JPH0138854B2 - - Google Patents

Info

Publication number
JPH0138854B2
JPH0138854B2 JP4918881A JP4918881A JPH0138854B2 JP H0138854 B2 JPH0138854 B2 JP H0138854B2 JP 4918881 A JP4918881 A JP 4918881A JP 4918881 A JP4918881 A JP 4918881A JP H0138854 B2 JPH0138854 B2 JP H0138854B2
Authority
JP
Japan
Prior art keywords
curved
curve
center
cooling
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP4918881A
Other languages
Japanese (ja)
Other versions
JPS57164926A (en
Inventor
Senzo Yamamoto
Masato Yamao
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NHK Spring Co Ltd
Original Assignee
NHK Spring Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NHK Spring Co Ltd filed Critical NHK Spring Co Ltd
Priority to JP4918881A priority Critical patent/JPS57164926A/en
Publication of JPS57164926A publication Critical patent/JPS57164926A/en
Publication of JPH0138854B2 publication Critical patent/JPH0138854B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/08Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Articles (AREA)

Description

【発明の詳細な説明】 本発明は曲管の通電加熱方法に関する。[Detailed description of the invention] The present invention relates to a method for energizing a curved pipe.

例えば中空スタビライザなどの曲管をこれに通
電することによつて加熱すると、湾曲部の湾曲中
心に近い方の側(湾曲内側)が通電距離の短いこ
とと比較的厚肉であることにより、湾曲中心から
遠い方の側(湾曲外側)よりも高温になる傾向が
ある。こうして所望温度を超えると結晶粒が粗大
化するなどの不具合を生じやすく、また焼入処理
を施すものについては結晶粒界に析出する非金属
介在物の量が多くなり、結晶間の結合力が弱くな
るため脆性面の問題が生じる。
For example, when a curved pipe such as a hollow stabilizer is heated by supplying electricity to it, the side closer to the center of the curve (the inside of the curve) has a shorter electrical conduction distance and is relatively thicker, causing the curve to bend. The side farther from the center (outside of the curve) tends to be hotter. If the desired temperature is exceeded, problems such as coarsening of crystal grains tend to occur, and in the case of hardened products, the amount of nonmetallic inclusions that precipitate at grain boundaries increases, reducing the bonding strength between crystals. The problem of brittleness arises because it becomes weaker.

また、特開昭47−42510号公報に開示されてい
るように、熱処理すべき湾曲管の湾曲内側に空気
を吹付けるとともに、湾曲の外側に補助の加熱装
置を設けたものもある。
Furthermore, as disclosed in Japanese Patent Application Laid-open No. 47-42510, there is a method in which air is blown onto the inside of the curve of the curved tube to be heat treated, and an auxiliary heating device is provided on the outside of the curve.

しかしこの先行技術の場合、空気のみで冷却す
るため冷却効果が低く、これを補うために空気の
流速を速くすると、湾曲中心から遠い側(湾曲外
側)まで冷却するようになり、外側の温度を下げ
てしまう。このため、湾曲管の外側に上記加熱装
置を設ける必要があるが、こうするとエネルギー
ロスも大きくなるし、装置が複雑化する。
However, in the case of this prior art, the cooling effect is low because only air is used for cooling, and when the air flow rate is increased to compensate for this, cooling is performed to the side far from the center of the curve (the outside of the curve), which lowers the temperature on the outside. I'll lower it. For this reason, it is necessary to provide the heating device outside the curved tube, but this increases energy loss and complicates the device.

本発明は上記事情のものとになされたもので、
その目的とするところは、補助加熱装置を要する
ことなく湾曲部を均等な温度に加熱し得る曲管の
通電加熱方法を提供することにある。
The present invention was made in view of the above circumstances,
The object thereof is to provide a method for heating a curved pipe with electricity, which can heat the curved portion to a uniform temperature without requiring an auxiliary heating device.

