JPH0138787B2 - - Google Patents

Info

Publication number
JPH0138787B2
JPH0138787B2 JP20241282A JP20241282A JPH0138787B2 JP H0138787 B2 JPH0138787 B2 JP H0138787B2 JP 20241282 A JP20241282 A JP 20241282A JP 20241282 A JP20241282 A JP 20241282A JP H0138787 B2 JPH0138787 B2 JP H0138787B2
Authority
JP
Japan
Prior art keywords
isocyanurate
hydroxypropyl
water
acetonyl
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP20241282A
Other languages
Japanese (ja)
Other versions
JPS5993064A (en
Inventor
Hisao Kitano
Fumio Tanimoto
Yoshiharu Inoe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seisan Kaihatsu Kagaku Kenkyusho
Original Assignee
Seisan Kaihatsu Kagaku Kenkyusho
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seisan Kaihatsu Kagaku Kenkyusho filed Critical Seisan Kaihatsu Kagaku Kenkyusho
Priority to JP20241282A priority Critical patent/JPS5993064A/en
Publication of JPS5993064A publication Critical patent/JPS5993064A/en
Publication of JPH0138787B2 publication Critical patent/JPH0138787B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Description

【発明の詳现な説明】 本発明はアセトニルむ゜シアヌレヌトの補造法
に関するものであ぀お本発明の方法によ぀お埗ら
れるアセトニルむ゜シアヌレヌトは合成暹脂、生
化孊的薬物、合成原料、詊薬等ずしお甚途の広い
ものである。
Detailed Description of the Invention The present invention relates to a method for producing acetonyl isocyanurate, and the acetonyl isocyanurate obtained by the method of the present invention can be used as a synthetic resin, a biochemical drug, a synthetic raw material, a reagent, etc. It is versatile.

本発明者らはこれたでアセトニルむ゜シアヌレ
ヌトを合成しようずしおモノクロルアセトンある
いはアセトヌルを原料ずする方法を皮々詊みたの
であるが目的物の収率が充分でなく、䞔぀皮々の
アセトニルむ゜シアヌレヌトを合成するこずがで
きなか぀た。
The present inventors have tried various methods using monochloroacetone or acetol as raw materials in an attempt to synthesize acetonyl isocyanurate, but the yield of the target product was not sufficient, and it was difficult to synthesize various acetonyl isocyanurates. I couldn't do it.

ここにおいお本発明者らはトリアリルむ゜シア
ヌレヌトの氎和物構造を有する−ヒドロキシプ
ロピルむ゜シアヌレヌトを極性溶剀䞭で−120
℃においお酞化するこずによ぀お目的ずする皮々
のアセトニルむ゜シアヌレヌトを収率よく合成す
るこずに成功したのである。本発明にいうアセト
ニルむ゜シアヌレヌトずはアセトニルゞアリルむ
゜シアヌレヌト、アセトニルヒドロキシプロピル
アリルむ゜シアヌレヌト、ゞアセトニルアリルむ
゜シアヌレヌト、アセトニルビス−ヒドロキ
シプロピルむ゜シアヌレヌト、ゞアセトニル
−ヒドロキシプロピルむ゜シアヌレヌト、トリア
セトニルむ゜シアヌレヌトのいずれかもしくはこ
れらの皮以䞊の混合物を指すものである。
Here, the present inventors prepared 2-hydroxypropylisocyanurate having a hydrate structure of triallylisocyanurate in a polar solvent at 0-120
They succeeded in synthesizing various desired acetonyl isocyanurates in good yields by oxidizing them at ℃. The acetonyl isocyanurate referred to in the present invention is acetonyl diallyl isocyanurate, acetonyl hydroxypropyl allyl isocyanurate, diacetonyl allyl isocyanurate, acetonyl bis(2-hydroxypropyl) isocyanurate, diacetonyl 2
- Refers to either hydroxypropyl isocyanurate, triacetonyl isocyanurate, or a mixture of two or more thereof.

トリアリルむ゜シアヌレヌトの氎和物構造を有
する−ヒドロキシプロピルむ゜シアヌレヌトず
は、、、のいずれかで瀺される化
合物である。
2-hydroxypropylisocyanurate having a hydrate structure of triallylisocyanurate is a compound represented by any one of (), (), and ().

䞊匏、、の化合物は、トリアリ
ルむ゜シアヌレヌトを原料ずしお、これを䟋えば
硫酞等酞性物質の存圚䞋においお氎和する方法に
よ぀お、混合物ずしお埗るこずができる特願昭
56−97951号明现曞特開昭57−212173号公報。
The compounds of the above formulas (), (), and () can be obtained as a mixture by using triallylisocyanurate as a raw material and hydrating it in the presence of an acidic substance such as sulfuric acid (patent application). Akira
56-97951, Japanese Patent Application Laid-open No. 57-212173).

