度は0.3m〜0.5
m/分であるから、厚鋼板を同時に5〜10枚切断
するものとすると、その製作速度が著しく短縮さ
れるとともに、鉄心13の厚さが厚いので、これ
の積層作業時間もそれまた短縮され、界磁鉄心の
製作費の低減に貢献するところきわめて大であ
る。さらに、またこの考案は厚鋼板をガス切断、
またはプラズマ切断、、またはレーザ切断等の高
エネルギー密度切断手段によつて切断するように
したので、鋼板の材種に制限がなく、安価な市販
の高強度鋼板も使用できる効果もある。
As mentioned above, this idea uses a relatively thick steel plate for the rotating field core, and it is possible to simultaneously cut out a predetermined shape by stacking multiple thick steel plates and using a gas cutter, which makes machining easier. Not only is it possible to provide a field core for rotating electric machines that is simple and has extremely high productivity such as shortening the construction period, and has excellent electrical and magnetic properties, but also provides a Since ventilation ducts are formed, the gap dimensions of each ventilation duct can be adjusted as appropriate to accommodate the temperature rise due to the Joule heat of the armature and field coil. . In addition, the field core of this invention has a different shape of the main pole 15 and the slot 14, compared to the conventional one manufactured by press working from a thin steel plate material such as a silicon steel plate. There is flexibility in their arrangement, which not only facilitates design changes but also eliminates the need for special tools. Furthermore, the cutting speed of thick steel plates by the above-mentioned profiling gas cutting machine is 0.3 m to 0.5 m.
m/min, so if 5 to 10 thick steel plates are to be cut at the same time, the manufacturing speed will be significantly shortened, and since the iron core 13 is thick, the lamination work time will also be shortened. This greatly contributes to reducing the manufacturing cost of field cores. Furthermore, this idea also allows gas cutting of thick steel plates.
Alternatively, since the cutting is performed by a high energy density cutting means such as plasma cutting or laser cutting, there is no restriction on the type of steel plate, and there is also an effect that inexpensive commercially available high-strength steel plates can be used.

なお、第10図〜第12図は何れもこの考案の
他の実施例を示すもので、第10図は主極15間
の間隔T内における各スロツト14を、巻線する
コイル本数に対応してそのサイズを変えると共
に、主極15とスロツト14のエアーギヤツプを
変えて、リアクタンスのうち、直軸と比較して横
軸リアクタンスを小さくし、発電機の特性を向上
させるようにしたもので、スロツトのサイズと、
コイル本数を調整する目的は、主極間隔Tにおけ
る起磁力を正弦波に近づけるためである。また、
この第10図における回転界磁鉄心におけるスロ
ツト14の深さは、主極間中央部において浅くな
されているので、磁束通路として必要なコアー寸
法の内径部は通風路17を広くすることが可能で
ある。すなわち、各スロツト14を同一形状、同
一寸法に形成しないことによつて磁束通路の寸法
AとBとをほぼ等しくすることができる。なお、
スロツト14の中心線は、通常、鉄心の中心
「O」を通るように形成されているが、この考案
においては第10図に示すように、中心線「O」
を通らないで、スロツト14は主極15の中心線
にほぼ平行に形成されている。
Note that FIGS. 10 to 12 all show other embodiments of this invention, and in FIG. 10, each slot 14 within the interval T between the main poles 15 corresponds to the number of coils to be wound. In addition to changing the size of the generator, the air gap between the main pole 15 and the slot 14 is changed to reduce the horizontal axis reactance compared to the direct axis reactance, improving the characteristics of the generator. and the size of
The purpose of adjusting the number of coils is to bring the magnetomotive force at the main pole spacing T closer to a sine wave. Also,
Since the depth of the slot 14 in the rotating field iron core in FIG. 10 is made shallow at the center between the main poles, the ventilation passage 17 can be widened at the inner diameter part of the core required as a magnetic flux passage. be. That is, by not forming the slots 14 in the same shape and size, the dimensions A and B of the magnetic flux paths can be made approximately equal. In addition,
The center line of the slot 14 is normally formed to pass through the center "O" of the iron core, but in this invention, as shown in FIG.
The slot 14 is formed substantially parallel to the center line of the main pole 15 without passing through it.

