JPH0139311B2 - - Google Patents

Info

Publication number
JPH0139311B2
JPH0139311B2 JP56008726A JP872681A JPH0139311B2 JP H0139311 B2 JPH0139311 B2 JP H0139311B2 JP 56008726 A JP56008726 A JP 56008726A JP 872681 A JP872681 A JP 872681A JP H0139311 B2 JPH0139311 B2 JP H0139311B2
Authority
JP
Japan
Prior art keywords
output
electromotive force
magnetic pole
ripple
generator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56008726A
Other languages
Japanese (ja)
Other versions
JPS57122657A (en
Inventor
Arata Kusase
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP872681A priority Critical patent/JPS57122657A/en
Publication of JPS57122657A publication Critical patent/JPS57122657A/en
Publication of JPH0139311B2 publication Critical patent/JPH0139311B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/24Rotor cores with salient poles ; Variable reluctance rotors
    • H02K1/243Rotor cores with salient poles ; Variable reluctance rotors of the claw-pole type

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Synchronous Machinery (AREA)

Description

【発明の詳細な説明】 本発明は直流出力電圧のリツプルを低減する界
磁磁極の形状を有する車両用交流発電機に関す
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a vehicle alternator having a field pole shape that reduces ripple in the DC output voltage.

近年のカーエレクトロニクス化と共に車両用発
電機の「電源としての品質」が増々重要となつて
きた。「高品質な電源」とは、(1)車両エンジンの
回転変動や、車両電気負荷の急変に対して、発電
機の平均値出力電圧が変動しないと云うことと、
(2)整流リツプル等の瞬時の電圧脈動がなるべく少
ないこと等の項目を満足すべきものである。前者
(1)項については、電圧調整器(レギユレータ)の
IC化等に基づく高精度制御により相当に改善さ
れてきているが、後者(2)項については、現在のと
ころほとんど検討がなされていないのが実状であ
る。リツプルが大きいと、車両に積載するすべて
の電子機器の入力電源回路部の仕様が複雑・コス
ト高となり、車両全体では累積コストが著しいも
のとなる。また一方で、電圧調整装置が非常に高
精度化しても、検出電圧のリツプルが大きいと、
その制御精度はそれほど上がらない。
With the advent of car electronics in recent years, the quality of vehicle generators as a power source has become increasingly important. A "high-quality power source" means that (1) the average output voltage of the generator does not fluctuate due to fluctuations in vehicle engine rotation or sudden changes in vehicle electrical load;
(2) Items such as instantaneous voltage pulsations such as rectification ripples should be minimized as much as possible. former
Regarding item (1), the voltage regulator
Although considerable improvements have been made through high-precision control based on ICs, the reality is that the latter (2) has hardly been studied at present. If the ripple is large, the specifications of the input power circuit sections of all the electronic devices loaded on the vehicle will become complicated and costly, and the cumulative cost of the entire vehicle will be significant. On the other hand, even if the voltage regulator becomes extremely accurate, if the ripple in the detected voltage is large,
The control accuracy does not improve that much.

かくして、車両用交流発電機のリツプルを低減
し、なるべく理想的な直流に近づけることがとり
わけ重要な課題となつてきた。
Therefore, it has become a particularly important issue to reduce ripple in vehicle alternators and bring them as close to ideal direct current as possible.

第1図は従来周知の車両用交流発電機を示す。
車両エンジン(図示されていない)によりVベル
トで、プーリ1が駆動される。この被駆動回転数
は、プーリ1の有効径及びエンジン回転数により
様々変化されるが、従来発電機は最高回転数
12000〔r.p.m.〕〜14000〔r.p.m.〕の範囲内にある。
プーリ1と直結したランデル型界磁回転子2が界
磁巻線3により直流励磁された状態で回転するこ
とにより、界磁回転子2の外径部に交互に位置す
る界磁磁極4a,4b等により電機子鉄心5が回
転磁界を受け、該鉄心に設けられた三相電機子巻
線6a,6b,6cには対称三相起電力ea,eb
ecが発生する。
FIG. 1 shows a conventionally known vehicular alternator.
A pulley 1 is driven by a V-belt by a vehicle engine (not shown). This driven rotational speed varies depending on the effective diameter of the pulley 1 and the engine rotational speed, but conventional generators have a maximum rotational speed.
It is within the range of 12000 [rpm] to 14000 [rpm].
When the Landel type field rotor 2 directly connected to the pulley 1 rotates while being DC-excited by the field winding 3, field magnetic poles 4a and 4b are alternately located on the outer diameter of the field rotor 2. etc., the armature core 5 receives a rotating magnetic field, and the three-phase armature windings 6a, 6b, 6c provided on the core receive symmetrical three-phase electromotive forces e a , e b ,
e c occurs.

