JPH0139971B2 - - Google Patents

Info

Publication number
JPH0139971B2
JPH0139971B2 JP8907981A JP8907981A JPH0139971B2 JP H0139971 B2 JPH0139971 B2 JP H0139971B2 JP 8907981 A JP8907981 A JP 8907981A JP 8907981 A JP8907981 A JP 8907981A JP H0139971 B2 JPH0139971 B2 JP H0139971B2
Authority
JP
Japan
Prior art keywords
furnace
glass
molten glass
electric melting
molten
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP8907981A
Other languages
Japanese (ja)
Other versions
JPS57205327A (en
Inventor
Sakichi Nakajima
Shuichi Yamazaki
Hiroaki Shono
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Boseki Co Ltd
Original Assignee
Nitto Boseki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Boseki Co Ltd filed Critical Nitto Boseki Co Ltd
Priority to JP8907981A priority Critical patent/JPS57205327A/en
Publication of JPS57205327A publication Critical patent/JPS57205327A/en
Publication of JPH0139971B2 publication Critical patent/JPH0139971B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/02Melting in furnaces; Furnaces so far as specially adapted for glass manufacture in electric furnaces, e.g. by dielectric heating
    • C03B5/027Melting in furnaces; Furnaces so far as specially adapted for glass manufacture in electric furnaces, e.g. by dielectric heating by passing an electric current between electrodes immersed in the glass bath, i.e. by direct resistance heating
    • C03B5/0275Shaft furnaces

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Melting And Manufacturing (AREA)

Description

【発明の詳細な説明】 本発明は溶融ガラス自体に直接通電し、そのジ
ユール熱によつて原料ガラスバツチを溶融し、そ
の溶融ガラスを均質化及び清澄化する電気溶融
炉、特に溶融ガラスをスロート、ライザー及びフ
イーダーを経由せしめることなしに直接ガラス繊
維に紡糸する、そのような電気溶融炉に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an electric melting furnace that applies electricity directly to the molten glass itself, melts a batch of raw glass by the heat of the molten glass, and homogenizes and clears the molten glass. It relates to such an electric melting furnace that spins directly into glass fibers without going through risers and feeders.

ガラス製品、例えばガラス繊維は工業的には一
般に粉末の原料ガラスバツチを耐火材料から構成
される溶融平炉において火炎により溶融、清澄化
し、その溶融ガラスをチヤンネルを介して耐火材
料より成るフオーハースに導びき、コンデイシヨ
ニングを行いつつそのフオーハースの底部に配設
された複数の白金製ブツシングからその構成白金
材料の通電による抵抗発熱によつて温度制御し
つゝ紡糸することによつて製造される(例えば、
特公昭39−5219号及び同46−34941号公報を参
照)。
Glass products, such as glass fibers, are produced industrially by melting and clarifying powdered raw material glass batches with flame in an open hearth melting furnace made of a refractory material, and guiding the molten glass through a channel to a forehearth made of a refractory material. It is produced by spinning from a plurality of platinum bushings arranged at the bottom of the formation while conditioning and controlling the temperature by resistive heat generation by energization of the platinum material that makes up the platinum material (for example, ,
(See Special Publication No. 39-5219 and Publication No. 46-34941).

このような溶融平炉とフオーハースより成る溶
融、清澄、成形系に対して、近年縦型の電気溶融
炉が開発された。この縦型電気溶融炉は電極を炉
の比較的上部に適正に配置し、炉内溶融ガラスに
直接通電するとき、溶融ガラスに適当な縦方向の
温度分布が生ずるとともに、そのとき炉内上方の
相対的に高温、低密度の溶融ガラスは下方の相対
的に低温、高密度の溶融ガラス領域には重力に逆
つてまでは混入し難いことから同一炉内の相対的
に上方においては溶融ガラスの加熱対流領域が、
一方相対的に下方においては溶融ガラスの層流清
澄領域が形成されるという単純な原理に基づくも
のである。このように、電気溶融炉はガラスバツ
チの溶融―撹拌―拡散を同一炉内で自然に、かつ
機能的に達成し、そして炉底近傍において均質、
清澄化された溶融ガラスを得るという従来の平炉
系には認められない溶融理論の明解さとプロセス
上の単純さを持ち、かくして装置の小型化と熱効
率の向上を達成している。電気エネルギーの使用
はかつてその効率を考慮に入れても化石燃料に比
較して割高であつたが、電気溶融炉におけるプロ
セスの単純性、高効率性は近年の化石燃料の高騰
とあいまつてその有利性を次第に高め、新しいガ
ラス溶融技術としてその地位を確立しつつある。
In contrast to such a melting, fining, and forming system consisting of an open hearth melting furnace and a steel melting furnace, a vertical electric melting furnace has recently been developed. In this vertical electric melting furnace, the electrodes are appropriately placed relatively at the upper part of the furnace, and when electricity is applied directly to the molten glass in the furnace, an appropriate vertical temperature distribution is generated in the molten glass, and at the same time, the electrodes are placed in the upper part of the furnace. The relatively high temperature, low density molten glass is difficult to mix into the relatively low temperature, high density molten glass region below, even against the force of gravity. The heating convection area is
On the other hand, it is based on the simple principle that a laminar clear region of molten glass is formed relatively below. In this way, the electric melting furnace naturally and functionally achieves melting, stirring, and diffusion of glass batches in the same furnace, and achieves homogeneous melting near the bottom of the furnace.
It has a clear melting theory and a simple process that are not found in conventional open hearth systems that produce clarified molten glass, and thus achieves miniaturization of equipment and improved thermal efficiency. The use of electrical energy used to be expensive compared to fossil fuels even when efficiency was taken into account, but the simplicity and high efficiency of the process in electric melting furnaces, combined with the recent rise in the price of fossil fuels, has given rise to its advantages. It is gradually improving its properties and establishing itself as a new glass melting technology.

このような電気溶融炉として、例えば特公昭52
−26884号公報は溶解タンクの上方部分内の少な
くとも1つの溶解帯域で少なくとも2つの複数レ
ベルにおいて溶融ガラスに通電することによつて
熱エネルギーを発生させ、それによつて前記複数
レベルにおいて方向が相反する溶融ガラスの循環
流を生成、維持する三相交流電極配置を持つ電気
溶融炉及び溶解方法を開示している。
As such an electric melting furnace, for example,
Publication No. 26884 generates thermal energy by energizing the molten glass at at least two levels in at least one melting zone in the upper part of a melting tank, such that the levels are opposite in direction. An electric melting furnace and method is disclosed having a three-phase AC electrode arrangement that creates and maintains a circulating flow of molten glass.