第15図は第10図の鉄心に界磁コイルが挿入
された状態を模式的に示す。この例では、第17
図に示すように、スロツト14に挿入される界磁
コイル31(第13図に示されるような同心状コ
イル)は、両線輪辺が平行に形成できるもので、
スロツトに挿入するときに、従来のもののよう
に、両線輪片を間隔を拡げて挿入したりする面倒
な作業が不必要となり、コイルの破損が生じるお
それもなくなる。
FIG. 15 schematically shows a state in which a field coil is inserted into the iron core of FIG. 10. In this example, the 17th
As shown in the figure, the field coil 31 (concentric coil as shown in FIG. 13) inserted into the slot 14 can be formed with both wire ring sides parallel to each other.
When inserting the coil into the slot, there is no need for the troublesome work of inserting both wire ring pieces with a wide gap between them as in the conventional case, and there is no risk of damage to the coil.

次に、第11図は主極間隔T内におけるスロツ
ト14のピツチP1〜P6を変えて界磁起磁力を強
化させるようにしたものであり、さらに、第12
図は、上記第10図に示す回転界磁鉄心に更に改
良を加え、各主極15に大きな突極性を持たせて
界磁コイルを円筒形に形成するようにしたもの
で、何れも上述した実施例と同様の効果を奏する
だけでなくさらに第10図、第12図の実施例の
ものでは、主極15の外径に比べて、スロツト1
4相互間の歯部の外径を若干小さく形成してい
る。即ち、固定子鉄心と回転子との径方向空隙
は、歯部の方が主極部分に比べて広くなつている
ので、不要なリアクタンスが減つて発電機等の特
性が向上する。
Next, FIG. 11 shows a case in which the field magnetomotive force is strengthened by changing the pitches P 1 to P 6 of the slot 14 within the main pole spacing T.
The figure shows a further improvement to the rotating field core shown in Figure 10 above, in which each main pole 15 has a large saliency and the field coil is formed into a cylindrical shape. In addition to producing the same effects as in the embodiment, the embodiments shown in FIGS.
The outer diameter of the teeth between the four teeth is made slightly smaller. That is, since the radial gap between the stator core and the rotor is wider at the tooth portion than at the main pole portion, unnecessary reactance is reduced and the characteristics of the generator etc. are improved.

また、第10図の実施例のものでは、スロツト
寸法を全部等しくせず違えており、コイル片の寸
法(コイル断面積)が変えられることになり、主
極間隔における起磁力がより正弦波に近くなつて
特性向上につながる。
In addition, in the embodiment shown in Fig. 10, the slot dimensions are not all equal but are different, and the dimensions of the coil pieces (coil cross-sectional area) are changed, so that the magnetomotive force in the main pole spacing becomes more sinusoidal. As it gets closer, it leads to improved characteristics.

以上のように、この考案によれば次のような効
果がある。
As described above, this invention has the following effects.

(a) 厚板から高エネルギー加工法で、外周やスロ
ツト、内周穴を加工できるので、手早くでき、
従来の鉄心板打抜きのものに比べて材料費も安
価となる。
(a) Outer periphery, slots, and inner periphery holes can be machined quickly and efficiently using high-energy processing methods from thick plates.
The material cost is also lower than that of conventional punched iron core plates.

(b) スロツトサイズや形状を必要に応じて任意に
変えられるので、特性を任意に選べる(従来の
ものは、スロツトサイズは通常1種類となつて
いる)。
(b) Since the slot size and shape can be changed as needed, the characteristics can be selected as desired (conventional slots usually have one type of slot size).

(c) スロツトの方向も放射状とせず、主極に平行
に形成したりすることが自由にできる(スロツ
ト打抜きでないため)。
(c) The direction of the slot is not radial, but can be formed parallel to the main pole (because the slot is not punched).

(d) スロツト底と内周側の径方向寸法(例えば、
第15図で寸法H)は、鉄心板の打抜き(打抜
き工具を必要とする)と異なつて、高エネルギ
ー加工法採用のため、自由に選ぶことができ、
磁束密度を任意にとることができる。
(d) Radial dimensions of the slot bottom and inner circumference (e.g.
Dimension H) in Fig. 15 can be freely selected because it uses a high-energy processing method, unlike punching the core plate (which requires a punching tool).
The magnetic flux density can be set arbitrarily.

(e) (c)に言及したように、打抜き鉄心と異なるか
ら、、スロツトを放射状に、かつ、等ピツチに
配置しなければならないということがなく、回
転電機として最適のスロツト配置(即ち、コイ
ル配置)が可能となる。
(e) As mentioned in (c), since it is different from a punched iron core, the slots do not have to be arranged radially and at equal pitches, and the slot arrangement is optimal for rotating electric machines (i.e., the coil placement) becomes possible.