以下、本発明について図面を参照しながら説明
する。第1図および第2図において、曲管1は直
線状部2,2およびこれらの中間に位置する湾曲
部3を一体に備えており、直線状部2,2に取着
された電極4,4間に電源部5から適宜の電位差
を与えることにより通電加熱されるようになつて
いる。そしてこの場合には湾曲部3の湾曲中心に
近い方の側6に対して、ノズル7から噴霧状の気
液混合流体8を吹付けることにより冷却する。
Hereinafter, the present invention will be explained with reference to the drawings. In FIGS. 1 and 2, a curved pipe 1 is integrally equipped with straight parts 2, 2 and a curved part 3 located between these parts, and electrodes 4 attached to the straight parts 2, 2, By applying an appropriate potential difference from a power supply section 5 between the two electrodes 4 to 4, the electric current is applied and heated. In this case, the side 6 of the curved portion 3 closer to the center of curvature is cooled by spraying the gas-liquid mixed fluid 8 from the nozzle 7 .

この混合流体は空気および水からなるものであ
つてよく、必要であればその他の適宜の気体と液
体を用いてもよい。気液混合比は曲管1の材質に
適応する冷却速度が得られるように適宜に設定す
ればよい。
This mixed fluid may consist of air and water, and other suitable gases and liquids may be used if necessary. The gas-liquid mixing ratio may be appropriately set so as to obtain a cooling rate suitable for the material of the curved pipe 1.

また、混合流体の噴射パターンは第3図に例示
するように長軸が曲管1の長手方向に沿う楕円形
状または長円形状となるように構成するのがよ
く、かつ曲管1の外径や湾曲部3の形状等に応じ
噴射の方向および圧力を適宜に設定してある。す
なわち、曲管1を通電加熱する場合には湾曲中心
から遠い方の側(湾曲外側)は内側に比べて温度
がかなり低くなり、外側を冷却してしまうと外側
が所定温度に達せずに焼入れ不足になるおそれが
あるので、上記混合流体を湾曲の外側に届かない
ようにするのがよい。
In addition, the injection pattern of the mixed fluid is preferably configured such that the major axis is an ellipse or an oval shape along the longitudinal direction of the curved pipe 1, and the outer diameter of the curved pipe 1 is The direction and pressure of the injection are appropriately set depending on the shape of the curved portion 3 and the like. In other words, when heating the curved pipe 1 with electricity, the temperature on the side far from the center of the curve (the outside of the curve) will be much lower than the inside, and if the outside is cooled, the outside will not reach the specified temperature and will be hardened. Since there is a risk of shortage, it is preferable to prevent the mixed fluid from reaching the outside of the curve.

噴射パターンを楕円または長円形状としたのは
次の理由による。
The reason why the spray pattern is elliptical or oval is as follows.

湾曲管を通電加熱した時の湾曲部の温度分布を
実測したところ、第5図に示されるように湾曲の
曲げ中心においては温度が最も高く、その両側に
向つて温度が漸減することが判つた。この温度分
布を均一化するためには、上記のように楕円また
は長円形状の噴射パターンが有効である。
When we actually measured the temperature distribution in the curved section when the curved tube was heated with electricity, we found that the temperature was highest at the center of the curve and gradually decreased toward both sides, as shown in Figure 5. . In order to make this temperature distribution uniform, an elliptical or elliptical injection pattern as described above is effective.

仮に、空気のみを曲管に吹付けたとしても、空
気は被吹付け部には残らず管壁を回り込んで逃げ
てしまうから、おおむね円形の領域を冷却できる
だけである。これに対し気液混合流体の場合に
は、この流体中の液分が被吹付け部に付着するこ
とにより冷却するため、ノズルの形状あるいは噴
射方向などを調整することにより、楕円あるいは
長円形状の範囲も冷却できる。
Even if only air were blown into the curved pipe, the air would not remain in the blown part but would escape by going around the pipe wall, so it would only be possible to cool a roughly circular area. On the other hand, in the case of a gas-liquid mixed fluid, the liquid content in this fluid adheres to the area to be sprayed and cools it, so by adjusting the nozzle shape or spray direction, it is possible to create an elliptical or elliptical shape. The range can also be cooled.