また、特開昭47−13618号公報は炉内複数平面
に電極群を持つガラス電気溶融炉において、1平
面の電極群の内端部をその上方及び下方の平面の
電極群の端部間の間隙に位置せしめ、かくして各
下位平面の上昇ガラス流を上位平面との境界面に
おいて各上位平面の下降ガラス流と会合させ、各
ガラス流が他方の平面内に浸入するのを阻止する
電気溶融炉と溶融方法を開示している。
In addition, Japanese Patent Application Laid-Open No. 47-13618 discloses that in a glass electric melting furnace having electrode groups on multiple planes in the furnace, the inner end of the electrode group on one plane is connected between the ends of the electrode groups on the plane above and below. an electric melting furnace located in the gap, thus causing the ascending glass stream of each lower plane to meet the descending glass stream of each upper plane at the interface with the upper plane, and preventing each glass stream from penetrating into the other plane; and a melting method.

さらに、特公昭56−9455号公報は電気溶融炉に
おいて溶融ガラスの上に堆積する未溶融のガラス
バツチあるいは不完全溶融バツチが電極付近の炉
壁に向つて対流するのを最小限に抑制するため
に、溶融ガラスに浸漬されている電極の上方で、
かつ溶融ガラスと接触しない位置において炉壁に
バツチ邪魔板手段を装着した電気溶融炉を開示し
ている。
Furthermore, Japanese Patent Publication No. 56-9455 discloses a method for minimizing convection of unmelted glass batches or incompletely melted glass batches deposited on molten glass in an electric melting furnace toward the furnace wall near the electrodes. , above an electrode that is immersed in molten glass,
Moreover, an electric melting furnace is disclosed in which a batch baffle plate means is attached to the furnace wall at a position where it does not come into contact with the molten glass.

これらの公報を含めて従来の電気溶融炉はその
水平断面形状としてn=2以上の正3n角形、普
通は6〜12角形、典形的には6角形の構造を取る
点で共通している。例えば、前記特公昭52−
26884号公報は6角形の上方垂直部とこれに連接
する倒立6角錐形の漏斗形底部から成る炉構造を
開示し、また前記特開昭47−13618号及び特公昭
56−9455号公報は共に6角形の角柱構造を開示し
ている。
Conventional electric melting furnaces, including these publications, have in common that their horizontal cross-sectional shape is a regular 3n square with n = 2 or more, usually a hexagon to a dodecagon, and typically a hexagon. . For example, the above-mentioned special public service
No. 26884 discloses a furnace structure consisting of a hexagonal upper vertical part and an inverted hexagonal pyramidal funnel-shaped bottom part connected thereto, and also discloses a furnace structure consisting of a hexagonal upper vertical part and an inverted hexagonal pyramidal funnel-shaped bottom part, and
56-9455 both disclose hexagonal prism structures.

ガラス溶融炉はガラスバツチの溶融に千数百度
の温度が必要とされることから、そのような温度
に耐え得る耐火レンガ等の耐火材料で構成される
が、これらの耐火材料は周知のように溶融ガラス
による侵蝕を避けられず、その耐用年数は2〜3
年程度といわれている。耐用年数経過後、炉は改
修を受け、あるいは新たに建造されるが、その炉
コストはガラス製品の生産コストのかなり大きな
部分を占める。一方、耐火材料の溶融ガラスによ
る侵蝕は操業初期には実際上問題にならないが、
操業後期に近ずくにつれて炉の安全操業にとつて
大きな問題になる。従つて、炉形態の単純さと炉
構造の安定さは炉建造、あるいは炉に対する支
持、補強工作の容易さを保証するのみならず、炉
の耐久性を高め、且つ炉の操業安全性を獲保する
意味においても重要なフアクターである。これら
の観点から従来の電気溶融炉を検討すると、その
多角形態は炉建造の技術的困難さを増し、また外
部からの支持、補強工作を複雑、困難にするとと
もに、多角形態に基づく耐火材料相互間の接合目
地部の多さは溶融ガラスによる侵蝕がより激しく
進行する侵蝕部位の増大につながり、炉の深さが
平炉の数倍に及ぶことと相まつて炉の総合的な構
造安定性を阻害する要因となつている。
Glass melting furnaces require temperatures of over 1,000 degrees to melt glass batches, so they are constructed of refractory materials such as refractory bricks that can withstand such temperatures. Corrosion caused by glass cannot be avoided, and its service life is only 2 to 3 years.
It is said to be around 20 years old. At the end of their useful life, furnaces are refurbished or newly built, and the cost of the furnace represents a significant portion of the cost of producing glass products. On the other hand, corrosion of fireproof materials by molten glass is not a practical problem in the early stages of operation;
The safe operation of the furnace becomes a major problem as it approaches the latter stages of operation. Therefore, the simplicity of the furnace form and the stability of the furnace structure not only guarantee the ease of furnace construction, support and reinforcement work for the furnace, but also increase the durability of the furnace and ensure the operational safety of the furnace. It is also an important factor in the sense that When considering conventional electric melting furnaces from these viewpoints, the polygonal shape increases the technical difficulty of furnace construction, makes external support and reinforcement work complicated and difficult, and makes it difficult to use refractory materials based on the polygonal shape. The large number of joints between the two leads to an increase in the number of eroded areas where erosion by molten glass progresses more vigorously, and this, together with the fact that the depth of the furnace is several times that of an open hearth, impedes the overall structural stability of the furnace. This is a contributing factor.

従来の電気溶融炉に共通しているもう1つの点
は、溶融炉がスロート等の通路を介してライザー
あるいは他の流通路に接続され、順次成形装置に
接続されるか、あるいはさらにフイーダーを介し
て成形装置に接続されて用いられることである。
例えば前記特公昭52−26884号公報は溶融ガラス
を漏斗形底部の側壁に設けた栓付き開口に接続さ
れる流通路にそのふん囲気と接して自由表面を形
成するように通し、溶融ガラスをコンデイシヨニ
ングしつつ成形機に送ることを教示し、また特開
昭47−13618号公報は、その炉底陥入出口はスロ
ートを付して直立したガラス通路(ライザー)に
通じ、溶融ガラスはこのライザーからフイーダー
通路あるいはフイーダーに送られ、温度制御され
て成形のために取り出されることを開示してい
る。
Another feature common to conventional electric melting furnaces is that the melting furnace is connected to a riser or other flow passage through a passage such as a throat, and is connected to a sequential forming device or further through a feeder. It is used by being connected to a molding device.
For example, in the above-mentioned Japanese Patent Publication No. 52-26884, molten glass is passed through a flow path connected to a stoppered opening provided in the side wall of a funnel-shaped bottom so as to form a free surface in contact with the surrounding air. JP-A No. 47-13618 teaches that the molten glass is sent to a molding machine while being dipped, and the inlet and outlet of the furnace bottom are connected to an upright glass passage (riser) with a throat, and the molten glass is It is disclosed that the material is sent from this riser to a feeder passage or feeder, temperature controlled, and taken out for molding.

このような配置は最終製品に成形されるべき溶
融ガラスに各製品の成形条件に応じたリフアイニ
ングあるいは温度、粘度条件の調整のためのコン
デイシヨニング、さらには成形圧力に関連したガ
ラスレベルの調整などが必要になることに由来し
ているが、他方でこのような配置は本来的に次の
ような問題点あるいは矛盾点を内包している。
This arrangement is used to refine the molten glass to be molded into the final product according to the molding conditions of each product, or to condition it to adjust the temperature and viscosity conditions, as well as to adjust the glass level related to molding pressure. However, on the other hand, such an arrangement inherently includes the following problems or contradictions.

