JPH0139987B2 - - Google Patents

Info

Publication number
JPH0139987B2
JPH0139987B2 JP14958780A JP14958780A JPH0139987B2 JP H0139987 B2 JPH0139987 B2 JP H0139987B2 JP 14958780 A JP14958780 A JP 14958780A JP 14958780 A JP14958780 A JP 14958780A JP H0139987 B2 JPH0139987 B2 JP H0139987B2
Authority
JP
Japan
Prior art keywords
particles
clay
particle size
less
sieve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP14958780A
Other languages
Japanese (ja)
Other versions
JPS5777068A (en
Inventor
Yasuhito Hoshino
Juki Kayama
Yoshitomi Sato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KYORITSU CERAMIC MATERIALS
Original Assignee
KYORITSU CERAMIC MATERIALS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KYORITSU CERAMIC MATERIALS filed Critical KYORITSU CERAMIC MATERIALS
Priority to JP14958780A priority Critical patent/JPS5777068A/en
Publication of JPS5777068A publication Critical patent/JPS5777068A/en
Publication of JPH0139987B2 publication Critical patent/JPH0139987B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Preparation Of Clay, And Manufacture Of Mixtures Containing Clay Or Cement (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は陶土の製造方法に係り、特に可塑性な
どの性能に優れた陶土を、陶石を原料として低コ
ストで大量に生産することの出来る製造方法に関
するものである。 古くから、佐賀県有田市、伊万里市を中心とし
た地域において、所謂有田焼という白い地肌を持
つ高級磁器が大量に生産されている。そして、こ
のような磁器の磁土には主に陶土が用いられてい
るが、かかる陶土は伝統的に陶石を乾式スタンパ
ーにて粉砕し、水簸処理して微粒部分を集めるこ
とによつて、製造されている。ところで、この乾
式スタンパーは江戸時代から伝統的に使用されて
いる機械で、これにて得られる陶土はいわゆる可
塑性に優れていると言われ、最も良質の陶土とし
て今日でも用いられているものであるが、生産性
の面からみると、少量生産・労力多消費型のため
に、得られる陶土がコスト高となる問題があつ
た。けだし、乾式スタンパーの処理能力は非常に
小さいため、陶土の大量生産に不向きであり、そ
れ故その処理量(陶土製造量)を増やすには、そ
の設置台数を多くしなければならず、大きな設置
面積が必要となるからである。またスタンパーの
1台づつに対して原石(陶石)の供給と取出しを
行なわねばならず、そのための多大な労力も必要
とされることとなるからである。 このため、かかる乾式スタンパーに代わる粉砕
機が従来より種々検当されてきており、これによ
つて粉砕機種さえ選べば、大量に生産でき、コス
トも安い陶土が得られるようになつたが、このよ
うにして得られる陶土は、いずれも可塑性などの
性能において、従来の乾式スタンパー品に対して
著しく劣り、未だ充分に実用化されていないのが
実情である。 ここにおいて、本発明は、かかる事情を背景に
して為されたものであつて、その目的とするとこ
ろは、可塑性などの性能に優れた陶土を低コスト
で大量に製造することの出来る有効な方法を提供
することにあり、そしてかかる目的を達成するた
めに、本発明は、陶石を粉砕した後、粉砕機にて
30μ以上の粒子が3〜25%且つ44μ以上の粒子が
10%以下となるように粉砕せしめ、ついで25〜
44μの粒度で分級して篩下のものを集め、更にこ
の得られた篩下の一次分級物を10〜18μの粒度で
二次分級せしめた後、得られた篩下の二次分級物
を3μ以下の粒径の粒子が40%以上となるように
微粉砕せしめ、これに先の二次分級して得られた
篩上のものを混合せしめることを特徴とするもの
である。 かくの如き本発明手法に従つて良好な品質の陶
土を与える陶石とは、白雲母族鉱物―カオリン族
鉱物―石英質系の岩石であつて、石英とセリサイ
ト及び/又はカオリナイトからなる場合が多い
が、葉蝋石(パイロフイライト)も含有する場合
がある。かかる陶石としては、例えば、泉山陶
石、天草陶石の如く生産地など名称を冠した各種
の陶石が代表的であるが、熊本県、佐賀県以外に
も長崎県、岐阜県、石川県、福島県等、国外では
中国、韓国等広く分布している。 本発明では、このような陶石を採鉱した後、先
ず次の粉砕機に供給するために、例えばジヨー・
クラツシヤーなどを用いて最大粒径が10mm程度以
下の粒径に粗砕せしめられる。 ついで、この粗砕された一定粒度以下の粗砕陶
石は、ローラーミル或は乾式ボールミルなどの適
当な粉砕機を用いて、30μ以上の粒子が3〜25%
且つ44μ以上の粒子が10%以下となるように粉砕
せしめられる。このような粒径分布となるように
選択的に粉砕せしめることにより、陶土となる粘
土分(セリサイト、カオリナイト等)が、石英分
の混入を抑制しつつ、効果的に採取されるのであ
る。即ち、44μを越える粒子が多くなると、それ
らの粒子にも粘土分が含まれているので、陶土と
しての歩留りが悪くなるのであり、また30μ未満
の粒子が多くなると、陶石中の石英分が細粉とな
つて粘土分との分離が悪くなり、最終的に陶土と
しての可塑性などの性能に悪影響をもたらすので
ある。けだし、セリサイトやカオリナイト粒は通
常数μ以下であるのに対して、石英の粒径は、原
岩により異なるが、該セリサイト粒などより遥か
に大きく、それ故原岩を全べて一度に微粉砕する
と、石英粒までも粉砕されて微粒となり、その後
分級を行なつても粘土分の多い部分と石英分の多
い部分との分離精度が非常に悪くなるからであ
り、従つて石英分は余り粉砕されないように上記
範囲内に維持されなければならないのである。特
に、このような粒度を与え、過粉砕になりにくい
粉砕機として、本発明にあつては、回転せしめら
れるローラーの遠心力を利用して粉砕を行なう。
所謂ローラーミルが推奨されるのである。 なお、かかる粒度を与える粉砕機としては、単
なる粉砕操作のみの通常の粉砕機や、分級機構を
内蔵した粉砕機、更には分級機を組み合わせた粉
砕機があり、またそれらの乾式タイプのもの、湿
式タイプのもの等があるが、いずれにしても、前
記本発明に従う、粒度分布の粉砕物が得られるこ
ととなるならば、如何なる粉砕機でも使用可能で
ある。 そして、このように選択粉砕された陶石粉砕物
は、乾式または湿式の分級機、例えば風簸若しく
は水簸によつて、25〜44μの間の所定の粒度で分
級(一次分級)せしめられる。かかる25〜44μの