(f) 通風ダクトの軸方向間隔が自由に選べる。(f) The axial spacing of ventilation ducts can be freely selected.

(g) 板厚を変えることにより、鉄心の軸方向寸法
(厚さ)を、端部を厚く、中央部をうすくした
りすることができる。(f),(g)によつて回転子の
温度上昇を軸方向に均等にできる。
(g) By changing the plate thickness, the axial dimension (thickness) of the core can be made thicker at the ends and thinner at the center. (f) and (g) make it possible to equalize the temperature rise in the rotor in the axial direction.

(h) 打抜工具のように高価なものが不要で、設計
変更、改良が任意である。
(h) Expensive items such as punching tools are not required, and design changes and improvements can be made at will.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第4図は何れも従来の回転界磁鉄心を
示すもので、第1図は回転界磁鉄心の正面図、第
2図は磁極片の正面図、第3図は輻鉄の斜視図、
第4図は断面図である。第5図〜第7図は同じく
従来の回転界磁鉄心を示すもので、第5図は正面
図、第6図は断面図、第7図は第5図の鉄心の具
体例を示す正面図である。第8図および第9図は
何れもこの考案の一実施例を示すもので、第8図
は斜視図、第9図は断面図である。第10図〜第
12図はこの考案は他の実施例を示す正面図であ
る。第13図は従来の界磁鉄心へのコイル挿入模
式図、第14図は本考案の回転界磁鉄心の断面
図、第15図は第10図の鉄心への界磁コイル挿
入模式図、第16図は従来の鉄心とコイルの関係
を示す斜視図、第17図は本考案の一実施例の鉄
心とコイルの関係を示す斜視図である。 図面中、13は回転界磁鉄心、14はスロツ
ト、15は主極、16は中心孔、17は通風路、
11はキー溝である。なお、図中同一符号は同一
又は相当部分を示す。
Figures 1 to 4 all show conventional rotating field cores. Figure 1 is a front view of the rotating field core, Figure 2 is a front view of the magnetic pole piece, and Figure 3 is a front view of the rotating field core. Perspective view,
FIG. 4 is a sectional view. Figures 5 to 7 similarly show conventional rotating field cores, with Figure 5 being a front view, Figure 6 being a sectional view, and Figure 7 being a front view showing a specific example of the core in Figure 5. It is. 8 and 9 both show an embodiment of this invention, with FIG. 8 being a perspective view and FIG. 9 being a sectional view. 10 to 12 are front views showing other embodiments of this invention. Fig. 13 is a schematic diagram of a coil inserted into the conventional field core, Fig. 14 is a sectional view of the rotating field core of the present invention, and Fig. 15 is a schematic diagram of a field coil inserted into the iron core of Fig. 10. FIG. 16 is a perspective view showing the relationship between a conventional iron core and a coil, and FIG. 17 is a perspective view showing the relationship between an iron core and a coil according to an embodiment of the present invention. In the drawing, 13 is a rotating field core, 14 is a slot, 15 is a main pole, 16 is a center hole, 17 is a ventilation passage,
11 is a keyway. Note that the same reference numerals in the figures indicate the same or equivalent parts.

Claims (1)

【実用新案登録請求の範囲】 (1) 比較的厚さの厚い厚鋼板を高エネルギー密度
切断手段により所定の形状に切断して主極と、
スロツトと通風路等を形成した複数の界磁鉄心
を回転軸に挿入するとともに、この各界磁鉄心
間に通風ダクトを形成したことを特徴とする回
転電機の界磁鉄心。 (2) 各界磁鉄心の厚さは、すべてが同一か、また
は同一でないことを特徴とする実用新案登録請
求の範囲第1項記載の回転電機の界磁鉄心。 (3) 厚鋼板の厚さが5〜100m/mであることを
特徴とする実用新案登録請求の範囲第1項記載
の回転電機の界磁鉄心。 (4) 高エネルギー密度切断手段として、倣いガス
切断、プラズマ切断、またはレーザ切断を用い
たことを特徴とする実用新案登録請求の範囲第
1項記載の回転電機の界磁鉄心。
[Scope of Claim for Utility Model Registration] (1) A relatively thick steel plate is cut into a predetermined shape by a high energy density cutting means to form a main pole,
1. A field core for a rotating electric machine, characterized in that a plurality of field cores each having a slot, a ventilation passage, etc. are inserted into a rotating shaft, and a ventilation duct is formed between each of the field cores. (2) The field core for a rotating electric machine according to claim 1, wherein the thickness of each field core is the same or not the same. (3) The field core for a rotating electric machine according to claim 1, wherein the thick steel plate has a thickness of 5 to 100 m/m. (4) The field core for a rotating electric machine according to claim 1, which is characterized in that the high-energy density cutting means uses profiling gas cutting, plasma cutting, or laser cutting.
JP1983004034U 1983-01-13 1983-01-13 Field core of rotating electric machine Granted JPS59109240U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1983004034U JPS59109240U (en) 1983-01-13 1983-01-13 Field core of rotating electric machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1983004034U JPS59109240U (en) 1983-01-13 1983-01-13 Field core of rotating electric machine