すなわち、ライザー、フイーダー等の付加設備
及びこれらにおけるリフアイニング及び/又はコ
ンデイシヨニングの必要は必然的に設備上、エネ
ルギー上のコスト増をもたらしている。このコス
ト増は生産規模が比較的小さい場合にその比重が
より高くなる。
That is, the need for additional equipment such as risers and feeders, and for refining and/or conditioning of these equipment, inevitably results in increased costs in terms of equipment and energy. This cost increase becomes more significant when the scale of production is relatively small.

また、電気溶融炉において、均質化及び清澄化
されたガラスがライザー、フイーダーの耐火材料
と接触することによつて耐火材料の溶出による汚
染や、特にフイーダー部におけるガラス成分、例
えばB2O3あるいはアルカリ金属酸化物の蒸発に
よつて新たに不均質化を受けるという問題もあ
る。
In addition, in an electric melting furnace, when the homogenized and clarified glass comes into contact with the refractory material of the riser and feeder, contamination due to elution of the refractory material and glass components such as B 2 O 3 or There is also the problem of additional heterogeneity caused by evaporation of alkali metal oxides.

ところで、原料ガラスバツチの溶融過程におい
て、溶融ガラスには周知のように気―液間に平衡
関係が成立し、溶解ガスが存在する。従つて、も
し温度が一定ならば圧力の変化は溶融ガラスにお
ける気泡の発生及び消失に大きな影響を及ぼすこ
とになる。一方、通常の縦型炉において溶融ガラ
スは一般に約1.5〜3mの深さを持ち、その表面
と底面の間には約0.38〜0.75Kg/cm2に相当する圧
力差が存在する。これは前記の気泡の発生及び消
失に影響を及ぼす十分な圧力である。かくして、
溶融ガラスをふん囲気との間で自由表面を形成さ
せつつ流通路を通し、あるいはライザーに通して
持ち上げることはガラスが受けていた圧力の解放
を意味し、清澄の完了した溶融ガラスに再び気泡
を発生させる状態に至らしめるという矛盾点を本
来的に持つていることになる。
By the way, during the melting process of raw glass batches, as is well known, an equilibrium relationship between gas and liquid is established in the molten glass, and dissolved gas is present in the molten glass. Therefore, if the temperature is constant, changes in pressure will have a significant effect on the generation and disappearance of bubbles in the molten glass. On the other hand, in a typical vertical furnace, the molten glass generally has a depth of about 1.5 to 3 m, and a pressure difference of about 0.38 to 0.75 Kg/cm 2 exists between the surface and the bottom. This is sufficient pressure to influence the generation and disappearance of the bubbles. Thus,
Lifting the molten glass through a flow path or through a riser while forming a free surface between it and the surrounding air means releasing the pressure on the glass and reintroducing bubbles into the molten glass that has been refined. This inherently has the paradox of bringing about the state in which it occurs.

本発明者は、ガラス繊維の製造において、縦型
電気溶融炉における層流清澄条件を適正に制御す
るとき、溶融ガラスをライザー、フイーダーを経
由せしめることなしに、従つて溶融ガラスの圧力
を解放することなしに直接電気溶融炉から紡糸す
ることができ、しかもガラス繊維の成形法として
見たとき、従来の電気溶融炉―フイーダー系、あ
るいは従来の平炉系によつては本来的に得られな
い加圧成形を、何んらの付加手段も必要とせずに
達成できることを見い出して本発明を完成した。
In the production of glass fiber, the present inventor has discovered that when properly controlling the laminar flow fining conditions in a vertical electric melting furnace, the pressure of the molten glass can be released without passing the molten glass through a riser or feeder. It is possible to spin fibers directly from an electric melting furnace without any problems, and when viewed as a glass fiber forming method, it provides processing that cannot be achieved with the conventional electric melting furnace-feeder system or the conventional open hearth system. The present invention has been completed by discovering that pressure forming can be achieved without the need for any additional means.

かくして、本発明はスロート、ライザー及びフ
イーダーを経由せしめることなしにガラス繊維を
繊維することができる、炉底面にガラス繊維の紡
糸装置を直接有するガラスの縦型電気溶融炉を提
供することを目的とする。
Thus, an object of the present invention is to provide a vertical electric glass melting furnace having a glass fiber spinning device directly on the bottom of the furnace, which can form glass fibers without passing through a throat, riser, or feeder. do.

本発明の他の目的はガラス繊維の紡糸装置の有
利な配置を可能にし、しかも構造安定性の高い、
炉底面にガラス繊維の紡糸装置を直接有するガラ
スの縦型電気溶融炉を提供することにある。
Another object of the present invention is to enable an advantageous arrangement of glass fiber spinning equipment and to provide a highly structurally stable spinning device.
An object of the present invention is to provide a vertical electric glass melting furnace having a glass fiber spinning device directly on the bottom of the furnace.

本発明によれば、基本的には、頂部に原料ガラ
スバツチの受容開口を有する原料ガラスバツチの
溶融対流区域と;底部に複数個の溶融ガラスを取
り出すための垂直開口を有すると共に前記溶融対
流区域に対して垂直下方に連接し、前記溶融対流
区域の溶融ガラスのヘツドが直接作用する関係に
ある溶融ガラスの層流清澄区域と;少なくとも前
記溶融対流区域において、該区域の溶融ガラスに
浸漬される位置に、該区域を画成する周壁に貫
通、配設されている、溶融ガラスに直接通電する
ための電極群と;前記層流清澄区域の垂直開口に
連通して出口側に直接配設されている複数個のガ
ラス繊維の紡糸装置とから成ることを特徴とす
る、層流清澄区域の底部にある加圧状態の溶融ガ
ラスをその圧力を解放することなしに直接前記紡
糸装置に供給し、ガラス繊維を紡糸するための電
気溶融炉が提供される。
According to the invention, basically a melting convection zone for raw glass batches having a receiving opening for the raw glass batches at the top; and a vertical opening for taking out a plurality of molten glasses at the bottom and for said melting convection zone. a laminar flow clarification zone of molten glass which is connected vertically downwardly and in which the head of the molten glass of said molten convection zone is in a direct acting relationship; , a group of electrodes for directly energizing the molten glass, penetrating and disposed on the peripheral wall defining the zone; disposed directly on the exit side in communication with the vertical opening of the laminar flow clarification zone; a plurality of glass fiber spinning devices, wherein the pressurized molten glass at the bottom of the laminar flow clarification zone is directly fed to said spinning device without releasing its pressure, and the glass fibers are An electric melting furnace is provided for spinning.