第2図は第1図の車両用交流発電機の回路図で
ある。なお説明不要の電圧調整装置は省略してい
る。三相起電力ea,eb,ecはメインダイオード
D1,D2,D3123により三相全波整流
されて、発電機出力端5を経て直流出力として外
部の車両電気負荷のバツテリ(図示されていな
い)へと供給される。一方、電機子巻線6a,6
b,6cに電機子電流が流れ、界磁々極及び電機
子鉄心間の界磁々束分布が電機子反作用により第
3次高調波起電力を多分に含んだ歪み波形となる
ために、電機子巻線の中性点7には、第3次高調
波起電力があらわれる。中性点7の電位8は、第
3図に示す如く、発電機の出力電流および回転数
が低い領域では発電機の出力電圧9の約1/2の電
位を中心として小さく揺動しているが、出力電流
および回転数が高い領域では、中性点の電位は出
力電圧9および接地電位(0〔V〕)を越える大き
な揺動8′となる。このために、第2図における
中性点に結線された補助ダイオードD00は通
電を始める。すなわち、第3次高調波起電力はダ
イオードD00を径て、直流出力としてメイン
ダイオードD1,D2,D3123による三
相全波整流出力に加算されるに至る。
FIG. 2 is a circuit diagram of the vehicle alternator shown in FIG. 1. Note that the voltage regulator, which does not require explanation, is omitted. The three-phase electromotive force e a , e b , e c is the main diode
It is three-phase full-wave rectified by D 1 , D 2 , D 3 , 1 , 2 , and 3 and is supplied to an external vehicle electrical load battery (not shown) as a DC output via the generator output terminal 5 . Ru. On the other hand, armature windings 6a, 6
The armature current flows through b and 6c, and the field flux distribution between the field poles and the armature core becomes a distorted waveform containing a large amount of third harmonic electromotive force due to armature reaction. A third harmonic electromotive force appears at the neutral point 7 of the child winding. As shown in Fig. 3, the potential 8 at the neutral point 7 fluctuates slightly around a potential of about 1/2 of the generator output voltage 9 in the region where the output current and rotation speed of the generator are low. However, in a region where the output current and rotational speed are high, the potential at the neutral point exhibits a large fluctuation 8' exceeding the output voltage 9 and the ground potential (0 [V]). For this purpose, the auxiliary diode D 0 , 0 connected to the neutral point in FIG. 2 begins to conduct current. In other words, the third harmonic electromotive force is added to the three-phase full-wave rectified output from the main diodes D 1 , D 2 , D 3 , 1 , 2 , 3 as a DC output through the diodes D 0 , 0 . reach.

第4図a,bは、第1図に示した電機子鉄心お
よび界磁々極等を展開した図である。第4図bに
示す、磁極面におけるスロツトピツチ円弧寸法τs
⌒を1単位として、電機子鉄心5の側面5a,5
b直下における台形状磁極面底辺部円弧寸法A⌒
はこれら従来例では2.8〜3.3の範囲にあつた。
4a and 4b are expanded views of the armature core, field poles, etc. shown in FIG. 1. The slot pitch arc dimension τ s on the magnetic pole face shown in Fig. 4b
With ⌒ as one unit, the sides 5a, 5 of the armature core 5
b Arc dimension of the base of the trapezoidal magnetic pole face directly below A⌒
was in the range of 2.8 to 3.3 in these conventional examples.