範囲内において、原岩(陶石)中の石英粒の大き
さにより最も効率のよい分離の出来る粒径を選ん
で分級せしめることによにり、篩上のもの(分級
粒径より大なる粒子)には石英が濃縮される一
方、篩下のもの(分級粒径より小なる粒子)には
粘土分が濃縮せしめられることとなるのであり、
本発明では、かかる粘土分の多い篩下のものを集
めて更に次の二次分級が施されるのである。 すなわち、二次分級(再分級)は、上記一次分
級で得られた篩下のものを、10〜18μの間の所定
の粒度で、乾式または湿式の分級機(風簸、水
簸)を用いて行なわれる。ついで、この二次分級
して得られた篩下のもの(分級粒径より小なる粒
子)には、3μ以下の粒子が少なくとも40%以上
となるように、乾式または湿式の微粉砕機、例え
ば振動ミル等を用いて更に微粉砕が施された後、
該微粉砕物に対して前記二次分級して得られた篩
上のもの(分級粒径より大なる粒子)が混合せし
められ、これによつて目的とする陶土が得られる
のである。そして、このような特定の二次分級操
作及び部分的な特定の微粉砕操作、さらに再混合
の工程を経ることによつて、最終的な陶土の粒度
分布の調整が効果的に行なわれ、以て可塑性など
の性能に優れた陶土に仕上げられるのである。 なお、上記の如く微粉砕された篩下の二次分級
物と二次分級されたままの篩上のものとを混合し
て得られる混合物(陶土)は、脱水して(湿式混
合の場合)そのまま製品として用いられたり、ま
た他の粘土類、珪石類、長石粉等と混合せしめて
陶土或は磁土などとして用いられることとなる。 従つて、かくの如き本発明によれば、生産性の
高い粉砕機が利用出来ることとなり、これによつ
て可塑性のある良質の陶土が低コストで大量に生
産することが出来、そのための設備に必要な面積
も少なくて済むようになつたのである。因みに、
粉砕機としてローラーミルを使用する場合、設置
面積が同じなら、生産量は従来のスタンパーミル
の約40倍にもなるのであり、またボールミルを使
用する場合にあつても、約10倍の生産量を挙げる
ことが可能であるのである。また、原石からの陶
土の歩留りも、ローラーミルで78〜83%、ボール
ミルで75〜78%にもなるのである。 以下に、本発明を更に具体的に明らかにするた
めに二、三の実施例を示すが、本発明がこれら実
施例の記載によつて何等の制約をも受けるもので
ないことは言うまでもないところである。なお、
実施例中の百分率は特に断わりのない限り全べて
重量基準で示されている。 実施例 1 内山産陶石(態本県天草群天草町下田北内山地
区産出)を粗砕して得られた1cm角以下の大きさ
のもの500Kgを、ローラーミル(石井粉砕機械製
作所製)に順次供給しつつ、37μ以上の粒子が6
%となる条件下にローラーミル粉砕を施した。得
られた粉砕物は、30μ以上の粒子を23%、44μ以
上の粒子を5%含むものであつた。 ついで、かかる粉砕機を風簸分級機(安川電気
製作所製ミクロプレツクス)で分級せしめ、37μ
以下を分離、捕集した。この分離捕集物(一次分
級篩下のもの)を試料Aとする。そして、この
37μ以下の分級捕集物を15μで再分級(二次分級)
そ、37〜15μ(篩上)のもの35%と15μ以下(篩
下)のもの65%とに分けた。 更に、かくして得られた15μ以下のものを、湿
式振動ミル(内容積60、玉石10mm、アルミナボ
ール100Kg、スラリー濃度45%)で3時間、粉砕
せしめることにより、3μ以下の粒子が60%とな
つた微粉砕物を得た。 ついで、この15μ以下のものの微粉砕物と前記
二次分級して得られた篩上の37〜15μのものとを
湿式混合せしめ、脱水・製土することにより、目
的とする陶土(試料B)を得た。原石からの歩留
りは80%であつた。 比較例 1 上記実施例1で用いた内山産陶石の4mm角以下
の大きさのものを、従来のスタンパーミルを用い
て1臼当り200Kg入れ、12時間粉砕せしめた後、
水簸により、37μ以下のものを集め、従来と同様
な陶土(試料C)を得た。水簸歩留りは45%であ
つた。 実施例 2 伊西産陶石(岐阜県吉城群神岡町字伊西地区産
出)の1cm角以下の大きさのもの(粗砕物)を用
い、その300Kgを実施例1と同様なローラーミル
に供給せしめ、35μ以上の粒子が8%となる条件
下にローラーミル粉砕を施した。得られた粉砕物
は、30μ以上の粒子を20%、44μ以上の粒子を4
%含むものであつた。 ついで、かかる粉砕物を実施例1と同様な風簸
分級機にて分級せしめ、35μ以下を捕集せしめた
後、その捕集物を更に15μで再分級し、35〜15μ
のものを30%と15μ以下のもの70%とに分けた。 そして、この15μ以下の再分級物を実施例1と
同様な条件下に湿式振動ミルにて微粉砕せしめた
ところ、3μ以下の粒子が57%を占める微粉砕物
が得られた。 かくして得られた微粉砕物に、先の再分級にて
分けられた35〜15μのもの湿式混合せしめた後、
脱水・製土して、目的とする本発明に係る陶土
(試料D)を得た。 実施例 3 橙ノ迫産陶石(態本県天草群天草町下田北橙ノ
迫地区産出)の5mm下の粗砕物20Kgと2〜5cm径
の玉石20Kgとを、内容積60のボールミルに供給
して、8時間、乾式粉砕せしめることにより、
30μ以上の粒子が24%、44μ以上の粒子が10%の
粉砕物を得た。 ついで、この粉砕物を水簸により分級し、40μ
以下(篩下)の粒子を分離捕集した(この採集物
を試料Eとする)後、更にこの40μ以下のものを
水簸して15μで再分級し、40〜15μのもの35%と
15μ以下のものを65%に分離せしめた。 そして、かかる15μ以下のものを更に実施例
1、2と同様な振動ミルを用いて微粉砕せしめる
ことにより、3μ以下の粒子が50%を占める微粉
砕物を得、更にこの微粉砕物と先に分離せしめた
40〜15μのものとを湿式混合し、脱水・製土する
ことにより、目的とする陶土(試料F)を得た。 ―性能試験― 上記実施例及び比較例で得られた試料A〜Fの
化学組成並びに累積粒度分布(比重計法による)
を求め、その結果を第1表、第2表にそれぞれ示
した。 これらの表より明らかなように、本発明に従つ
て得られた陶土B、D、Fは、それぞれの原石に
対して、SiO2成分が少なくなる一方、Al2O3
分、K2O成分が増えているのである。また、本発
明に従つて得られる陶土の粒度分布も、スタンパ
ーミル製品のように粒度の小さな領域で多くなつ
ていることが理解されるであろう。
The present invention relates to a method for producing china clay, and in particular to a method for producing china clay with excellent properties such as plasticity in large quantities at low cost using china stone as a raw material. Since ancient times, high-quality porcelain with a white background called Arita ware has been produced in large quantities in areas centered on Arita City and Imari City, Saga Prefecture. Pottery clay is mainly used for making such porcelain, and traditionally, this clay is produced by crushing pottery stone with a dry stamper, elutriating it, and collecting the fine