䞊蚘氎和法においお、、のいず
れが䞻成分ずしお埗られるかは、○む硫酞濃床、○ロ
硫酞䜿甚量、○ハ反応枩床、○ニ反応時間等の反応条
件によ぀お異なるので、䞀抂にいえないが、反応
条件が枩和であればが、反応条件が過酷で
あればが倫々䞻成分ずなる。、、
の混合物から倫々の化合物を単離するには
蒞留たたは再結晶によればよいが、、、
の混合物は必ずしも分離粟補した䞊で本発
明の出発原料ずしお䜿甚しなければならないもの
ではない。䜕故ならば、その際にも埌述の本発明
の反応により、本発明の目的化合物を混合物の状
態で埗るこずができ、必芁ならば、その埌に特定
の目的化合物を分離採取しうるからである。
In the above hydration method, whether (), (), or () is obtained as the main component depends on the reaction conditions such as ○ concentration of sulfuric acid, ○ amount of sulfuric acid used, ○ C reaction temperature, and ○ D reaction time. Although it is difficult to make a general statement because the conditions are different, if the reaction conditions are mild, then () will be the main component, and if the reaction conditions are severe, () will be the main component. (), (),
Distillation or recrystallization can be used to isolate each compound from a mixture of (), (),
The mixture () does not necessarily have to be separated and purified before being used as a starting material for the present invention. This is because even in this case, the target compound of the present invention can be obtained in the form of a mixture by the reaction of the present invention described later, and if necessary, a specific target compound can be separated and collected thereafter.

、、の化合物の共通した性質は
匷熱されるず脱氎分解する傟向が匷く、か぀酞化
剀に察しお比范的安定なこずである。これはこれ
らの化合物の各分子が匷い氎玠結合によ぀お盞互
に䜜甚し合぀おいる結果であり、このこずは蒞気
圧が非垞に小さいこずよりも銖肯しうるずころで
ある。
The common properties of the compounds (), (), and () are that they have a strong tendency to undergo dehydration and decomposition when ignited, and are relatively stable against oxidizing agents. This is a result of the molecules of these compounds interacting with each other through strong hydrogen bonds, which makes more sense than the very low vapor pressure.

、、の化合物をその酞化抵抗性
に打ち勝぀お酞化するには、やや匷い液盞酞化を
行わねばならず匱い酞化剀では目的ずするアセト
ニルむ゜シアヌレヌトは埗られ難いのである。そ
しお匷すぎるような酞化剀酞化を行なうずアリル
基の重合や分解、−ヒドロキシプロピル基の分
解やトリアゞン環の分裂が惹起する。このような
予期せざる反応を防止するには酞化条件を遞定す
るこずが必芁であ぀おずくに極性溶剀䞭で〜
120℃で酞化剀を甚いお液盞酞化するこずが必芁
である。
In order to oxidize the compounds (), (), and () to overcome their oxidation resistance, a rather strong liquid phase oxidation must be performed, and it is difficult to obtain the desired acetonyl isocyanurate with a weak oxidizing agent. . If oxidation with an oxidizing agent is too strong, polymerization and decomposition of the allyl group, decomposition of the 2-hydroxypropyl group, and splitting of the triazine ring will occur. To prevent such unexpected reactions, it is necessary to select oxidation conditions, especially in polar solvents.
Liquid phase oxidation using an oxidizing agent at 120°C is required.

本発明にいう極性溶剀ずは氎、硫酞、硝酞、リ
ン酞、ハロゲン化氎玠酞、酢酞、二塩化メチレ
ン、クロロホルム、アセトン、第玚アルコヌ
ル、ピリゞン等の単独あるいは混合物が甚いら
れ、工業的芋地からは氎、硫酞氎溶液、酢酞、酢
酞氎溶液、氎酞化アルカリ氎溶液、アセトン、ピ
リゞンが経枈的である。酞化反応枩床は〜120
℃ずくに奜たしくは10〜100℃の間で行なわれる。
℃以䞋では−ヒドロキシプロピルむ゜シアヌ
レヌトの耐酞化性に原因しお匷い酞化剀を甚いお
も容易には酞化されず長時間を芁するため経枈的
に䞍利である。たた120℃以䞊ではトリアゞン環
の分裂、アリル基等の酞化分解が䜵起しお目的物
の収率が著しく悪くなる。
The polar solvent used in the present invention includes water, sulfuric acid, nitric acid, phosphoric acid, hydrohalic acid, acetic acid, methylene dichloride, chloroform, acetone, tertiary alcohol, pyridine, etc. alone or in mixtures. Water, sulfuric acid aqueous solution, acetic acid, acetic acid aqueous solution, alkali hydroxide aqueous solution, acetone, and pyridine are economical. Oxidation reaction temperature is 0-120
It is preferably carried out at a temperature of 10 to 100°C.
If the temperature is below 0.degree. C., 2-hydroxypropyl isocyanurate is not easily oxidized even if a strong oxidizing agent is used due to its oxidation resistance, and it takes a long time to oxidize, which is economically disadvantageous. Furthermore, at temperatures above 120°C, splitting of the triazine ring and oxidative decomposition of allyl groups occur simultaneously, resulting in a markedly poor yield of the target product.

぀ぎに、、から目的物ずしおど
のような酞化物が埗られるかを化孊匏で図瀺す
る。
Next, what kind of oxide can be obtained as a target object from (), (), and () will be illustrated using a chemical formula.