従来、中性点にあららわれる第3次高調波起電
力が、出力端子電圧を越えた時、また接地電位以
下に下がつた時交互にこれらが半波整流されて直
流出力電圧に加算されるため、この第3次高調波
起電力にもとづく直流出力は脈動率100〔%〕であ
る。したがつて、発電機全体の出力を向上するた
めに付加している補助ダイオードD00の回路
ではあるが、全体出力に対してこの第3次高調波
起電力に基づく出力の比が大きいと当然リツプル
も大きくなる。この第3次高調波起電力に基づく
出力は周知の通り電機子反作用にあづからないた
めに発電機回転数が最高回転数に至るまで直線的
に増加するが、一方で、メインダイオードの為す
三相全波整流回路より導びかれる出力は、電機子
反作用により、高速回転になるに従つて直角双曲
線状に飽和に至る。すなわち発電機の回転数が高
くなるにつれて、全体出力のうち第3次高調波起
電力に基づく出力の占める割合が回転数に対して
比例的に大きくなりこれにもとづいて、出力電圧
のリツプルは回転数に対して直線的に増加してし
まうという欠点があつた。
Conventionally, when the third harmonic electromotive force appearing at the neutral point exceeds the output terminal voltage or drops below the ground potential, it is alternately half-wave rectified and added to the DC output voltage. Therefore, the DC output based on this third harmonic electromotive force has a pulsation rate of 100%. Therefore, although the auxiliary diode D 0,0 is added to the circuit to improve the overall output of the generator, the ratio of the output based on this third harmonic electromotive force to the overall output is large. Naturally, the ripple also increases. As is well known, the output based on this third harmonic electromotive force increases linearly until the generator rotation speed reaches the maximum rotation speed because it is not affected by armature reaction. The output derived from the three-phase full-wave rectifier circuit reaches saturation in a rectangular hyperbolic shape as the rotation speed increases due to armature reaction. In other words, as the rotational speed of the generator increases, the proportion of the output based on the third harmonic electromotive force in the total output increases in proportion to the rotational speed. Based on this, the ripple in the output voltage increases as the rotational speed increases. The problem was that the number increased linearly.

このことは同時に、車両用交流発電機の重量あ
たり出力を向上する為の一手段として知られてい
る高速駆動方式に対する1つの障害でもあつた。
At the same time, this was an obstacle to high-speed drive systems known as a means of improving the output per unit weight of automotive alternators.

本発明は磁極形状を、高速、大出力時に第3次
高調波起電力の発生しにくい形状とすることによ
り、第3次高調波起電力を回転数に対し、非線形
飽和状の曲線としこれに大部分依拠しているリツ
プルを高速大出力領域で、所定程度以上増加の防
止をする車両用交流発電機の提供を目的とするも
のである。
The present invention creates a magnetic pole shape that makes it difficult to generate third-order harmonic electromotive force at high speeds and high outputs. The object of the present invention is to provide an alternator for a vehicle that prevents the ripple, which is largely relied upon, from increasing beyond a predetermined degree in a high-speed, large-output region.

本発明の一実施例を第5図及び第6図で説明す
る。
An embodiment of the present invention will be described with reference to FIGS. 5 and 6.

前述の如く、従来発電機は最高回転数が12000
〜14000〔r.p.m.〕であつたが、本発電機は第5図
中に示す如くポリVプーリ1′の採用により最高
回転数18000〔r.p.m.〕となつている。発電機とし
ての基本構造は従来発電機と同様であるから省略
する。
As mentioned above, conventional generators have a maximum rotation speed of 12,000
14,000 [rpm], but this generator has a maximum rotation speed of 18,000 [rpm] due to the use of a poly V pulley 1' as shown in FIG. The basic structure of the generator is the same as that of a conventional generator, so a description thereof will be omitted.