particles. Manufactured. By the way, this dry stamper is a machine that has been traditionally used since the Edo period, and the potter's clay obtained with this method is said to have excellent plasticity, and is still used today as the highest quality potter's clay. However, in terms of productivity, there was a problem in that the resulting china clay was expensive because it was produced in small quantities and consumed a lot of labor. Since the processing capacity of dry stampers is very small, they are not suitable for mass production of china clay.Therefore, in order to increase the throughput (the production amount of china clay), it is necessary to increase the number of stampers installed, and large installations are required. This is because the area is required. Furthermore, it is necessary to supply and take out raw stone (pottery stone) to and from each stamper, which requires a great deal of labor. For this reason, various types of pulverizers have been examined to replace such dry stampers, and as long as the type of pulverizer is selected, it has become possible to produce china clay in large quantities and at low cost. The china clay thus obtained is significantly inferior to conventional dry-stamped products in terms of performance such as plasticity, and the reality is that it has not yet been fully put to practical use. The present invention has been made against this background, and its purpose is to provide an effective method for mass-producing china clay with excellent properties such as plasticity at low cost. In order to achieve this object, the present invention provides a method for crushing pottery stone using a crusher.
3-25% of particles are 30μ or more and 44μ or more
Grind to 10% or less, then 25~
After classifying with a particle size of 44μ and collecting the material under the sieve, the obtained primary classification under the sieve is further classified into a secondary classification with a particle size of 10 to 18μ, and the obtained secondary classification under the sieve is It is characterized in that it is pulverized so that 40% or more of the particles have a particle size of 3μ or less, and the sieved particles obtained from the previous secondary classification are mixed with this. The pottery stone that provides good quality pottery clay according to the method of the present invention is a rock of the Muscovite group minerals-kaolin group minerals-quartzite system, and is composed of quartz, sericite, and/or kaolinite. Often, it may also contain pyrophyllite. Typical examples of such pottery stone include various kinds of pottery stones named after their production areas, such as Izumiyama pottery stone and Amakusa pottery stone, but in addition to Kumamoto prefecture and Saga prefecture, there are also other pottery stones such as Nagasaki prefecture, Gifu prefecture, and Ishikawa prefecture. It is widely distributed in Fukushima Prefecture, Fukushima Prefecture, etc., and overseas as well as China and South Korea. In the present invention, after mining such pottery stone, first of all, in order to supply it to the next crusher, for example,
It is crushed into particles with a maximum particle size of about 10 mm or less using a crusher or the like. Next, this coarsely crushed pottery stone with a certain particle size or less is crushed using a suitable crusher such as a roller mill or dry ball mill to reduce the proportion of particles of 30μ or more to 3 to 25%.