上記構成による冷却効果を第4図に示す。同図
において横軸に時間を、縦軸には温度をとつてあ
る。tは通電および吹付けを停止した時刻を示
す。また、実線で示す特性AおよびBは湾曲部3
の湾曲中心に近い側6および遠い側9における各
温度を示し、これと同一位置で測定した吹付けを
行なわない場合の特性A′およびB′を破線で示す。
なお、供試曲管は材質がSTKM15Aで、外径22.2
mm、厚さ2.6mmのものを用い、開始時点から上記
時刻tまでの経過時間は15秒であつた。
FIG. 4 shows the cooling effect of the above configuration. In the figure, the horizontal axis represents time, and the vertical axis represents temperature. t indicates the time when energization and spraying were stopped. Moreover, the characteristics A and B shown by solid lines are curved portion 3
The temperatures at the side 6 near the center of curvature and the side 9 far from the center of curvature are shown, and the characteristics A' and B' measured at the same positions without spraying are shown by broken lines.
The material of the test bent pipe is STKM15A, and the outer diameter is 22.2.
mm, thickness 2.6 mm, and the elapsed time from the starting point to the above time t was 15 seconds.

第4図からわかるように、吹付けを行なわない
場合には約400℃であつた両側6,9の温度差が、
吹付けを行なうことにより約80℃と大幅に減少し
ている。また、湾曲中心から遠い側(外側)9の
温度は吹付けの有無により大きな差異を生じてい
ない。これは、冷却のために噴霧状の気液混合流
体を用いたことによるもので、例えば空気のみで
は冷却能力に乏しく、これを補なうため流速を速
くすると湾曲中心から遠い側(外側)まで冷却す
るようになり好ましくない。
As can be seen from Figure 4, the temperature difference between both sides 6 and 9, which was approximately 400℃ when no spraying was performed, is
By spraying, the temperature was significantly reduced to approximately 80℃. Further, the temperature on the side (outside) 9 far from the center of curvature does not vary greatly depending on whether spraying is performed or not. This is due to the use of a spray-like gas-liquid mixed fluid for cooling.For example, air alone has poor cooling ability, and to compensate for this, increasing the flow speed will cause the air to reach the far side (outside) from the center of the curve. This is not desirable because it causes cooling.

本発明は、上述したように曲管を通電加熱する
場合に、湾曲部の湾曲中心に近い側に対し噴霧状
の気液混合流体を曲管の長手方向に沿う楕円形状
または長円形状となるように吹付けて冷却するの
で、空気のみを吹付けていた場合に比べて、各部
を容易にほぼ均等に加熱することができるととも
に、曲管の外側に補助の加熱装置を設ける必要も
ない。従つて、部分的加熱に基づく結晶の粗大化
や脆性不良等の発生を効果的に防止できるばかり
か、エネルギーロスが少なく、加熱に要する装置
の構造も簡単となる。
As described above, when heating a curved tube with electricity, the gas-liquid mixed fluid is sprayed on the side of the curved portion near the center of the curve in an elliptical or oblong shape along the longitudinal direction of the curved tube. Since cooling is performed by blowing air in this way, each part can be heated more easily and almost evenly than when only air is blown, and there is no need to provide an auxiliary heating device on the outside of the curved pipe. Therefore, not only can crystal coarsening and brittle defects caused by partial heating be effectively prevented, but also energy loss is small and the structure of the device required for heating is simplified.

また、冷却媒体が噴霧状であるから曲管の加熱
中における熱膨張による被冷却部の移動を、その
移動に従つて移動しながら冷却する特別な装置を
設けなくてよい。従つて、装置は単純かつ廉価で
あり、操作および保守も容易である。
Furthermore, since the cooling medium is in the form of a spray, there is no need to provide a special device for cooling the part to be cooled while moving along with the movement of the part to be cooled due to thermal expansion during heating of the curved pipe. The device is therefore simple, inexpensive, and easy to operate and maintain.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す説明図、第2
図は第1図中の−線に沿う断面図、第3図は
噴射パターンを例示する説明図、第4図は温度特
性を比較して示す線図、第5図は湾曲部の温度分
布状態を示す図である。 1……曲管、3……湾曲部、4……電極、5…
…電源部、6……湾曲中心に近い側、7……ノズ
ル、8……気液混合流体。
FIG. 1 is an explanatory diagram showing one embodiment of the present invention, and FIG.
The figure is a sectional view taken along the - line in Figure 1, Figure 3 is an explanatory diagram illustrating the injection pattern, Figure 4 is a diagram showing a comparison of temperature characteristics, and Figure 5 is the temperature distribution state of the curved part. FIG. 1... Bent tube, 3... Curved part, 4... Electrode, 5...
...Power source section, 6... Side near the center of curvature, 7... Nozzle, 8... Gas-liquid mixed fluid.