第6図は、第4図に対応する電機子鉄心5およ
び界磁回転子2の、界磁々極面を基準とする展開
図である。第1および第4図で説明した従来発電
機の磁極形状は、第6a図において2点鎖線で示
す如く、前記A⌒寸法がスロツトピツチ単位で、
ほぼ2.8〜3.3であつたが本実施例ではA⌒寸法を
スロツトピツチの2.5倍とし、かつその形状をス
ロープ状又は2段テーパ状としている。
FIG. 6 is a developed view of the armature core 5 and the field rotor 2 corresponding to FIG. 4, with the field pole plane as a reference. The magnetic pole shape of the conventional generator explained in FIGS. 1 and 4 is such that the A⌒ dimension is in slot pitch units, as shown by the two-dot chain line in FIG. 6a.
The diameter was approximately 2.8 to 3.3, but in this embodiment, the dimension A⌒ is 2.5 times the slot pitch, and the shape is sloped or two-step tapered.

次に、本発明となる前記磁極形状のリツプルに
与える結果については実験により確認されたが、
作用が生じる理由については一応次のように考え
ることができる。
Next, although the results given to the ripple by the magnetic pole shape according to the present invention were confirmed through experiments,
The reason why this effect occurs can be considered as follows.

前述した様に、メインダイオードD1,D2,D3
…等による三相全波整流出力は、回転数が高くな
るに従つて、直角双曲線上に飽和に至る。このこ
とは第7図に示す如く界磁回転子2における磁極
の電機子鉄心5に与える界磁起磁力分布10に対
して電機子電流の為す電機子反作用起磁力分布1
1とが位相的に一致して前者起磁力分布を打消し
ている(減磁作用大)ということである。電機子
反作用起磁力分布11は電機子鉄心と界磁磁極の
構造に基づき台形状分布である。この台形状をよ
り正弦波に近ずけようとしたのが本発明である。
一方、界磁々束分布10は、ほぼ磁極形状に近く
正弦的であるために、結果としてギヤツプに生じ
る磁束分布12(分布10と11の差の分布)は
第7図中破線で示した如く多分に第3高調波を含
んだものとなり、この磁束分布の第3空間高調波
成分が前述の補助ダイオードD00より導びか
れる出力の源となつており、同時にまたリツプル
大小を決める要因となつている。
As mentioned above, the main diodes D 1 , D 2 , D 3
The three-phase full-wave rectified output due to... etc. reaches saturation on a rectangular hyperbola as the rotational speed increases. As shown in FIG. 7, this means that the armature reaction magnetomotive force distribution 1 caused by the armature current is against the field magnetomotive force distribution 10 applied to the armature core 5 of the magnetic poles in the field rotor 2.
1 coincides in phase and cancels out the former magnetomotive force distribution (large demagnetizing effect). The armature reaction magnetomotive force distribution 11 is a trapezoidal distribution based on the structure of the armature core and field magnetic poles. The present invention attempts to make this trapezoid shape more similar to a sine wave.
On the other hand, since the field magnetic flux distribution 10 is sinusoidal and is close to the shape of a magnetic pole, the resulting magnetic flux distribution 12 (the difference between distributions 10 and 11) generated in the gap is as shown by the broken line in FIG. It probably contains the third harmonic, and the third spatial harmonic component of this magnetic flux distribution is the source of the output derived from the auxiliary diode D0,0 mentioned above, and at the same time it is also a factor that determines the ripple size. It is becoming.

本発明となる磁極形状の作用を説明する。第6
図の如くA⌒寸法をスロツトピツチ単位で2.5程
度としかつ磁極形状をスロープ状又は2段テーパ
状とすることによつて界磁磁極の形状は細身にな
り、第6図中に示された矢印方向の磁極間を流れ
る磁束が少なくなるように磁束分布が変化する。
すなわち、第7図の従来状態と比較すると、磁極
形状が細身になつたことにより電機子反作用起磁
力分布11は第7図の台形状からよりサインウエ
ーブに近くなり、一方、界磁起磁力分布10は第
7図の波形からより鋭く突出する方向に多少変形
される。
The effect of the magnetic pole shape according to the present invention will be explained. 6th
As shown in the figure, by setting the A⌒ dimension to about 2.5 in slot pitch units and making the magnetic pole shape slope-like or double-tapered, the field magnetic pole shape becomes slender, and the shape is slender in the direction of the arrow shown in Fig. 6. The magnetic flux distribution changes so that the magnetic flux flowing between the magnetic poles decreases.
That is, compared to the conventional state shown in FIG. 7, the armature reaction magnetomotive force distribution 11 changes from the trapezoidal shape shown in FIG. 7 to a sine wave due to the narrower magnetic pole shape. 10 is slightly deformed from the waveform of FIG. 7 in a direction that projects more sharply.