In addition, it is pulverized so that particles of 44μ or more are 10% or less. By selectively crushing the clay to achieve such a particle size distribution, the clay components (sericite, kaolinite, etc.) that make up the pottery clay can be effectively collected while suppressing the contamination of quartz components. . In other words, when the number of particles exceeding 44μ increases, the yield of clay becomes poor because these particles also contain clay, and when the number of particles less than 30μ increases, the quartz content in the pottery stone decreases. It becomes a fine powder, which makes it difficult to separate it from the clay component, which ultimately has a negative impact on the performance of potter's clay, such as its plasticity. However, while sericite and kaolinite grains are usually less than a few microns in size, the grain size of quartz varies depending on the source rock, but is much larger than sericite grains, and therefore it This is because if the pulverization is done all at once, even the quartz grains will be pulverized into fine particles, and even if classification is performed afterwards, the accuracy of separating the parts with a high clay content from the parts with a high quartz content will be very poor. The fraction must be kept within the above range so as not to cause too much grinding. In particular, in the present invention, as a pulverizer that provides such a particle size and is less prone to over-pulverization, pulverization is carried out using the centrifugal force of rotating rollers.
A so-called roller mill is recommended. In addition, as a crusher that provides such a particle size, there are a normal crusher that only performs a crushing operation, a crusher that has a built-in classification mechanism, and a crusher that is combined with a classifier. Although there are wet type ones, any type of pulverizer can be used as long as a pulverized product having a particle size distribution according to the present invention can be obtained. The pulverized ceramic stone thus selectively pulverized is then classified (primary classification) to a predetermined particle size between 25 and 44 μm using a dry or wet classifier, such as air elutriation or water elutriation. Within this range of 25 to 44μ, by selecting and classifying the particle size that allows the most efficient separation according to the size of the quartz particles in the original rock (pottery stone), the particles on the sieve (classified particles) are classified. Quartz is concentrated in the particles (larger than the particle size), while clay is concentrated in the particles below the sieve (particles smaller than the classified particle size).
In the present invention, the material under the sieve with a high clay content is collected and subjected to the next secondary classification. In other words, in the secondary classification (re-classification), the unsieved material obtained in the above-mentioned primary classification is classified into a predetermined particle size of 10 to 18μ using a dry or wet classifier (elutriation, water elutriation). It is done. Next, the unsieved particles obtained by this secondary classification (particles smaller than the classified particle size) are processed using a dry or wet pulverizer, for example, so that at least 40% of the particles are 3μ or less. After further pulverization using a vibrating mill etc.