この本発明の電気溶融炉によれば、溶融炉内で
溶融、均質化及び清澄化された溶融ガラスをライ
ザー及びフイーダーを経由せしめることなしに直
接炉底開口に接続された紡糸装置に供給し、紡糸
することができ、かくして前記従来の電気溶融炉
による紡糸の技術的、経済的問題点及び矛盾点を
解決することができるとともに、溶融炉における
加圧状態の溶融ガラスの紡糸装置への直接供給は
何んらの加圧手段も必要とせずに加圧成形を達成
する。このガラス繊維の加圧紡糸は紡糸装置のオ
リフイスプレート又はノズルプレートに設けられ
ているオリフイスはチツプノズルを通る溶融ガラ
スの流出性とオリフイス又はチツプノズルの出口
に形成される溶融ガラスコーンの分離特性を著し
く改良、向上せしめ、かくしてまたオリフイス又
はチツプノズルの密接化、ひいては紡糸装置の小
型化、さらには電気溶融炉自体の小型化、高効率
化を可能にする。そして紡糸装置が小型化できる
ため電気溶融炉の底に複数個の紡糸装置を取り付
け生産性を向上させることもできる。
According to the electric melting furnace of the present invention, the molten glass that has been melted, homogenized, and clarified in the melting furnace is supplied directly to the spinning device connected to the bottom opening of the furnace without passing through the riser and feeder, Thus, the technical and economical problems and contradictions of the conventional electric melting furnace spinning can be solved, and the pressurized molten glass in the melting furnace can be directly supplied to the spinning device. achieves pressure forming without the need for any pressure means. This pressure spinning of glass fibers is carried out by orifices installed in the orifice plate or nozzle plate of the spinning device, which significantly improves the outflow of the molten glass through the tip nozzle and the separation characteristics of the molten glass cone formed at the outlet of the orifice or tip nozzle. , thus making it possible to make the orifice or tip nozzle closer together, thereby making it possible to make the spinning device more compact, and furthermore to make it possible to make the electric melting furnace itself more compact and highly efficient. Since the spinning device can be downsized, a plurality of spinning devices can be attached to the bottom of the electric melting furnace to improve productivity.

本発明は、特に好ましい態様として、前記本発
明の直接ガラス繊維紡糸用電気溶融炉において、
その溶融対流区域と層流清澄区域の各水平断面形
状を方形に形成したことを特徴とするガラス繊維
の直接紡糸のための電気溶融炉を提供する。
As a particularly preferred embodiment of the present invention, in the electric melting furnace for direct glass fiber spinning of the present invention,
The present invention provides an electric melting furnace for direct spinning of glass fibers, characterized in that the horizontal cross-sectional shapes of the melting convection zone and the laminar flow clarification zone are rectangular.

この好ましい態様によれば、複数の紡糸装置の
電気溶融炉に対する経済的配置と紡糸作業を容易
にする効果的配置が可能になるとともに、この方
形断面構造は炉の建造とその支持、補強工作を容
易にし、また溶融ガラスによる侵蝕がより激しく
進行する耐火材料間の接合目地部を減少させ、か
くして炉の総合的な構造安定性を著しく向上させ
る。また、炉内溶融ガラスの良好なコンデイシヨ
ニングのための好適な自然放熱を達成させる。
According to this preferred embodiment, an economical arrangement of a plurality of spinning devices in the electric melting furnace and an effective arrangement to facilitate the spinning operation are possible, and the rectangular cross-sectional structure facilitates the construction of the furnace and its support and reinforcement work. This also reduces joints between refractory materials where erosion by molten glass is more severe, thus significantly improving the overall structural stability of the furnace. In addition, suitable natural heat dissipation for good conditioning of the molten glass in the furnace is achieved.

以上の本発明を添附図面を参照してさらに説明
する。しかし、図示電気溶融炉は本発明の好まし
い実施態様であつて、本発明はこれらに限定され
ないことはもちろんである。
The present invention described above will be further explained with reference to the accompanying drawings. However, the illustrated electric melting furnace is a preferred embodiment of the present invention, and the present invention is of course not limited thereto.

添附図面において、第1図及び第2図は本発明
による比較的小型の電気溶融炉に関し、そして第
1図はその正面縦断面図を、また第2図は第1図
の―面の横断面図をそれぞれ示す。
In the accompanying drawings, FIGS. 1 and 2 relate to a relatively small-sized electric melting furnace according to the present invention, and FIG. 1 shows a front longitudinal sectional view thereof, and FIG. Figures are shown respectively.

これら第1図及び第2図において、電気溶融炉
1は耐火レンガから成る周壁2及び炉底壁3によ
つて画成され、そしてその相対的に上部は溶融ガ
ラスの溶融対流区域4を構成し、相対的に下部は
溶融ガラスの層流清澄区域5を構成する。
1 and 2, an electric melting furnace 1 is defined by a peripheral wall 2 made of refractory bricks and a furnace bottom wall 3, the relative upper part of which constitutes a melting convection area 4 for molten glass. , the relatively lower part constitutes a laminar flow clarification zone 5 of the molten glass.

溶融対流区域4の頂部は原料ガラスバツチを受
容し、炉内溶融ガラス6の上にガラスバツチの堆
積層7を形成するために全解放されている。この
頂部開放口の上方には、図示しないが、原料ガラ
スバツチの供給装置が配置され、ガラスバツチが
その開放口に連続的に、又は断続的に供給、好ま
しくは散布、供給されるようになつている。この
溶融対流区域4においてガラスバツチが溶融さ
れ、熱対流下である程度の清澄、均質化が行われ
る。
The top of the melting convection zone 4 is fully open to receive the raw glass batches and to form a deposited layer 7 of glass batches on top of the furnace molten glass 6. Although not shown, a feeding device for raw glass batches is disposed above the top opening, and the glass batches are continuously or intermittently supplied to the opening, preferably by scattering. . In this melting convection zone 4, the glass batch is melted and a certain degree of clarification and homogenization takes place under thermal convection.

一方、層流清澄区域5は前記溶融対流区域4か
ら垂直下方に直接連接し、炉底壁3によつて閉じ
られている。この層流清澄区域5において溶融対
流区域4から連続供給される溶融ガラスは実質的
に完全に均質化及び清澄化される。
On the other hand, the laminar flow clarification zone 5 is directly connected vertically downward from the melt convection zone 4 and is closed by the furnace bottom wall 3. In this laminar flow clarification zone 5, the molten glass continuously fed from the melt convection zone 4 is substantially completely homogenized and clarified.

溶融対流区域4の断面積、従つて層流清澄区域
5の断面積、及び両区域の深さは一次的にはガラ
スの処理量に依存し、相対的であつてその処理量
に応じて変わり得るが、少なくとも、溶融対流区
域4においては溶融ガラス6とガラスバツチの堆
積層7との間に十分に広い接触面を与えて十分な
量のガラスバツチを溶融し、かつ溶融ガラスの熱
対流が十分に、しかしその対流が層流清澄区域5
の溶融ガラスに実質的に影響を及ぼさないように
行われることを保証し、一方層流清澄区域におい
ては、その均質化及び清澄化の過程において、溶
融ガラスに層流状態を維持しつつ直接成形するの
に必要な溶融ガラスの均質、清澄状態を達成し、
同時に成形に必要な温度―粘度条件を満足する、
必要十分な滞留時間と放熱量を保証するものでな
ければならない。
The cross-sectional area of the melting convection zone 4 and thus of the laminar clarification zone 5 and the depth of both zones primarily depend on the throughput of the glass and are relative and vary depending on the throughput. However, at least in the melting convection zone 4, a sufficiently wide contact surface is provided between the molten glass 6 and the deposited layer 7 of glass batches to melt a sufficient amount of glass batches, and the thermal convection of the molten glass is sufficient. , but the convection is in the laminar clear zone 5
In the laminar flow fining zone, the process of homogenization and clarification involves direct shaping of the molten glass while maintaining a laminar flow state. Achieve the homogeneity and clearness of the molten glass necessary to
At the same time, the temperature and viscosity conditions required for molding are satisfied.
It must ensure sufficient residence time and heat dissipation.