そして上記のように各起磁力分布10,11が
変形されるので両起磁力分布の合成に相当する第
3高調波は波高のなだらかなものになる。いいか
えれば、寸法A⌒をスロツトピツチで2.5程度と
するとき、リツプルが低減することになる。以上
は高速大出力時に、界磁起磁力分布と、電機子反
作用起磁力分布が重なつているとき、すなわちい
わゆる減磁作用の状態にあるときの作用である
が、発電機回転数が比較的低速回転の時には、ス
テータコイルのリアクタンスが小さくなり電流の
遅れが少なくなつて界磁起磁力分布と、電機子反
作用磁束分布とが第7図とは異なり位相差を持
ち、いわゆる交差磁化作用に近い状態である。こ
のために、電機子反作用による矩形状起磁力分布
11に対して、前述の磁極形状による第3次空間
高調波の低減効果はない。
Since the magnetomotive force distributions 10 and 11 are modified as described above, the third harmonic corresponding to the combination of both magnetomotive force distributions has a gentle wave height. In other words, when the dimension A⌒ is set to about 2.5 in terms of slot pitch, the ripple will be reduced. The above is the effect that occurs when the field magnetomotive force distribution and the armature reaction magnetomotive force distribution overlap at high speed and large output, that is, in a state of so-called demagnetization effect. At low speed rotation, the reactance of the stator coil is small and the delay in the current is small, so that the field magnetomotive force distribution and the armature reaction magnetic flux distribution have a phase difference unlike in Figure 7, which is similar to the so-called cross magnetization effect. state. For this reason, the above-mentioned magnetic pole shape has no effect of reducing the third spatial harmonic with respect to the rectangular magnetomotive force distribution 11 due to armature reaction.

本発明の磁極形状によれば、比較的低速域にお
いては、第3高調波起電力による出力加算分は確
保され、高速域においては、第3次高調波起電力
の回転数に対する増加率の低下に基づき、第3次
高調波起電力による出力は回転数に対して飽和非
線形状に増加し、スロツトピツチも同様に回転数
に対して飽和的に制限される。
According to the magnetic pole shape of the present invention, in a relatively low speed range, the output addition due to the third harmonic electromotive force is ensured, and in the high speed range, the rate of increase of the third harmonic electromotive force with respect to the rotational speed is reduced. Based on this, the output due to the third harmonic electromotive force increases in a saturated nonlinear manner with respect to the rotational speed, and the slot pitch is similarly limited in a saturated manner with respect to the rotational speed.

第8図は、第5図および第6図に示した本発明
となる発電機について、回転数に対する第3次高
調波起電力の変化、またリツプルの変化を実測し
た結果を示す。これは、前述の如く高速駆動発電
機であり前記磁極形状寸法A⌒がスロツトピツチ
単位で、従来と同一でA⌒=3.0のとき7500〔r.p.
m〕における定格出力が13.5〔V〕で105〔A〕の
ものである。このときの第3高調波起電力13お
よびリツプル14は図示破線の如く直線的に増加
し、最高回転数18000〔r.p.m.〕においてリツプル
は7〔V〕と非常に大きな値を示している。そこ
で、この発電機に対して本発明の構成となる磁極
形状寸法AとしてA⌒=2.5を適用すると、図示
実線の如く回転数に対して第3次高調波起電力1
5およびリツプル16は飽和非線形状となり、最
高回転数18000〔r.p.m.〕においてリツプルは5
〔V〕となつた。
FIG. 8 shows the results of actual measurement of changes in the third harmonic electromotive force and changes in ripple with respect to the rotational speed for the generator according to the present invention shown in FIGS. 5 and 6. As mentioned above, this is a high-speed drive generator, and when the magnetic pole shape dimension A⌒ is slot pitch unit, which is the same as the conventional one and A⌒=3.0, it is 7500 [rp
The rated output at [m] is 13.5 [V] and 105 [A]. At this time, the third harmonic electromotive force 13 and the ripple 14 increase linearly as shown by the broken line in the figure, and the ripple shows a very large value of 7 [V] at the maximum rotation speed of 18,000 [rpm]. Therefore, if A⌒=2.5 is applied to this generator as the magnetic pole shape dimension A constituting the present invention, the third harmonic electromotive force 1 with respect to the rotation speed as shown by the solid line in the figure.
5 and ripple 16 have a saturated nonlinear shape, and at the maximum rotation speed of 18000 [rpm], the ripple becomes 5.
It became [V].