䞊蚘の〜が本発明による酞化物で
あり、このうち、、はそれぞれ
、、からの完党酞化物、およ
び、はおよびからの䞍完
党酞化物である。本発明の方法は酞化条件、酞化
剀䜿甚量等を遞択するこずにより完党酞化物でも
䞍完党酞化物でも奜郜合に補造するこずができ
る。䞊匏では完党酞化物は䞍完党酞化物を経お逐
次的に生成するように瀺したが、実際には酞化方
法を遞択するこずにより、䞀段でたたは
からたたはを合成するこずが
できる。
The above () to () are the oxides according to the present invention, and among these, (), (), and () are the complete oxides from (), (), and (), respectively, and () and (), (). is an incomplete oxide from () and (). The method of the present invention can conveniently produce either complete oxides or incomplete oxides by selecting the oxidation conditions, the amount of oxidizing agent used, etc. The above formula shows that a complete oxide is generated sequentially through an incomplete oxide, but in reality, by selecting the oxidation method, () or () can be synthesized from () or () in one step. can do.

本発明の方法に甚いられる酞化剀ずしおは、極
性溶剀を甚いる液盞酞化であり、䞔぀原料ならび
に反応枩床が限定されおいるため匷力な酞化剀が
必芁である。代衚的な酞化剀を瀺すず䞉酞化クロ
ムクロム酞およびその塩、重クロム酞塩、塩
化クロミル、二酞化マンガン、過マンガン酞塩、
ハロゲン酞およびその塩、過ハロゲン酞およびそ
の塩、過硫酞塩、過ホり酞塩、過酞化氎玠、硝
酞、−ハロゲン有機酞アミド、クロム酞−−
ブチル、五酞化バナゞりム、有機過酞化物等であ
るが、工業的に有利な酞化剀は䞉酞化クロムク
ロム酞、硝酞、過酞化氎玠である。
The oxidizing agent used in the method of the present invention is liquid phase oxidation using a polar solvent, and since the raw materials and reaction temperature are limited, a strong oxidizing agent is required. Typical oxidizing agents include chromium trioxide (chromic acid) and its salts, dichromate, chromyl chloride, manganese dioxide, permanganate,
Halogen acids and their salts, perhalogen acids and their salts, persulfates, perborates, hydrogen peroxide, nitric acid, N-halogen organic acid amides, chromic acid-t-
These include butyl, vanadium pentoxide, organic peroxides, etc., but industrially advantageous oxidizing agents are chromium trioxide (chromic acid), nitric acid, and hydrogen peroxide.

䞉酞化クロムクロム酞を甚いる堎合には
氎、酢酞、クロロホルム、ハロゲン化氎玠酞等が
溶剀ずしお有利であり、堎合によ぀おはアセト
ン、ピリゞン等が甚いられる。
When using chromium trioxide (chromic acid), water, acetic acid, chloroform, hydrohalic acid, etc. are advantageous as the solvent, and in some cases, acetone, pyridine, etc. are used.

重クロム酞塩を甚いる堎合には氎、硫酞、酢酞
等が溶剀ずしお甚いられる。硝酞の堎合には氎、
垌硫酞等が溶剀ずしお甚いられ、過酞化氎玠の堎
合には氎、−ブタノヌル等が溶剀ずしお甚いら
れ反応促進剀ずしお二酞化マンガンを觊媒にする
こずがある。過マンガン酞カリりムは氎溶液ずし
お甚いられる。たたハロゲン酞、過ハロゲン酞お
よびそれらの塩を甚いる堎合にも氎が極性溶媒ず
しおすぐれおいる。
When using dichromate, water, sulfuric acid, acetic acid, etc. are used as a solvent. water in the case of nitric acid,
Dilute sulfuric acid or the like is used as a solvent, and in the case of hydrogen peroxide, water, t-butanol, etc. are used as a solvent, and manganese dioxide may be used as a catalyst as a reaction accelerator. Potassium permanganate is used as an aqueous solution. Water is also an excellent polar solvent when using halogen acids, perhalogen acids, and their salts.

本発明者らは、䞊蚘した本発明の方法に関しお
倚数の実隓を行ない本発明の優秀性を明らかにし
たのであるが、次に代衚的な数䟋を実斜䟋ずしお
瀺すこずにする。
The present inventors conducted a large number of experiments regarding the method of the present invention described above and clarified the superiority of the present invention.Next, several representative examples will be shown as examples.

原料化合物の合成䟋  トリアリルむ゜シアヌレヌト1000.40モル
を玄40℃で撹拌し぀぀、これに98硫酞100
1.02モルの滎䞋を埐々に行ない、反応枩床が
50℃を越えないようにしながら、これを完了す
る。この混合物を玄35℃で時間、぀づいお45〜
50℃で時間撹拌したのち氎200mlを埐々に加え、
さらに60〜70℃で30分間撹拌する。反応混合物を
宀枩に冷华したのち、氎200mlを加え、これをベ
ンれン抜出し、抜出液を炭酞氎玠ナトリりム飜和
氎溶液で掗浄し、぀づいお氎掗し、無氎硫酞ナト
リりムで也燥したのち、ベンれンを留去し、぀づ
いお枛圧蒞留するず無色の粘皠な液䜓である−
ヒドロキシプロピルゞアリルむ゜シアヌレヌト88
収率82が埗られる。このものの性質およ
び分析倀は次のずおりである。
Synthesis example of raw material compound 1 Triallylisocyanurate 100g (0.40mol)
While stirring at about 40℃, add 100g of 98% sulfuric acid to this.
(1.02 mol) was gradually added dropwise until the reaction temperature reached
Complete this without exceeding 50°C. This mixture was heated at approximately 35°C for 3 hours, then at 45°C.
After stirring at 50℃ for 1 hour, 200ml of water was gradually added.
Stir for an additional 30 minutes at 60-70°C. After cooling the reaction mixture to room temperature, 200 ml of water was added, and this was extracted with benzene. The extract was washed with a saturated aqueous solution of sodium bicarbonate, then water, and dried over anhydrous sodium sulfate, and then the benzene was distilled off. , and then distilled under reduced pressure to obtain 2-, which is a colorless viscous liquid.
Hydroxypropyl diallyl isocyanurate 88
g (yield 82%) is obtained. The properties and analytical values of this substance are as follows.