The finely pulverized material is mixed with the sieved particles (particles larger than the classified particle size) obtained by the secondary classification, thereby obtaining the desired china clay. By going through such a specific secondary classification operation, a specific partial pulverization operation, and a remixing process, the final particle size distribution of the clay is effectively adjusted, and the following The clay is then finished with excellent properties such as plasticity. In addition, the mixture (pottery clay) obtained by mixing the finely pulverized secondary classification under the sieve and the secondary classification on the sieve as described above is dehydrated (in the case of wet mixing). It can be used as a product as it is, or it can be mixed with other clays, silica, feldspar powder, etc. and used as potter's clay or porcelain clay. Therefore, according to the present invention, a highly productive pulverizer can be used, thereby making it possible to produce high-quality plastic clay in large quantities at low cost. The area required was also reduced. By the way,
When a roller mill is used as a crusher, the production volume is approximately 40 times that of a conventional stamper mill if the installation area is the same, and even when a ball mill is used, the production volume is approximately 10 times that of a conventional stamper mill. It is possible to list the following. Furthermore, the yield of china clay from raw stone is 78-83% with roller mills and 75-78% with ball mills. Below, a few examples will be shown to clarify the present invention more specifically, but it goes without saying that the present invention is not limited in any way by the description of these examples. . In addition,
All percentages in the examples are by weight unless otherwise specified. Example 1 500 kg of Uchiyama pottery stone (produced in the Shimoda Kita Uchiyama area, Amakusa-cho, Amakusa-gun, Chomoto Prefecture), with a size of 1 cm square or less, was placed in a roller mill (manufactured by Ishii Grinding Machinery Works). While supplying sequentially, 6 particles of 37μ or more
Roller mill pulverization was performed under conditions such that the The obtained pulverized product contained 23% of particles with a size of 30μ or more and 5% of particles with a size of 44μ or more. Next, the pulverizer was classified using an elutriation classifier (Microplex manufactured by Yaskawa Electric Manufacturing Co., Ltd.).
The following were separated and collected. This separated collection material (the material under the primary classification sieve) is designated as sample A. And this
Re-classifying the classified matter of 37μ or less at 15μ (secondary classification)
It was divided into 35% of 37-15μ (on the sieve) and 65% of 15μ or less (under the sieve). Furthermore, the thus obtained particles of 15μ or less were crushed in a wet vibration mill (inner volume 60, cobblestones 10mm, alumina balls 100Kg, slurry concentration 45%) for 3 hours, so that 60% of the particles were 3μ or less. A finely ground product was obtained. Next, this finely ground material of 15 μm or less and the 37 to 15 μm material on the sieve obtained by the secondary classification are wet-mixed, dehydrated, and made into clay to obtain the desired china clay (Sample B). I got it. The yield from raw stone was 80%. Comparative Example 1 The Uchiyama pottery stone used in Example 1 above, with a size of 4 mm square or less, was put into a conventional stamper mill at 200 kg per mortar and crushed for 12 hours.