前記炉底壁3には少なくとも1個、一般的には
複数個の垂直開口8が形成され、そのそれぞれに
直接ガラス繊維の紡糸用ブツシング9が取り付け
られている。これらのブツシングによる溶融ガラ
スの全紡糸量は層流清澄区域における溶融ガラス
の層流状態を乱さない様な量とすべきである。ブ
ツシング9は平炉系の場合と同様のものが用い
得、またその取付けも平炉系の手段を応用して行
うことができる。
At least one, but generally a plurality of vertical openings 8 are formed in the bottom wall 3, each of which is directly fitted with a bushing 9 for spinning glass fibers. The total amount of molten glass spun by these bushings should be such that it does not disturb the laminar flow state of the molten glass in the laminar flow clarification zone. The bushing 9 can be the same as in the case of the open hearth type, and its attachment can also be performed by applying the means of the open hearth type.

前記垂直開口8にはその入口を囲んで炉底より
炉内に向けて突出する溶融ガラスの案内部10を
設け、炉の周壁を伝つて流れ落ちてくる溶出耐火
材料等で汚染されている溶融ガラスが直接開口8
からブツシング9に流入しないようにするのが好
ましい。この案内部10は耐蝕性の耐火材料で形
成することができるが、他の手段、例えばブツシ
ング壁を構成する白金合金板を延長し、開口8か
ら炉内に突出せしめて形成することもできる。ま
た、前記耐蝕性耐火材料から成る案内部10に対
してブツシングの構成白金合金板を延長、被覆す
ることもできる。一方、汚染ガラス及び溶出耐火
材料等による沈積物は炉底3の略中央に形成した
ドレン口11から逐次抜き取ることができる。
The vertical opening 8 is provided with a molten glass guide part 10 that surrounds the entrance and protrudes from the bottom of the furnace into the furnace, and prevents the molten glass from flowing down along the peripheral wall of the furnace, which is contaminated with leached refractory materials, etc. is a direct opening 8
It is preferable to prevent it from flowing into the bushing 9 from the outside. The guide part 10 can be made of a corrosion-resistant, refractory material, but it can also be formed by other means, for example by extending a platinum alloy plate constituting the bushing wall and projecting it into the furnace through the opening 8. Further, the platinum alloy plate constituting the bushing can be extended and covered with the guide portion 10 made of the above-mentioned corrosion-resistant and fire-resistant material. On the other hand, deposits such as contaminated glass and eluted refractory materials can be successively removed from a drain port 11 formed approximately in the center of the furnace bottom 3.

図示電気溶融炉1は方形横断面構造を持つ溶融
炉を示す。この方形炉において、その横断面形状
は長方形及び正方形を取り得る。長方形の横断面
形状を取る場合、その短辺対長辺の長さの比は大
幅に変えることができ、例えば短辺を長辺の1/3
又はそれ以下にすることもできる。これは通電さ
れる溶融ガラスの電気伝導度がガラス組成によつ
てかなり大幅に変わることなどによる。このよう
な方形断面構造は放熱に基づく溶融ガラスの良好
なコンデイシヨニング、あるいは炉の建造、及び
支持、補強の容易さ、炉の構造安定性の向上、あ
るいはまた紡糸装置の配置の観点から特に好まし
い態様として推奨されるものであるが、しかし本
発明は従来のn=2以上の正3n角形の構造の採
用を除外するものではない。
The illustrated electric melting furnace 1 shows a melting furnace with a rectangular cross-sectional structure. In this rectangular furnace, its cross-sectional shape can be rectangular or square. When taking a rectangular cross-sectional shape, the ratio of the length of the short side to the long side can vary considerably, for example, the short side is 1/3 of the long side.
Or it can be less than that. This is because the electrical conductivity of molten glass to which electricity is applied varies considerably depending on the glass composition. Such a rectangular cross-sectional structure is advantageous from the viewpoint of good conditioning of the molten glass based on heat dissipation, ease of furnace construction, support and reinforcement, improvement of the structural stability of the furnace, and also from the viewpoint of the arrangement of spinning equipment. Although this is recommended as a particularly preferred embodiment, the present invention does not exclude the adoption of the conventional regular 3n polygonal structure where n=2 or more.

本発明の電気溶融炉1において、数字の12は
主電極群を表わし、溶融対流区域4に溶融ガラス
に浸漬される位置に配設される。これら主電極群
12によつて炉内溶融ガラスに直接通電し、発生
するジユール熱で溶融ガラス上のガラスバツチ層
7のガラスバツチを溶融ガラスとの接触界面にお
いて順次溶融、ガラス化し、かつ溶融ガラスに熱
対流を引き起す。これら電極群12の適正配置に
よつて、周知のように、炉内溶融ガラスに炉上方
において対流領域が、炉下方において層流領域が
形成される。これら両領域はそれぞれ電気溶融炉
1の溶融対流区域4及び層流清澄区域5に対応す
る。層流清澄区域5には炉の始動を助けるため
に、及びブツシング9に流入する溶融ガラスの温
度補正のために補助電極群13を配設することが
できる。これらの補助電極群13は溶融ガラスに
新たな熱対流を起さないように制御すべきであ
る。この補助電極群13は必ずしも必要なもので
なく、所望によつては除くことができる。
In the electric melting furnace 1 of the present invention, the number 12 represents a main electrode group, which is disposed in the melting convection area 4 at a position where it is immersed in the molten glass. Electricity is applied directly to the molten glass in the furnace through the main electrode group 12, and the generated Joule heat sequentially melts and vitrifies the glass batches in the glass batch layer 7 on the molten glass at the contact interface with the molten glass, and heats the molten glass. cause convection. As is well known, by properly arranging these electrode groups 12, a convection region is formed in the molten glass in the furnace in the upper part of the furnace, and a laminar flow region is formed in the lower part of the furnace. These two regions correspond respectively to the melt convection zone 4 and the laminar flow clarification zone 5 of the electric melting furnace 1. An auxiliary electrode group 13 can be arranged in the laminar flow fining zone 5 to aid in starting the furnace and for temperature compensation of the molten glass entering the bushing 9. These auxiliary electrode groups 13 should be controlled so as not to cause new thermal convection in the molten glass. This auxiliary electrode group 13 is not necessarily necessary and can be omitted if desired.