bp.、154〜155℃0.5mgHg、 元玠分析倀C12H17N3O4ずしお 蚈算倀 C53.92、H6.41、N15.72 実枬倀 C53.77、H6.35、N15.91 irスペクトルneat cm-13500、1680、765 nmrスペクトルCDCl3 Ύ6.2〜5.52H、、CH2−CH2、
5.4〜5.14H、、CH2−CH 2、4.5
〜4.44H、、 2−CHCH2、4.2
1H、、CH3−−CH2OH、 原料化合物の合成䟋  トリアリルむ゜シアヌレヌト1000.4モル
を40℃以䞋で撹拌し぀぀これに95硫酞200
2.0モルを時間を芁しお滎䞋し、30〜35℃で
時間反応攟眮を぀づけたのち氎400mlを加えお
時間煮沞を行なう。぀いで反応混合物に氎酞化
ナトリりムを加えお䞭和し、䞭和液をベンれンで
くり返し抜出し、抜出液を集めお無氎硫酞ナトリ
りムで也燥埌蒞留しお溶剀を回収する。残枣を枛
圧蒞留しお160℃0.5mmHgで留出しおくる−
ヒドロキシプロピルゞアリルむ゜シアヌレヌトを
たず分取する。この残枣をさらに真空蒞留すれば
ビス−ヒドロキシプロピルアリルむ゜シアヌ
レヌト、bp140℃0.05mmHgをうる。収量77.5
収率玄68である。
bp., 154-155℃/0.5mgHg, elemental analysis value C 12 H 17 N 3 O 4 Calculated value C53.92%, H6.41%, N15.72% Actual value C53.77%, H6.35% , N15.91% IR spectrum (neat) cm -1 : 3500, 1680, 765 nmr spectrum ( CDCl3 ) ή: 6.2-5.5 (2H, m, CH2 - CH = CH2 ),
5.4-5.1 (4H, m, CH2 -CH= CH2 ), 4.5
~4.4 (4H, d, CH2 - CH= CH2 ), 4.2
(1H, m, CH3 - CH - CH2OH ), Synthesis example of raw material compound 2 Triallyl isocyanurate 100g (0.4 mol)
Add 200g of 95% sulfuric acid to this while stirring at below 40℃.
(2.0 mol) was added dropwise over a period of 2 hours, the reaction was allowed to stand for 8 hours at 30-35°C, and then 400 ml of water was added and boiled for 7 hours. The reaction mixture is then neutralized by adding sodium hydroxide, the neutralized solution is extracted repeatedly with benzene, the extracts are collected, dried over anhydrous sodium sulfate, and then distilled to recover the solvent. The residue is distilled under reduced pressure at 160℃/0.5mmHg.
Hydroxypropyl diallyl isocyanurate is first separated. Further vacuum distillation of this residue yields bis2-hydroxypropyl)allylisocyanurate, bp 140°C/0.05mmHg. Yield 77.5g
(yield approximately 68%).

この方法では硫酞濃床が98以䞋぀たり80〜98
の範囲にわた぀お実斜するこずができるが硫酞
濃床を小さくするず、䞊の条件よりも反応枩床を
䞊げるかあるいは反応時間を長くする必芁があ
る。ビス−ヒドロキシプロピルアリルむ゜
シアヌレヌトは蒞留法によるほか掻性癜土を甚い
る吞着法によ぀お粟補できるが、蒞留たたは吞着
の操䜜を実斜する前に抜出液䞭に硫酞根が党く含
たれおいないこずを確認しおおくこずが奜たし
い。そしお小量の硫酞根があれば氎酞化バリりム
で予め陀去しおおくこずが収率を向䞊させるため
に必芁である。
In this method, the sulfuric acid concentration is less than 98%, i.e. 80-98%.
%, but if the sulfuric acid concentration is lowered, it is necessary to raise the reaction temperature or make the reaction time longer than under the above conditions. Bis(2-hydroxypropyl)allylisocyanurate can be purified by distillation or adsorption using activated clay, but the extract must be free of any sulfate radicals before carrying out the distillation or adsorption operation. It is advisable to check that. If there is a small amount of sulfate radicals, it is necessary to remove them in advance with barium hydroxide in order to improve the yield.

この硫酞化氎和法によ぀お埗られた粟補品の分
析倀は぀ぎのずおりである。
The analytical values of the purified product obtained by this sulfation hydration method are as follows.