By elutriation, clay of 37 μm or less was collected, and the same clay as before (Sample C) was obtained. The elutriation yield was 45%. Example 2 Using pottery stone from Isai (produced in Isai district, Kamioka-cho, Yoshiki-gun, Gifu Prefecture) with a size of 1 cm square or less (crushed material), 300 kg of it was fed to a roller mill similar to Example 1, Roller milling was performed under conditions such that particles with a size of 35μ or more were 8%. The obtained pulverized material contains 20% particles of 30μ or more and 4% of particles of 44μ or more.
%. Next, the pulverized material was classified using an elutriation classifier similar to that in Example 1, and after collecting 35μ or less, the collected material was further classified by 15μ, and 35 to 15μ
It was divided into 30% and 70%. When this re-classified product of 15 μm or less was pulverized in a wet vibration mill under the same conditions as in Example 1, a pulverized product was obtained in which 57% of the particles were 3 μm or less. After wet-mixing the 35 to 15 micron particles separated in the previous re-classification into the finely ground product obtained in this way,
The clay was dehydrated and made into clay to obtain the target china clay (Sample D) according to the present invention. Example 3 20 kg of crushed Orinosako pottery stone (produced in the Shimoda Kita-Onosako area, Amakusa-cho, Amakusa-gun, Momoto Prefecture) with a diameter of 5 mm and 20 kg of cobblestones with a diameter of 2 to 5 cm were supplied to a ball mill with an internal volume of 60. By dry grinding for 8 hours,
A pulverized product was obtained in which 24% of the particles were 30μ or more, and 10% were 44μ or more. Next, this crushed material was classified by elutriation, and 40μ
After separating and collecting the particles below (under the sieve) (this collection is referred to as sample E), the particles below 40μ are further elutriated and reclassified using 15μ, and 35% of the particles are 40 to 15μ.
65% of the particles were separated from those with a diameter of 15μ or less. Then, by further pulverizing such particles of 15μ or less using a vibrating mill similar to those in Examples 1 and 2, a finely pulverized product in which 50% of the particles were 3μ or less was obtained, and this finely pulverized product and the separated into
The desired china clay (Sample F) was obtained by wet mixing the clay with a particle size of 40 to 15μ, dewatering, and making clay. -Performance test- Chemical composition and cumulative particle size distribution (by hydrometer method) of samples A to F obtained in the above examples and comparative examples
The results are shown in Tables 1 and 2, respectively. As is clear from these tables, china clays B, D, and F obtained according to the present invention have a lower SiO 2 component, but a lower Al 2 O 3 component, and a K 2 O component, compared to each raw stone. is increasing. It will also be appreciated that the particle size distribution of the china clay obtained according to the present invention is dominated by small particle size regions, such as stamper mill products.