Publications (2)

Publication Number Publication Date
JPS59109240U JPS59109240U (en) 1984-07-23
JPH0140295Y2 true JPH0140295Y2 (en) 1989-12-01

Family

ID=30135639

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1983004034U Granted JPS59109240U (en) 1983-01-13 1983-01-13 Field core of rotating electric machine

Country Status (1)

Country Link
JP (1) JPS59109240U (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106416002A (en) * 2014-07-01 2017-02-15 三菱电机株式会社 Rotor, electric motor, compressor, and fan

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2728713A1 (en) * 2012-10-31 2014-05-07 Openhydro IP Limited An electrical machine
US11837917B2 (en) * 2022-01-28 2023-12-05 Ge Aviation Systems Llc Method and apparatus for cooling a rotor assembly

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5671441A (en) * 1979-11-13 1981-06-15 Toshiba Corp Rotary electric machine
JPS56110454A (en) * 1980-01-31 1981-09-01 Mitsubishi Electric Corp Electric rotary machine

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54105814U (en) * 1978-01-11 1979-07-25

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5671441A (en) * 1979-11-13 1981-06-15 Toshiba Corp Rotary electric machine
JPS56110454A (en) * 1980-01-31 1981-09-01 Mitsubishi Electric Corp Electric rotary machine

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106416002A (en) * 2014-07-01 2017-02-15 三菱电机株式会社 Rotor, electric motor, compressor, and fan
JPWO2016002012A1 (en) * 2014-07-01 2017-04-27 三菱電機株式会社 Rotor, electric motor, compressor, and blower
US10348145B2 (en) 2014-07-01 2019-07-09 Mitsubishi Electric Corporation Rotor, electric motor, compressor, and blower

Also Published As

Publication number Publication date
JPS59109240U (en) 1984-07-23

Similar Documents

Publication Publication Date Title
KR0139003B1 (en) Generator
US4556809A (en) Combination synchronous and asynchronous electric motor
US3783318A (en) Laminated stator core for dynamoelectric machines
US5893205A (en) Rotor for a reluctance machine, and method of making
US2423345A (en) Alternating-current dynamoelectric machine
US20070069591A1 (en) Tubular electrical machines
US3797106A (en) Method of making a salient pole rotor construction with removable pole tips
JPH10201199A (en) Kind expanding method of synchronous motor, and synchronous motor manufactured by the expanding method
CN101795024B (en) Horizontal magnetic field motor with non-crystalline alloy iron core
US11336163B2 (en) Low profile axial, flux permanent magnet synchronous motor
JP2017169419A (en) Stator of rotary electric machine
JPH0140295Y2 (en)
US3650167A (en) Method of manufacturing magnetic laminations for dynamoelectric machine
US3588561A (en) Dynamoelectric machine stator and laminations for use in same
JPH1189193A (en) Synchronous reluctance motor and its manufacture
GB2605560A (en) Stator assembly flux alignment
JP2009100530A (en) Rotor structure for rotary electric motor
JP6640685B2 (en) Rotating electric machine and drive system using the same
US1663318A (en) Electric machine
GB2338350A (en) Cooling laminated assemblies of electrical rotating machines
US11296585B2 (en) Single stack multiphase transverse flux machines
US561590A (en) Armature for dynamo-electric machines
JPH0746044Y2 (en) Field structure of rotating electric machine
KR20040081817A (en) Lotor core and the lotor core laying structure for motor
HRP990222A2 (en) Magnetic core of alternative part of rotary engines made of magnetic sheet metal