これらの電極群12及び13は常法に従つて少
なくとも1つの水平レベルにおいて周壁3に貫
通、配設されるが、特に方形炉の場合は全周壁に
配設する必要はなく、1組の対向する周壁だけに
配設してもよい。これら第1図及び第2図の電気
溶融炉は電極を対向する短辺側周壁に配置した例
である。このように対向壁に電極を配設する場
合、電極は線対称に配置するのが好ましい。電極
は棒状電極又は板状電極のどちらでもよい。また
電源はR、S、Tの相を持つ三相電源を用いるの
が普通で、かつ好ましいが、特に小型方形炉の場
合は単相電源を用いるのが好ましい。
These electrode groups 12 and 13 are penetrated and arranged in the circumferential wall 3 in at least one horizontal level in accordance with conventional methods, but in particular in the case of rectangular furnaces it is not necessary to arrange them on the entire circumferential wall; It may also be provided only on the surrounding wall. The electric melting furnaces shown in FIGS. 1 and 2 are examples in which electrodes are arranged on the opposing short side peripheral walls. When the electrodes are disposed on the opposing walls in this manner, it is preferable that the electrodes be disposed line-symmetrically. The electrode may be either a rod-shaped electrode or a plate-shaped electrode. Although it is normal and preferable to use a three-phase power source having R, S, and T phases, it is particularly preferable to use a single-phase power source in the case of a small rectangular furnace.

上記電気溶融炉に対して第3図及び第4図は第
1図及び第2図と同様の電気溶融炉であるが、電
極を対向する長辺側周壁に配置した電気溶融炉に
関し、第3図はその正面縦断面図を、また第4図
は第3図の―面の横断面図を示す。また、第
5図及び第6図は第3図及び第4図と同様の電極
配置を持つが、R、S、Tの相を持つ三相電源を
使用している中規模の電気溶融炉に関し、第5図
はその正面縦断面図を、また第6図は第5図の
―面の横断面図を示す。これらの第3〜6図に
おいて参照数字は前記第1〜2図と同じ意味を有
する。
3 and 4 are electric melting furnaces similar to those shown in FIGS. 1 and 2, but regarding the electric melting furnace in which the electrodes are arranged on the opposing long side peripheral walls, The figure shows a front longitudinal cross-sectional view thereof, and FIG. 4 shows a cross-sectional view taken along the plane shown in FIG. Also, Figures 5 and 6 have the same electrode arrangement as Figures 3 and 4, but relate to a medium-sized electric melting furnace that uses a three-phase power source with R, S, and T phases. , FIG. 5 shows a front vertical cross-sectional view thereof, and FIG. 6 shows a cross-sectional view taken along the - plane of FIG. In these Figures 3 to 6, reference numerals have the same meanings as in Figures 1 to 2 above.

上記本発明の電気溶融炉において、原料ガラス
バツチは炉の頂部開放口に散布、供給され、炉内
溶融ガラス6の上に堆積してバツチ層7を形成す
る。このバツチ層7は炉内溶融ガラスからの放熱
を遮断する。層7のガラスバツチは溶融ガラスと
の接触面において、順次に、電極12からの直接
通電によつて加熱され、高温になつている熱を受
けて徐々に溶融及びガラス化される。このとき発
生するガラス化反応による分解ガスは大部分バツ
チ層を抜け、大気中に逸散する。
In the electric melting furnace of the present invention, raw glass batches are dispersed and supplied to the open top of the furnace, and are deposited on the molten glass 6 in the furnace to form a batch layer 7. This batch layer 7 blocks heat radiation from the molten glass in the furnace. The glass batches of the layer 7 are successively heated at the contact surface with the molten glass by direct current flow from the electrode 12, and are gradually melted and vitrified by the high temperature heat. Most of the decomposition gas generated by the vitrification reaction at this time escapes through the batch layer and dissipates into the atmosphere.

ガラス化によつて生成した粗溶融ガラスは溶融
対流区域4内の溶融ガラス中に存在する溶融ガラ
スの激しい循環流Aにまき込まれ、循環する。こ
の循環流Aは電極12による加熱によつて起され
る溶融ガラスの熱対流である。この対流、循環に
よつてガラスの不均質部分は引き伸ばされ、物理
的混合及び拡散を受けて均質混合が進むととも
に、バツチ層近傍で脱泡されなかつた残存ガスが
この循環中に浮上、脱気される。
The crude molten glass produced by vitrification is entrained and circulated in a vigorous circulating flow A of molten glass present in the molten glass in the melting convection zone 4. This circulating flow A is a thermal convection of the molten glass caused by heating by the electrodes 12. Through this convection and circulation, the heterogeneous portion of the glass is stretched, and homogeneous mixing progresses through physical mixing and diffusion, and residual gas that has not been degassed near the batch layer rises to the surface during this circulation and is degassed. be done.

この溶融対流区域4において溶融、混合された
ガラスはかなりの程度まで清澄化されているが、
しかしなお若干の泡、不均一な脈理及び温度むら
が存在し、今だ未完成の状態である。未完成ガラ
スは次に順次層流清澄区域5に移行し、炉底まで
進む間に完壁な均質、清澄化と紡糸に必要な温度
―粘度条件が達成される。
The glass melted and mixed in this melting convection zone 4 is clarified to a considerable extent;
However, there are still some bubbles, non-uniform striae, and temperature unevenness, and it is still in an unfinished state. The unfinished glass then passes successively into the laminar flow fining zone 5, during which time it reaches the bottom of the furnace, where perfect homogeneity, temperature-viscosity conditions necessary for fining and spinning are achieved.