本発明となる上記実施例では、磁極と電機子鉄
心のなすギヤツプがいわゆる均等ギヤツプとして
説明したが、第9図a,bに示す如き不均等ギヤ
ツプである他の実施例においても同様の効果が得
られる。
In the above embodiment of the present invention, the gap between the magnetic poles and the armature core was explained as a so-called uniform gap, but the same effect can be obtained in other embodiments in which the gap between the magnetic poles and the armature core is an unequal gap as shown in FIGS. 9a and 9b. can get.

この場合最小ギヤツプ長δminと最大ギヤツプ
長δmAxについての平均ギヤツプ長1/2(δmin+
δmAx)の為す仮想磁極面18と実磁極面17と
がつくる2つの交点間の円弧寸法A′⌒が磁極寸
法Aに相当する。
In this case, the average gap length 1/2 (δmin +
The arc dimension A'⌒ between the two intersections formed by the virtual magnetic pole surface 18 and the real magnetic pole surface 17 formed by δmAx) corresponds to the magnetic pole dimension A.

以上のように、本発明は磁極形状寸法A⌒を縮
小化することにより第3次高調波起電力と、それ
にもとづくリツプルを回転数に対して非線形飽和
曲線状に変化するようにできる。すなわち、本来
リツプルの小さい低速域では第3次高調波起電力
による直流出力加算分は十分に確保し、一方で高
速域ではリツプルを非線形飽和的に制限するとい
う効果がある。これにより、従来リツプルが1つ
の障害となつていた発電機の高速駆動方式も第
5,6図及び7図に実施例として示した如く実用
化できる。
As described above, in the present invention, by reducing the magnetic pole shape dimension A⌒, the third harmonic electromotive force and the ripple based thereon can be made to change in the form of a nonlinear saturation curve with respect to the rotational speed. That is, in the low-speed range where ripples are originally small, sufficient DC output addition due to the third harmonic electromotive force is ensured, while in the high-speed range, ripples are limited in a nonlinear saturation manner. As a result, a high-speed drive system for a generator, in which ripple has been an obstacle in the past, can be put to practical use as shown in the embodiments shown in FIGS. 5, 6, and 7.

最後に第10図において、本発明となる磁極形
状寸法A⌒の大小とそれに対する効果の大小につ
いて説明する。
Finally, with reference to FIG. 10, the magnitude of the magnetic pole shape dimension A⌒ according to the present invention and the magnitude of the effect thereof will be explained.