元玠分析倀C12H19O5N3分子量285.30ずしお 蚈算倀14.73、実枬倀14.81 irスペクトルneatcm-13500−、3090
オレフむンの−、1680、760
− nmrスペクトルCDCl3Ύ1.10〜1.30、
6H、3.55〜4.25、8H、4.35〜4.55、
2H、5.05〜5.45、2H、5.55〜6.20、
1H、 実斜䟋  −ヒドロキシプロピルゞアリルむ゜シアヌレ
ヌト10をアセトン20mlに溶解しお氷冷しお撹拌
しながらクロム酞液無氎クロム酞2.5、硫酞
3.1、氎15mlの混液を滎䞋したのち25℃で
時間撹拌し、過剰のクロム酞を酞性亜硫酞゜ヌダ
で分解する。反応混合物を゚ヌテル抜出し抜出液
を氎掗、也燥埌蒞留するずアセトニルゞアリルむ
゜シアヌレヌトを玄70の収率でうる。このもの
は沞点146℃0.3mmHgの無色液䜓で次の分析結
果であ぀た。
Elemental analysis value C 12 H 19 O 5 N 3 (molecular weight 285.30) N calculated value 14.73%, N actual value 14.81% IR spectrum (neat); cm -1 3500 (O-H), 3090
(C-H of olefin), 1680 (C=O), 760 (N
-C) nmr spectrum ( CDCl3 ); ÎŽ1.10-1.30 (d,
6H), 3.55-4.25 (m, 8H), 4.35-4.55 (d,
2H), 5.05-5.45 (m, 2H), 5.55-6.20 (m,
1H), Example 1 10 g of 2-hydroxypropyl diallyl isocyanurate was dissolved in 20 ml of acetone, cooled on ice, and mixed with chromic acid solution (2.5 g of chromic anhydride, sulfuric acid) while stirring.
After dropping 3.1 g of water (mixture of 15 ml of water) at 25℃,
Stir for an hour and destroy excess chromic acid with acidic sodium sulfite. The reaction mixture is extracted with ether, the extract is washed with water, dried, and then distilled to obtain acetonyl diallylisocyanurate with a yield of about 70%. This product was a colorless liquid with a boiling point of 146°C/0.3mmHg, and the analysis results were as follows.

ir1710cm-1nmr.CCl4Ύ2.20、
3HはCH3COCH2基のH3のプロトンを瀺し、
4.55、2HはCH3COCH2基のH2のプロナ
トンを瀺す。元玠分析は実枬倀15.90、
蚈算倀15.84であ぀た。
ir: 1710 cm -1 (C=O); nmr. (CCl 4 ): ÎŽ2.20 (S,
3H) indicates the proton of H 3 of CH 3 COCH 2 groups,
4.55 (S, 2H) indicates a pronaton of H 2 with CH 3 COCH 2 groups. Elemental analysis showed N actual value 15.90%, (N
The calculated value was 15.84%).

実斜䟋  −ヒドロキシプロピルゞアリルむ゜シアヌレ
ヌト30、氎20ml、50フツ化氎玠酞10ml、酢酞
10mlを混合しお、これを撹拌し぀぀クロム酞液
無氎クロム酞、氎10mlの混液を滎䞋した
時間30℃で反応を行な぀たのち冷华し固圢物を
別する。液をトル゚ンで抜出しお抜出液を氎
掗、也燥しお蒞留すればアセトニルゞアリルむ゜
シアヌレヌトが玄82の収率で埗られる。このも
のはその性質を実斜䟋で埗たものず比范しお同
䞀物であるこずを確認した。
Example 2 30 g of 2-hydroxypropyl diallyl isocyanurate, 20 ml of water, 10 ml of 50% hydrofluoric acid, acetic acid
A chromic acid solution (mixture of 8 g of chromic acid anhydride and 10 ml of water) was added dropwise to the mixture with stirring. After the reaction was carried out at 30° C. for 3 hours, the mixture was cooled and the solids were separated. If the liquid is extracted with toluene, the extract is washed with water, dried, and distilled, acetonyl diallylisocyanurate can be obtained with a yield of about 82%. The properties of this product were compared with those obtained in Example 1, and it was confirmed that they were the same.

実斜䟋  −ヒドロキシプロピルゞアリルむ゜シアヌレ
ヌト、40硝酞10、40硫酞10の混合物
を封管に入れはげしく振盪しながら750℃で時
間反応させたのち冷华しお、反応混合物をアルカ
リ氎溶液䞭に投入し゚ヌテル抜出する。抜出液を
分取しお氎掗、也燥埌蒞留すればアセトニルゞア
リルむ゜シアヌレヌトが玄66の収率で埗られ
た。このものはその性質を実斜䟋で埗たものず
比范しお同䞀物であるこずを確認した。
Example 3 A mixture of 3 g of 2-hydroxypropyl diallylisocyanurate, 10 g of 40% nitric acid, and 10 g of 40% sulfuric acid was placed in a sealed tube and reacted at 750°C for 7 hours with vigorous shaking, then cooled and the reaction mixture was diluted with an aqueous alkaline solution. and extract it with ether. When the extract was separated, washed with water, dried, and then distilled, acetonyl diallyl isocyanurate was obtained with a yield of about 66%. The properties of this product were compared with those obtained in Example 1, and it was confirmed that they were the same.