すなわち、層流清澄区域5における溶融ガラス
には大量の溶融ガラスに対して十分に少ない紡糸
のためのガラス引出量に基づいて下方に向う極め
て緩慢な、層流としての流れBのみが存在してい
る。溶融対流区域4からの溶融ガラスはこの層流
Bに乗つて層流清澄区域5に長時間滞在し、下方
に移行する間に拡散及び補助的な温度制御、熱伝
導に基づく炉壁からの自然放熱によつて不均質部
分と温度むらが解消され、同時に自然な温度降下
が行われ、紡糸に必要な温度―粘度条件が達成さ
れる。また、溶融対流区域4からの溶融ガラス中
に残存する小泡のうちランプ(Lamp)の式 V=g・d2ρ/12η (式中、Vは層流Cの流速であり、 gは重力加速度であり、 dは泡の径であり、 ρは溶融ガラスの密度であり、そして ηは溶融ガラスの粘度である) で与えられる径より大きいものは溶融ガラスが層
流清澄区域を移行する間に上方に浮上、脱泡さ
れ、一方それ以下の微小な泡はガラスが下方に進
むにつれて増加する圧力を受けて、気―液平衡の
法則に従いその大半がガラス中に溶け込む。実
際、炉底において溶融ガラスには気泡は実質的に
存在しないことが見い出されている。かくして、
炉底近傍には化学組成的に、及び熱的に均一で、
且つ泡のない、実質的に完全に均質、清澄化され
た加圧状態の溶融ガラスが存在する。この加圧状
態の溶融ガラスは炉内溶融ガラスの液深に相当す
る圧力を持つが、工業的に通常用いられている縦
型炉の大きさを採用するとき、その圧力は略0.4
〜0.8Kg/cm2である。
That is, in the molten glass in the laminar flow clarification zone 5, there is only a very slow downward laminar flow B based on the amount of glass drawn out for spinning, which is sufficiently small for a large amount of molten glass. There is. The molten glass from the molten convection zone 4 rides this laminar flow B and stays in the laminar flow clarification zone 5 for a long time, and while moving downward, it undergoes diffusion, auxiliary temperature control, and natural flow from the furnace wall based on heat conduction. Heat dissipation eliminates inhomogeneous areas and temperature unevenness, and at the same time, a natural temperature drop occurs, achieving the temperature-viscosity conditions necessary for spinning. In addition, among the small bubbles remaining in the molten glass from the melting convection zone 4, the lamp equation V = g・d 2 ρ/12η (where, V is the flow velocity of the laminar flow C, and g is the gravity is the acceleration, d is the diameter of the bubble, ρ is the density of the molten glass, and η is the viscosity of the molten glass). On the other hand, smaller bubbles are subjected to increasing pressure as the glass moves downward, and most of them dissolve into the glass according to the law of gas-liquid equilibrium. In fact, it has been found that there are virtually no air bubbles in the molten glass at the bottom of the furnace. Thus,
Near the bottom of the furnace, there is a chemically and thermally uniform
There is a bubble-free, substantially completely homogeneous, clarified, pressurized molten glass. This pressurized molten glass has a pressure equivalent to the liquid depth of the molten glass in the furnace, but when adopting the size of a vertical furnace commonly used in industry, the pressure is approximately 0.4
~0.8Kg/ cm2 .

本発明によれば、この加圧状態の溶融ガラスは
そのまゝ炉底に取り付けられた紡糸装置により直
接ガラス繊維に紡糸されるが、その圧力はブツシ
ングのオリフイスプレート又はチツプノズルプレ
ートにおけるオリフイス又はチツプノズルを通る
溶融ガラスの流出性を著しく改良、向上させると
ともに、オリフイス又はチツプノズルの出口に形
成される溶融ガラスコーンの分離特性、すなわち
オリフイス又はチツプノズルを流出した溶融ガラ
スがプレート材料を濡らして溢出することなしに
独立のコーンを形成する性質を著しく改良し、ガ
ラス繊維の形成を容易にする。このコーンの分離
特性の改良はまたオリフイス又はチツプノズルの
密接化、高密度化を可能にする。
According to the present invention, this pressurized molten glass is directly spun into glass fibers by a spinning device attached to the bottom of the furnace, but the pressure is applied to the orifice or tip nozzle in the orifice plate of the bushing or the tip nozzle plate. Significantly improves and enhances the outflow of the molten glass through the orifice or tip nozzle, as well as the separation properties of the molten glass cone formed at the outlet of the orifice or tip nozzle, i.e., the molten glass flowing out of the orifice or tip nozzle does not overflow by wetting the plate material. significantly improves the properties of forming independent cones and facilitates the formation of glass fibers. This improvement in the separation properties of the cone also allows for closer or denser orifices or tip nozzles.

次に、本発明の縦型電気溶融炉によるガラス繊
維の直接紡糸の例を実施例によつて示す。しか
し、本発明はこの実施例によつて限定されないこ
とはもちろんである。
Next, an example of direct spinning of glass fiber using the vertical electric melting furnace of the present invention will be shown by way of example. However, it goes without saying that the present invention is not limited to this example.

実施例 対向する短辺の炉壁上方に単相電源に接続され
る線対称に配設された直径50mmのモリブデン棒電
極を2対有し、そして炉底に垂直開口を介して2
基の、800ホールのブツシングを備える、炉底の
略中央部にドレン口を有する長さ1600mm、幅600
mm及び深さ1500mmの耐火レンガより成る電気溶融
炉を用いてアルカリ金属酸化物含量7.5重量%の
C―ガラスのバツチを溶融及び均質、清澄化し、
そしてブツシングより直接加圧紡糸した。この加
圧紡糸によつてガラス繊維は非常に良好に製造す
ることができた。炉条件及び紡糸条件は次の通り
である。
Example: There are two pairs of molybdenum rod electrodes with a diameter of 50 mm that are connected to a single-phase power source above the furnace wall on the opposite short sides, and are connected to a single-phase power source through a vertical opening in the bottom of the furnace.
The base is 1600 mm long and 600 mm wide, with a drain port located approximately in the center of the hearth bottom, and equipped with 800 hole bushings.
melting, homogenizing and clarifying batches of C-glass with an alkali metal oxide content of 7.5% by weight using an electric melting furnace made of refractory bricks with a diameter of 1.5 mm and a depth of 1500 mm;
Then, pressure spinning was performed directly from the bushing. Glass fibers could be produced very well by this pressure spinning. The furnace conditions and spinning conditions are as follows.

炉内温度:溶融対流区域中心部 1410℃ 層流清澄区域中心部 1320℃ ブツシング導入部 1270℃ 使用エネルギー:1.45KWH/Kg―ガラス 紡糸条件:ブツシング温度 1200℃ 捲取速度 2000m/分 繊維径 14μ 生産量 20トン/日 Furnace temperature: 1410℃ in the center of the melting convection area Center of laminar clear zone 1320℃ Bushing introduction part 1270℃ Energy used: 1.45KWH/Kg - Glass Spinning conditions: Bushing temperature 1200℃ Winding speed 2000m/min Fiber diameter 14μ Production volume 20 tons/day

【図面の簡単な説明】[Brief explanation of drawings]

第1図は炉の対向する短辺側炉壁に線対称に配
設された電極を有し、かつ炉底にガラス繊維の紡
糸用ブツシングを備える本発明による長方形の横
断面構造を持つ電気溶融炉の正面縦断面図を示
し、第2図は第1図の―面の横断面図であ
り、第3図は第1図の電気溶融炉と同様に長方形
の横断面構造を持つが、電極が炉の長辺側炉壁に
線対称に配設されているガラス繊維紡糸用電気溶
融炉の正面縦断面図であり、第4図は第3図の
―面の横断面図であり、第5図は第1図の電気
溶融炉と同様に長方形の横断面構造を持つが電極
が炉の長辺側炉壁に線対称に配設されている中規
模のガラス繊維紡糸用電気溶融炉の正面縦断面図
を示し、そして第6図は第5図の―面の横断
面図である。 1……電気溶融炉、2……周壁、3……炉底
壁、4……溶融対流区域、5……層流清澄区域、
6……溶融ガラス、7……ガラスバツチ堆積層、
8……垂直開口、9……ブツシング、10……溶
融ガラスの案内部、11……ドレン口、12……
主電極、13……補助電極、A……溶融ガラスの
循環流、B……溶融ガラスの引出流、14……ガ
ラス繊維。
FIG. 1 shows an electric melting machine having a rectangular cross-sectional structure according to the present invention, which has electrodes disposed line-symmetrically on the opposite short sides of the furnace wall and a bushing for spinning glass fibers at the bottom of the furnace. A front longitudinal sectional view of the furnace is shown, FIG. 2 is a cross sectional view taken along the plane shown in FIG. 1, and FIG. is a front longitudinal cross-sectional view of an electric melting furnace for glass fiber spinning arranged line-symmetrically on the furnace wall on the long side of the furnace, and FIG. Figure 5 shows a medium-sized electric melting furnace for glass fiber spinning, which has a rectangular cross-sectional structure similar to the electric melting furnace shown in Figure 1, but the electrodes are arranged line-symmetrically on the furnace wall on the long sides of the furnace. A front longitudinal cross-sectional view is shown, and FIG. 6 is a cross-sectional view taken along the - plane of FIG. 1... Electric melting furnace, 2... Peripheral wall, 3... Furnace bottom wall, 4... Melting convection area, 5... Laminar flow clarification area,
6... Molten glass, 7... Glass batch deposited layer,
8... Vertical opening, 9... Bushing, 10... Molten glass guide, 11... Drain port, 12...
Main electrode, 13... Auxiliary electrode, A... Circulating flow of molten glass, B... Drawing flow of molten glass, 14... Glass fiber.