Claims (1)

【特許請求の範囲】[Claims] 1 曲管をこれに通電することによつて加熱する
場合、湾曲部の湾曲中心に近い側に対し噴霧状の
気液混合流体を上記曲管の長手方向に沿う楕円形
状または長円形状となるように吹付けて冷却する
ことを特徴とする曲管の通電加熱方法。
1. When heating a curved pipe by energizing it, a spray of gas-liquid mixed fluid is applied to the side of the curved portion near the center of the curve in an elliptical or oblong shape along the longitudinal direction of the curved pipe. A method for heating curved pipes by energization, which is characterized by cooling the pipes by spraying them in a similar manner.
JP4918881A 1981-04-01 1981-04-01 Electrically heating method for bent pipe Granted JPS57164926A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4918881A JPS57164926A (en) 1981-04-01 1981-04-01 Electrically heating method for bent pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4918881A JPS57164926A (en) 1981-04-01 1981-04-01 Electrically heating method for bent pipe

Publications (2)

Publication Number Publication Date
JPS57164926A JPS57164926A (en) 1982-10-09
JPH0138854B2 true JPH0138854B2 (en) 1989-08-16

Family

ID=12824044

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4918881A Granted JPS57164926A (en) 1981-04-01 1981-04-01 Electrically heating method for bent pipe

Country Status (1)

Country Link
JP (1) JPS57164926A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011189892A (en) * 2010-03-16 2011-09-29 Chuo Spring Co Ltd Method of manufacturing stabilizer for automobile

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5550405B2 (en) * 2010-03-23 2014-07-16 中央発條株式会社 Spring manufacturing method
CN107267732A (en) * 2017-07-31 2017-10-20 浙江众立不锈钢管股份有限公司 A kind of solid dissolving method and its device of stainless steel elbow pipe fitting
EP3742865B1 (en) * 2019-05-23 2021-08-25 ITG Induktionsanlagen GmbH Method for conductive heating of curved metallic workpieces, installation for carrying out the method, and field management element for carrying out the method or as part of the system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011189892A (en) * 2010-03-16 2011-09-29 Chuo Spring Co Ltd Method of manufacturing stabilizer for automobile

Also Published As

Publication number Publication date
JPS57164926A (en) 1982-10-09

Similar Documents

Publication Publication Date Title
JPH08277122A (en) Method and apparatus for delivering glass flow for forming glass filling material
CN109022747A (en) The post weld heat treatment method of U71MnH rail flash welding connector
JPH0138854B2 (en)
JP2001512184A (en) High frequency induction melting
KR102031434B1 (en) Cooling apparatus for welding
JP2001085383A (en) Substrate treatment apparatus
CN108356401A (en) Gas auxiliary resistance spot welding device and its cool and heat method
JPH04186852A (en) Bonding equipment
JPS5927771A (en) Soldering device
JPH0641649A (en) Heat treatment and continuous heat treatment furnace for aluminum strip
JPH0427174B2 (en)
JPH03287497A (en) Anti-icing device for airplane
JPH09287026A (en) Method for hot treatment of metal bar material and cooling device
JP3331089B2 (en) Sample cooling nozzle
JPH0354134Y2 (en)
JPH05132711A (en) Cooler
JPS61210170A (en) Thermal spraying method of ceramic powder
JPS60238619A (en) Heat shielding coating structure for burner
JPS5833641Y2 (en) Basing heating device
JPH0387321A (en) Method and apparatus for heating steel strip in radiant tube type continuous heat treatment furnace
JPS6237111A (en) Slush molding tool
JPH017715Y2 (en)
SU1333773A1 (en) Method of heat insulation of working surface
SU981100A1 (en) Apparatus for dismantling the ship bearing sleeve
JPS5831880Y2 (en) Reducing gas spray device