第10図は、第5図および第6図に示した本発
明となる発電機について、前記スロツトピツチ単
位の磁極形状寸法A⌒を変化させた場合の最高回
転数18000〔r.p.m.〕におけるリツプル19と定格
回転数7500〔r.p.m.〕における出力20を実測し、
百分率表示したものである。A⌒=3.0のときの
出力105〔A〕を100〔%〕、またリツプル7.0〔V〕
を100〔%〕としている。第10図よりリツプル低
下分は出力低下分より大きく、曲線21の如くA
⌒に対して山型のピークを有することがわかる。
すなわち、従来のA⌒寸法の範囲はA⌒≧2.8で
あつたが2.6≧A⌒≧1.8の範囲となると、本発明
となる磁極形状変更によりリツプル低減効果がみ
とめられ、さらに好ましくは2.5≧A⌒≧2.0にお
いてとりわけその効果は大なることがわかつた。
なお前記の実施例は点22,23,24に位置し
ている。
FIG. 10 shows the ripple 19 and rating at the maximum rotational speed of 18000 [rpm] when the magnetic pole shape dimension A⌒ of the slot pitch unit is changed for the generator according to the present invention shown in FIGS. 5 and 6. Actual measurement of output 20 at rotation speed 7500 [rpm],
It is expressed as a percentage. When A⌒=3.0, the output 105 [A] is 100 [%], and the ripple is 7.0 [V]
is set as 100 [%]. From Fig. 10, the ripple reduction is larger than the output reduction, and as shown in curve 21, A
It can be seen that there is a mountain-shaped peak for ⌒.
That is, the conventional A⌒ dimension range was A⌒≧2.8, but when it became 2.6≧A⌒≧1.8, a ripple reduction effect was observed by changing the magnetic pole shape according to the present invention, and more preferably 2.5⌒⌒≧A. It was found that the effect is particularly large when ⌒≧2.0.
Note that the above embodiment is located at points 22, 23, and 24.

なお、以上のA⌒に対するリツプル低減効果
は、発電機の基本寸法、駆動最高回転数、励磁ア
ンペアターンが異なつても、車両用として用いら
れる30〔A〕〜110〔A〕、13.5〔V〕程度の定格出
力の発電機ならばほとんど第10図の結果と一致
する。
Note that the ripple reduction effect for the above A⌒ is 30 [A] to 110 [A], 13.5 [V] used for vehicles, even if the basic dimensions of the generator, maximum driving speed, and excitation ampere turns are different. If the generator has a rated output of about 100 yen, the results almost match those shown in FIG.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来周知の車両用交流発電機の断面
図、第2図は第1図の発電機の電気回路図、第3
図は中性点電位揺動の説明図、第4図a,bは従
来発電機の磁極形状、第5図は本発明となる磁極
形状を有する高速駆動型車両用交流発電機の断面
図、第6図a,bは本発明となる磁極形状図、第
7図は第3次高調波の成因説明図、第8図は第5
図および第6図に示した実施例における第3次高
調波起電力及びリツプルを示す図、第9図a,b
は本発明の構成となる磁極形状のその他の実施
例、および第10図は本発明となる磁極形状と、
その効果についての説明図。 2……界磁回転子、3……界磁巻線、4a,4
b……界磁磁極、5……電機子鉄心、6a,6
b,6c……電機子巻線、A⌒……円弧寸法、
D0,。……単相半波整流器、D1,D2,D3
23……三相全波整流器、τs……スロツト
ピツチ。
Figure 1 is a sectional view of a conventionally known vehicle AC generator, Figure 2 is an electrical circuit diagram of the generator in Figure 1, and Figure 3 is a sectional view of a conventionally known vehicle AC generator.
The figure is an explanatory diagram of neutral point potential fluctuation, Figures 4a and 4b are the magnetic pole shapes of a conventional generator, and Figure 5 is a cross-sectional view of a high-speed drive type vehicle alternator having the magnetic pole shape of the present invention. Figures 6a and b are magnetic pole shape diagrams according to the present invention, Figure 7 is a diagram explaining the origin of the third harmonic, and Figure 8 is the fifth harmonic.
Figures 9a and 9b are diagrams showing the third harmonic electromotive force and ripple in the embodiment shown in Figure 6 and Figure 6.
10 shows other embodiments of the magnetic pole shape according to the present invention, and FIG. 10 shows the magnetic pole shape according to the present invention,
An explanatory diagram of the effect. 2... Field rotor, 3... Field winding, 4a, 4
b... Field magnetic pole, 5... Armature core, 6a, 6
b, 6c...armature winding, A⌒...arc dimension,
D 0 ,. ...Single-phase half-wave rectifier, D 1 , D 2 , D 3 ;
1 , 2 , 3 ...Three-phase full-wave rectifier, τs ...Slot pitch.