【表】【table】

【表】 また、試料A〜Fを用いて、鋳込み成形並びに
ローラーマシン成形を行ない、それぞれの成形特
性を評価し、その結果を第3表に示した。 なお、鋳込み成形は、スラリー濃度(%;100
×固形乾粉/スラリー)が略66%となるようにス
ラリーを調製し(解こう剤として水ガラスを固形
乾粉量に対して0.22%含有せしめる)、このスラ
リー1000mlを、石膏型を用いて鋳込み成形するこ
とにより、実施された。なお、この時の脱型性と
は、石膏型に所定のスラリーを流し込み、型表面
に着肉せしめたあと、残りのスラリーを除去せし
め、そのあとの着肉した素地と石膏型との分離の
具合と仕上り状態をいうものであり、また半仕上
性とは、上記脱型された素地に存在する余分な部
分を細い鉄線で切り離すときの仕上りの良し悪し
をいうものである。 また、ローラーマシン成形は、日本陶器(株)製の
ローラーマシンにて直径100mm、高さ15mmの皿を
成形することによつて行なわれ、その成形性と
は、ローラーマシン成形時の素地の仕上り性をい
い、更に成形後の切れ発生とは、ローラーマシン
成形後の素地の切れ(ヒビ割れ)の有無を意味す
るものである。 第3表の結果より明らかなように、本発明に従
う試料B、D、Fはいずれも優れた成形特性を有
することが認められ、乾式スタンパー品Cと同様
に可塑性に優れたものであることが確認された。
[Table] In addition, cast molding and roller machine molding were performed using Samples A to F, and the molding characteristics of each were evaluated, and the results are shown in Table 3. In addition, the slurry concentration (%; 100
x solid dry powder/slurry) to approximately 66% (contains 0.22% of water glass as a peptizer based on the amount of solid dry powder), and cast 1000ml of this slurry using a plaster mold. It was implemented by In addition, demoldability in this case refers to the ability to pour a certain amount of slurry into a plaster mold, apply it to the surface of the mold, remove the remaining slurry, and then separate the plaster mold from the plaster mold. Semi-finishability refers to the quality of the finish when the excess portion of the demolded base material is cut off with a thin iron wire. In addition, roller machine molding is performed by molding a plate with a diameter of 100 mm and a height of 15 mm using a roller machine manufactured by Nippon Toki Co., Ltd. The moldability refers to the finish of the base material during roller machine molding. In addition, the occurrence of breaks after molding refers to the presence or absence of breaks (cracks) in the base material after roller machine molding. As is clear from the results in Table 3, samples B, D, and F according to the present invention were all recognized to have excellent molding properties, and were found to have excellent plasticity similar to dry stamper product C. confirmed.