実斜䟋  −ヒドロキシプロピルゞアリルむ゜シアヌレ
ヌト、乳化剀0.01、30過化氎玠氎、
æ°Ž20ml、掻性二酞化マンガン0.1を封管䞭に入
れ50〜60℃ではげしく振盪し぀぀10時間反応させ
たのち冷华し反応混合物を冷氎䞭に投入しおベン
れン抜出する。抜出液を分取しお氎掗、也燥埌蒞
留すればアセトニルゞアリルむ゜シアヌレヌトが
箄44の収率で埗られた。このものはその性質を
実斜䟋で埗たものず比范しお同䞀物であるこず
を確認した。
Example 4 3 g of 2-hydroxypropyl diallyl isocyanurate, 0.01 g of emulsifier, 5 g of 30% hydrogen peroxide,
20 ml of water and 0.1 g of activated manganese dioxide are placed in a sealed tube and reacted at 50-60°C with vigorous shaking for 10 hours, then cooled and the reaction mixture is poured into cold water for benzene extraction. When the extract was separated, washed with water, dried, and then distilled, acetonyl diallyl isocyanurate was obtained in a yield of about 44%. The properties of this product were compared with those obtained in Example 1, and it was confirmed that they were the same.

実斜䟋  −ヒドロキシプロピルゞアリルむ゜シアヌレ
ヌト10、50硫酞100、二酞化マンガン10
をはげしく撹拌し぀぀宀枩で時間反応させたの
ち゚ヌテル抜出し抜出液を氎掗、也燥しお蒞留す
ればアセトニルゞアリルむ゜シアヌレヌトを玄68
の収率でうる。このものは実斜䟋で埗たもの
ず比范しお同䞀物であるこずが確認された。
Example 5 10 g of 2-hydroxypropyl diallyl isocyanurate, 100 g of 50% sulfuric acid, 10 g of manganese dioxide
After reacting for 4 hours at room temperature with vigorous stirring, extracting with ether, washing the extract with water, drying and distilling, acetonyl diallylisocyanurate is obtained at about 68%
% yield. This product was compared with the product obtained in Example 1 and was confirmed to be the same product.

実斜䟋  硫酞化氎和法でトリス−ヒドロキシプロピ
ルむ゜シアヌレヌトを合成し、これを分取しお
粟補したのち実斜䟋ず同様に倍量のクロム酞
液を甚いお酞化した堎合にトリアセトニルむ゜シ
アヌレヌトが埗られるが、硫酞化氎和法によるな
らば合成䞭間物であるトリス−ヒドロキシプ
ロピルむ゜シアヌレヌトを抜出、蒞留、再結晶
によ぀お䞀旊分取しなくおも次の劂く連続しおト
リアセトニルむ゜シアヌレヌトにするこずができ
る。
Example 6 Tris (2-hydroxypropyl) isocyanurate was synthesized by the sulfation hydration method, fractionated and purified, and then oxidized using three times the amount of chromic acid solution in the same manner as in Example 1. However, if the sulfation hydration method is used, tris(2-hydroxypropyl) isocyanurate, which is a synthetic intermediate, is not separated by extraction, distillation, and recrystallization. Triacetonyl isocyanurate can be made continuously as follows.

トリアリルむ゜シアヌレヌト15、80硫酞50
mlを混合しお80℃で10時間保持したのち氎40mlを
加え時間100℃に保぀。冷华したのちこれにク
ロム酞液䞉酞化クロム13、氎15mlの混液を
40〜50℃で滎䞋し぀いでこの枩床で時間保぀た
のち冷华する。反応混合物をベンれン抜出しお抜
出液を氎掗、也燥埌ベンれンを留去する。残枣を
メタノヌルより再結晶すればトリアセトニルむ゜
シアヌレヌトを玄50の収率でうる。このものは
mp.138〜139℃の癜色結晶で分析結果は぀ぎのず
おりである。
Triallylisocyanurate 15g, 80% sulfuric acid 50
ml was mixed and kept at 80℃ for 10 hours, then 40ml of water was added and kept at 100℃ for 2 hours. After cooling, add chromic acid solution (mixture of chromium trioxide 13g and water 15ml).
It is added dropwise at 40-50°C and kept at this temperature for 2 hours before being cooled. The reaction mixture is extracted with benzene, the extract is washed with water, and after drying, the benzene is distilled off. If the residue is recrystallized from methanol, triacetonyl isocyanurate can be obtained with a yield of about 50%. This thing is
The analysis results for white crystals with a temperature of mp.138-139°C are as follows.

ir.nujol1730〜1680cm-1、760cm-1
−nmr.DMSO−d6Ύ1.86、
9H、4.28、6H元玠分析実枬倀
14.08、蚈算倀14.14 実斜䟋  実斜䟋の方法においおトリアリルむ゜シアヌ
レヌトを45䜿甚しお同様な操䜜を行な぀おやる
ずアセトニルゞアリルむ゜シアヌレヌトが玄77
の収率で埗られた。このものは実斜䟋で埗たも
のず比范しお同䞀物であるこずが認められた。
ir. (nujol): 1730~1680cm -1 (C=O), 760cm -1
(NC); nmr. (DMSO-d 6 ): ÎŽ1.86 (S,
9H), 4.28 (S, 6H); Elemental analysis: N actual value
14.08%, (N calculated value 14.14%) Example 7 When the same operation as in Example 6 was carried out using 45 g of triallyl isocyanurate, the amount of acetonyl diallyl isocyanurate was approximately 77%.
was obtained in a yield of . This product was found to be the same as that obtained in Example 1.