Claims (1)

【特許請求の範囲】 1 エンジンにより駆動される回転軸と、 この回転軸上に設けられ、界磁巻線を保持する
保持部と、この保持部より軸方向にのび、先端が
先細りの複数個の爪部とを有するランデル型回転
子と、 上記回転子の複数個の爪部と対向する位置に配
置され、複数個のスロツトを有する固定子鉄心
と、このスロツト内に三相Y結線で巻かれた電機
子巻線とを有する固定子と、 該電機子巻線に誘導される基本波起電力を整流
して主直流出力を発生する三相全波整流器と、 前記電機子巻線の中性点に誘導される3次高調
波起電力を整流し直流出力を前記主直流出力に加
算する単相半波整流器とを備え、 前記固定子の固定子鉄心の軸方向側面直下にお
ける、前記回転子の爪部外周面の周方向の円弧寸
法が、前記固定子のスロツト間のピツチの1.8か
ら2.6倍であることを特徴とする車両用交流発電
機。
[Claims] 1. A rotating shaft driven by an engine, a holding part provided on the rotating shaft and holding a field winding, and a plurality of shafts extending in the axial direction from the holding part and each having a tapered tip. a Lundell-type rotor having a plurality of claws; a stator core disposed at a position facing the plurality of claws of the rotor and having a plurality of slots; and a stator core having a three-phase Y-connection wound in the slot. a three-phase full-wave rectifier that rectifies fundamental wave electromotive force induced in the armature winding to generate a main DC output; a single-phase half-wave rectifier that rectifies the third-order harmonic electromotive force induced at the magnetic point and adds a DC output to the main DC output; An alternator for a vehicle, wherein the circumferential arc dimension of the outer peripheral surface of the child's claw portion is 1.8 to 2.6 times the pitch between the slots of the stator.
JP872681A 1981-01-23 1981-01-23 Ac generator of vehicle Granted JPS57122657A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP872681A JPS57122657A (en) 1981-01-23 1981-01-23 Ac generator of vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP872681A JPS57122657A (en) 1981-01-23 1981-01-23 Ac generator of vehicle

Publications (2)

Publication Number Publication Date
JPS57122657A JPS57122657A (en) 1982-07-30
JPH0139311B2 true JPH0139311B2 (en) 1989-08-21

Family

ID=11700951

Family Applications (1)

Application Number Title Priority Date Filing Date
JP872681A Granted JPS57122657A (en) 1981-01-23 1981-01-23 Ac generator of vehicle

Country Status (1)

Country Link
JP (1) JPS57122657A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE38464E1 (en) 1990-04-24 2004-03-16 Nippondenso Co., Ltd. Alternating current generator having a plurality of independent three-phase windings
JP3186703B2 (en) * 1998-07-29 2001-07-11 株式会社デンソー AC generator for vehicles

Also Published As

Publication number Publication date
JPS57122657A (en) 1982-07-30

Similar Documents

Publication Publication Date Title
JP3351258B2 (en) AC generator for vehicles
JP2833159B2 (en) AC generator for vehicles
US5444355A (en) Charging generator for a vehicle
JP3489106B2 (en) Brushless three-phase synchronous generator
JP4413018B2 (en) AC rotating electric machine
JPH02193598A (en) Hybrid generator
KR100402383B1 (en) A.c. generator for use in a vehicle
JP3368604B2 (en) AC generator
JPH03265451A (en) Generator
JP3489105B2 (en) Brushless self-excited three-phase synchronous generator
US6472793B2 (en) Alternator for vehicles
JPH0421439B2 (en)
JPS6117240B2 (en)
JPH0139311B2 (en)
EP1109300B1 (en) Automotive alternator
JP3455988B2 (en) Rotating electric machine
JP3252808B2 (en) Power generator
JP2887686B2 (en) Brushless self-excited synchronous generator
JPH0532983B2 (en)
JPH10210722A (en) Ac generator for vehicle
JPS5821342Y2 (en) internal combustion engine driven generator
JP3103435B2 (en) AC generator for vehicles
JPH11215729A (en) Storage battery charger device
US7095192B1 (en) Rotating electric machine for automotive application
JPS6392243A (en) Ac charging generator for vehicle