【表】【table】

Claims (1)

【特許請求の範囲】[Claims] 1 陶石を粗砕した後、粉砕機にて30μ以上の粒
子が3〜25%、且つ44μ以上の粒子が10%以下と
なるように粉砕せしめ、ついで25〜44μの粒度で
分級して篩下のものを集め、更にこの得られた篩
下の一次分級物を10〜18μの粒度で二次分級せし
めた後、得られた篩下の二次分級物を3μ以下の
粒径の粒子が40%以上となるように微粉砕せし
め、これに先の二次分級して得られた篩上のもの
を混合せしめることを特徴とする陶土の製造方
法。
1 After coarsely crushing the pottery stone, it is crushed in a crusher so that the particles of 30 μ or more are 3 to 25% and the particles of 44 μ or more are 10% or less, and then classified to a particle size of 25 to 44 μ and sieved. After collecting the materials below, the obtained primary fraction under the sieve is subjected to secondary classification with a particle size of 10 to 18μ, and the obtained secondary classification under the sieve is divided into particles with a particle size of 3μ or less. A method for producing china clay, which is characterized by finely pulverizing the clay to a content of 40% or more, and mixing it with the sieved material obtained from the previous secondary classification.
JP14958780A 1980-10-25 1980-10-25 Manufacture of poecelain clay Granted JPS5777068A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14958780A JPS5777068A (en) 1980-10-25 1980-10-25 Manufacture of poecelain clay

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14958780A JPS5777068A (en) 1980-10-25 1980-10-25 Manufacture of poecelain clay

Publications (2)

Publication Number Publication Date
JPS5777068A JPS5777068A (en) 1982-05-14
JPH0139987B2 true JPH0139987B2 (en) 1989-08-24

Family

ID=15478454

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14958780A Granted JPS5777068A (en) 1980-10-25 1980-10-25 Manufacture of poecelain clay

Country Status (1)

Country Link
JP (1) JPS5777068A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6021849A (en) * 1983-07-13 1985-02-04 熊本県 Clay and manufacture

Also Published As

Publication number Publication date
JPS5777068A (en) 1982-05-14

Similar Documents

Publication Publication Date Title
JPH0411496B2 (en)
EP0672025B1 (en) Method of grinding cement
CN113165985A (en) Method for preparing ceramic particle mixture
KR100941027B1 (en) The regenerating method of scrap casting sand
JPH0139987B2 (en)
JPS58156569A (en) Manufacture of pottery clay
KR100987718B1 (en) Glass powder manufacturing device and manufacturing method using the same
JP2626820B2 (en) Manufacturing method of high fine powder blast furnace cement
CN108046743A (en) A kind of ceramic batch and preparation method thereof
CA1210030A (en) Grinding aid and mineral mixture containing it
JP2507572B2 (en) Abrasive manufacturing method
CN115155769B (en) Fine machine-made sand and processing method thereof
CN111333322A (en) Matte glaze for ceramic products and preparation method thereof
JP2507569B2 (en) Method for producing high-purity abrasive
CN111484016A (en) Production process of silicon carbide fine powder (70F)
JP2001026471A (en) Production of sand from granulated blast furnace slag
JPH02166189A (en) Preparation of abrasive material
SU1534023A1 (en) Method of producing initial cement slurry
CN115155769A (en) Fine machine-made sand and processing method thereof
JPS58151365A (en) Manufacture of pottery clay or blending pottery clay
JP5068008B2 (en) Interlocking block reusing the whole amount of demolished concrete and manufacturing method thereof
KR101814802B1 (en) Method for preparing high purity silica for glass using wet type magnetic separator
JP2775486B2 (en) Cement clinker grinding method
RU2067026C1 (en) Method of processing of mineral raw materials
CN117443516A (en) Preparation method of superfine calcium carbonate