実斜䟋  ビス−ヒドロキシプロピルアリルむ゜シ
アヌレヌト10、アセトン40mlを氷冷しお撹拌し
぀぀、これにクロム混酞䞉酞化クロム5.7、
ç¡«é…ž6.1の混液を添加する。぀いで宀枩で
時間撹拌したのち反応混合物を冷氎䞭に投入しト
ル゚ン抜出する。抜出液を氎掗、也燥埌蒞留しお
トル゚ンを留去し、残枣をメタノヌルより再結晶
すればアセトニル−ヒドロキシプロピルアリル
む゜シアヌレヌトを玄55の収率でうる。このも
のはむ゜シアヌル環のケのの眮換基が党お異
な぀た化合物でケの官胜基はそれぞれ独特の反
応性を有しおいる。玔品は癜色結晶でmp.132〜
133℃であり性質および分析倀は次のずおりであ
぀た。
Example 8 10 g of bis(2-hydroxypropyl)allylisocyanurate and 40 ml of acetone were cooled on ice and stirred, and chromium mixed acid (5.7 g of chromium trioxide, 5.7 g of chromium trioxide,
Add 6.1 g of sulfuric acid). Then at room temperature 3
After stirring for an hour, the reaction mixture was poured into cold water and extracted with toluene. The extract is washed with water, dried, and then distilled to remove toluene, and the residue is recrystallized from methanol to obtain acetonyl 2-hydroxypropyl allyl isocyanurate in a yield of about 55%. This is a compound in which the three N substituents on the isocyanuric ring are all different, and each of the three functional groups has a unique reactivity. Pure product is white crystal and MP.132~
The temperature was 133°C, and the properties and analytical values were as follows.

元玠分析倀C12H17O5N3ずしお 実枬倀14.79、蚈算倀14.84 irnujolcm-13500−、1720ず1680
、760−。
Elemental analysis value (as C 12 H 17 O 5 N 3 ) N: Actual value 14.79%, (N: Calculated value 14.84%) ir (nujol): cm -1 3500 (O-H), 1720 and 1680 (C =
O), 760 (N-C).

nmrCDCl3Ύ1.15〜1.25、3H、2.20、
3H、2.40、1H、3.60〜4.25、3H、
4.40〜4.50、2H、4.70、2H、4.70、
2H、5.05〜5.45、2H、5.60〜6.15、
1H。
nmr ( CDCl3 ): ÎŽ1.15-1.25 (d, 3H), 2.20 (S,
3H), 2.40 (S, 1H), 3.60-4.25 (m, 3H),
4.40-4.50 (d, 2H), 4.70 (S, 2H), 4.70 (S,
2H), 5.05-5.45 (m, 2H), 5.60-6.15 (m,
1H).

実斜䟋  ビス−ヒドロキシプロピルアリルむ゜シ
アヌレヌト10を氎100mlに溶解しこれを氷冷䞋
で撹拌し぀぀硫酞50および硫酞ナトリりム20
を加える。この溶液に宀枩で人造耐石粉末50を
投入しお50〜60℃で激しく撹拌し぀぀時間反応
を぀づけたのち冷华しお反応混合物をベンれン抜
出し抜出液を氎掗、也燥しおベンれンを留去す
る。残枣をメタノヌルから再結晶すればゞアセト
ニルアリルむ゜シアヌレヌトの癜色結晶
mp.139〜140℃を56の収率で埗る。このも
のの分析結果は次のずおりである。
Example 9 10 g of bis(2-hydroxypropyl)allylisocyanurate was dissolved in 100 ml of water, and while stirring under ice cooling, 50 g of sulfuric acid and 20 g of sodium sulfate were added.
Add. 50 g of artificial brownstone powder was added to this solution at room temperature, and the reaction was continued for 5 hours with vigorous stirring at 50 to 60°C. After cooling, the reaction mixture was extracted with benzene, the extract was washed with water, and dried to distill off the benzene. leave If the residue is recrystallized from methanol, white crystals of diacetonylallylisocyanurate (mp. 139-140°C) are obtained in a yield of 56%. The results of this analysis are as follows.

元玠分析倀C12H15O5N3ずしお 実枬倀14.99、蚈算倀14.95 irnujolcm-11720ず1680、760−
 nmrCDCl3Ύ2.20、6H、4.35〜4.50、
2H、4.65、4H、5.05〜5.45、2H、
5.55〜6.15、1H 実斜䟋 10 実斜䟋においおビス−ヒドロキシプロピ
ルアリルむ゜シアヌレヌトの代りにトリス
−ヒドロキシプロピルむ゜シアヌレヌトを甚い
たほかは同䞀操䜜を行な぀たずころ、トリアセト
ニルむ゜シアヌレヌトを玄50の収率で埗る。こ
のものは実斜䟋で埗たものず同䞀である。この
ものの個のアセトニル基のうち〜個をアル
デヒドず反応させたアルドヌル瞮合物たたはこの
脱氎物は非察称のむ゜シアヌレヌトで瞮合性ある
いは重合性に富み各皮の高分子材料の改質剀ずし
お甚いるこずができる。
Elemental analysis value (as C 12 H 15 O 5 N 3 ) N: Actual value 14.99%, (N: Calculated value 14.95%) ir (nujol): cm -1 1720 and 1680 (C=O), 760 (N-
C) nmr ( CDCl3 ): ÎŽ2.20 (S, 6H), 4.35-4.50 (d,
2H), 4.65 (S, 4H), 5.05-5.45 (m, 2H),
5.55-6.15 (m, 1H) Example 10 In Example 9, tris(2-hydroxypropyl)allylisocyanurate was replaced with tris(2-hydroxypropyl)allylisocyanurate.
-Hydroxypropyl) isocyanurate was used, and triacetonyl isocyanurate was obtained in a yield of about 50%. This product is the same as that obtained in Example 6. The aldol condensate or dehydrated product of this product, in which one or two of the three acetonyl groups are reacted with aldehyde, is an asymmetric isocyanurate with high condensability or polymerizability and is used as a modifier for various polymeric materials. be able to.