Claims (1)

【特許請求の範囲】 1 頂部に原料ガラスバツチの受容開口を有する
原料ガラスバツチの溶融対流区域と;底部に複数
個の溶融ガラスを取り出すための垂直開口を有す
ると共に前記溶融対流区域に対して垂直下方に連
接し、前記溶融対流区域の溶融ガラスのヘツドが
直接作用する関係にある溶融ガラスの層流清澄区
域と;少なくとも前記溶融対流区域において、該
区域の溶融ガラスに浸漬される位置に、該区域を
画成する周壁に貫通、配設されている、溶融ガラ
スに直接通電するための電極群と;前記層流清澄
区域の垂直開口に連通してその出口側に直接配設
されている複数個のガラス繊維の紡糸装置とから
成ることを特徴とする、層流清澄区域の底部にあ
る加圧状態の溶融ガラスをその圧力を解放するこ
となしに直接前記紡糸装置に供給し、ガラス繊維
を紡糸するための電気溶融炉。 2 炉の横断面形状が方形をなしている前記特許
請求の範囲第1項に記載の電気溶融炉。 3 電極群が炉の対向する1組の周壁に線対称に
配設されている前記特許請求の範囲第2項に記載
の電気溶融炉。 4 炉底部に形成された垂直開口にその入口を囲
んで炉底より炉内に向けて突出する溶融ガラスの
案内部が形成されている前記特許請求の範囲第1
項、第2項又は第3項に記載の電気溶融炉。 5 炉底部の略中央部に汚染ガラスの引き抜き用
ドレン口が形成されている前記特許請求の範囲第
1項より第4項のいずれか1項に記載の電気溶融
炉。
[Scope of Claims] 1. A melting convection area for raw glass batches having a receiving opening for the raw glass batches at the top; having vertical openings for taking out a plurality of molten glasses at the bottom and vertically downward with respect to the melting convection area; a laminar flow fining zone of molten glass in direct contact with the molten glass head of said molten convection zone; a group of electrodes for directly energizing the molten glass, which are penetrated and arranged in the defining peripheral wall; a plurality of electrodes which communicate with the vertical opening of the laminar flow clarification zone and are arranged directly on the exit side thereof; a spinning device for glass fibers, wherein the pressurized molten glass at the bottom of the laminar flow clarification zone is directly fed to said spinning device without releasing its pressure to spin glass fibers. Electric melting furnace for. 2. The electric melting furnace according to claim 1, wherein the cross-sectional shape of the furnace is rectangular. 3. The electric melting furnace according to claim 2, wherein the electrode groups are disposed line-symmetrically on a pair of opposing peripheral walls of the furnace. 4. Claim 1, wherein a molten glass guide part is formed in the vertical opening formed in the furnace bottom, surrounding the inlet and protruding from the furnace bottom toward the inside of the furnace.
The electric melting furnace according to item 1, 2 or 3. 5. The electric melting furnace according to any one of claims 1 to 4, wherein a drain port for drawing out contaminated glass is formed approximately at the center of the furnace bottom.
JP8907981A 1981-06-10 1981-06-10 Electrically melting furnace for directly forming glass product Granted JPS57205327A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8907981A JPS57205327A (en) 1981-06-10 1981-06-10 Electrically melting furnace for directly forming glass product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8907981A JPS57205327A (en) 1981-06-10 1981-06-10 Electrically melting furnace for directly forming glass product

Publications (2)

Publication Number Publication Date
JPS57205327A JPS57205327A (en) 1982-12-16
JPH0139971B2 true JPH0139971B2 (en) 1989-08-24

Family

ID=13960850

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8907981A Granted JPS57205327A (en) 1981-06-10 1981-06-10 Electrically melting furnace for directly forming glass product

Country Status (1)

Country Link
JP (1) JPS57205327A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7111342B2 (en) * 2018-03-29 2022-08-02 ユニチカグラスファイバー株式会社 Glass fiber spinning nozzle plate, glass melting furnace having said glass fiber spinning nozzle plate, and glass fiber spinning method using said glass melting furnace
GB2583093B (en) 2019-04-15 2021-05-12 Glassflake Ltd A system and method for melting materials

Also Published As

Publication number Publication date
JPS57205327A (en) 1982-12-16

Similar Documents

Publication Publication Date Title
KR920003938B1 (en) Process and device for melting fining and homogenizing glass
KR920003221B1 (en) Energy saving method for melting glass and glass melting furnace for the practice of the method
US4816056A (en) Heating and agitating method for multi-stage melting and refining of glass
US4929266A (en) Method of manufacturing glass
JP4708513B2 (en) Method for melting and clarifying vitrifiable substances and equipment therefor
US3819350A (en) Method for rapidly melting and refining glass
US2122469A (en) Apparatus for making glass
US4818265A (en) Barrier apparatus and method of use for melting and refining glass or the like
US2159361A (en) Electric furnace
US1953023A (en) Method and apparatus for making glass
US2512761A (en) Electric glass furnace
US3057175A (en) Apparatus for mixing colorant in glass furnace forehearth
US3305340A (en) Method and apparatus for generating currents in molten glass
US3420653A (en) Glass melting furnace
CN106660854B (en) The device for being used to melt glass including furnace, channel and baffle
US4504302A (en) Homogenizing apparatus glass making furnace and method of homogenizing glass
US3556753A (en) Method for melting and processing heat-softenable mineral materials
US3401536A (en) Apparatus for melting and processing heat-softenable mineral materials
US3328144A (en) Apparatus for melting and processing heat-softenable mineral materials
Jebava et al. Role of glass melt flow in container furnace examined by mathematical modelling
US1953034A (en) Shallow melting tank
US3811858A (en) Method and apparatus for mixing molten glass by bubbling
US2455908A (en) Method of making glass fibers
JPH0139971B2 (en)
US1874799A (en) Method and apparatus for feeding and melting glass batch