Claims (1)

【特蚱請求の範囲】  トリアリルむ゜シアヌレヌトの氎和物構造を
有する−ヒドロキシプロピルむ゜シアヌレヌト
を極性溶剀䞭で〜120℃においお酞化するこず
を特城ずするアセトニルむ゜シアヌレヌトの補造
法。  −ヒドロキシプロピルむ゜シアヌレヌトが
−ヒドロキシプロピルゞアリルむ゜シアヌレヌ
ト、ビス−ヒドロキシプロピルアリルむ゜
シアヌレヌトおよびトリス−ヒドロキシプロ
ピルむ゜シアヌレヌトよりなる矀からえらばれ
た少くずも䞀぀の化合物である特蚱請求の範囲第
項蚘茉のアセトニルむ゜シアヌレヌトの補造
法。
[Scope of Claims] 1. A method for producing acetonyl isocyanurate, which comprises oxidizing 2-hydroxypropyl isocyanurate having a hydrate structure of triallyl isocyanurate in a polar solvent at 0 to 120°C. 2 2-hydroxypropyl isocyanurate is at least one compound selected from the group consisting of 2-hydroxypropyl diallyl isocyanurate, bis(2-hydroxypropyl)allyl isocyanurate and tris(2-hydroxypropyl)isocyanurate. A method for producing acetonyl isocyanurate according to claim 1.
JP20241282A 1982-11-17 1982-11-17 Preparation of acetonyl isocyanurate Granted JPS5993064A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20241282A JPS5993064A (en) 1982-11-17 1982-11-17 Preparation of acetonyl isocyanurate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20241282A JPS5993064A (en) 1982-11-17 1982-11-17 Preparation of acetonyl isocyanurate

Publications (2)

Publication Number Publication Date
JPS5993064A JPS5993064A (en) 1984-05-29
JPH0138787B2 true JPH0138787B2 (en) 1989-08-16

Family

ID=16457072

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20241282A Granted JPS5993064A (en) 1982-11-17 1982-11-17 Preparation of acetonyl isocyanurate

Country Status (1)

Country Link
JP (1) JPS5993064A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3416564A1 (en) * 1982-12-16 1985-11-07 Aluminum Co Of America Process for the preparation of silicon aluminium oxynitride
JP3692659B2 (en) * 1996-10-23 2005-09-07 日産化孊工業株匏䌚瀟 Flux composition
CN115536603B (en) * 2022-10-19 2023-11-21 南通倧孊 Preparation method of organic intermediate

Also Published As

Publication number Publication date
JPS5993064A (en) 1984-05-29

Similar Documents

Publication Publication Date Title
JP2694961B2 (en) Production method of high-purity alditol diacetal free of traces of organic solvents
EP0150996A2 (en) Manufacture of heptanoic acid derivatives
JPH0138787B2 (en)
US4098806A (en) Process for functionalizing perfluorohalogenoalkanes
US4093667A (en) Preparation of 4-n-hexylresorcinol
DK166411B1 (en) METHOD OF PREPARING 2,4-DICHLOR-5-FLUORO-BENZOIC ACID
DE2161526A1 (en) Process for the production of polybromophenyl derivative methacrylic acids
US4061681A (en) Method for the preparation of mono- or poly [dialkyl or dicycloalkylphosphonylmethyl] aromatic carbocyclic compounds
US2962502A (en) Preparation of 2, 2'-bipyridyl
Becker Oxidative trimerization of 2, 4-diphenylphenol
US3825572A (en) Epimeric mixtures of the lactone 3,6-dihydro-4,5-dimethyl-5-phenyl-alpha-pyrone
US4925970A (en) Process for producing cyclohexadiene thioether
JP3801623B2 (en) Oxygen-containing aliphatic compounds and their use as intermediate products for the preparation of 4-hydroxy-2,5-dimethyl-3 (2H) -furanone
US4021443A (en) Perchlorodiazafulvene
US3256340A (en) Condensation reactions in dimethyl sulfoxide solution and sulfoxides
US3109032A (en) Bis (dichlorovinyl) disulfides
JPS6116252B2 (en)
US2550439A (en) Production of unsaturated organic compounds
US5763624A (en) Process for the synthesis of 1-pyridiniumpropane-3-sulphonate
US4058567A (en) Cyclopentene sulfoxides
US3177162A (en) Method of producing a polymer from a cyano-substituted divalent radical species
SU570592A1 (en) Method of preparing alkyl esters of propargyl alcohol
US4052434A (en) Prostaglandin intermediates
US4028369A (en) Preparation of glycol (2-(p-chlorophenoxy)-2-methylpropionate)-2-nicotinate
US3978143A (en) Process for preparing diaryldinitroethylenes