JPH0138379B2 - - Google Patents

Info

Publication number
JPH0138379B2
JPH0138379B2 JP57141404A JP14140482A JPH0138379B2 JP H0138379 B2 JPH0138379 B2 JP H0138379B2 JP 57141404 A JP57141404 A JP 57141404A JP 14140482 A JP14140482 A JP 14140482A JP H0138379 B2 JPH0138379 B2 JP H0138379B2
Authority
JP
Japan
Prior art keywords
region
type
diode
conductivity type
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57141404A
Other languages
Japanese (ja)
Other versions
JPS5931059A (en
Inventor
Yasuo Kamya
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP57141404A priority Critical patent/JPS5931059A/en
Publication of JPS5931059A publication Critical patent/JPS5931059A/en
Publication of JPH0138379B2 publication Critical patent/JPH0138379B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/082Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including bipolar components only
    • H01L27/0823Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including bipolar components only including vertical bipolar transistors only
    • H01L27/0825Combination of vertical direct transistors of the same conductivity type having different characteristics,(e.g. Darlington transistors)

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Bipolar Transistors (AREA)
  • Bipolar Integrated Circuits (AREA)

Description

【発明の詳細な説明】 この発明は半導体装置に係り、特に自動車や二
輪車等の電子式点火装置(イグナイタ)に使用す
るために二次破壊耐量(Es/b)を向上させた
パワートランジスタの改良に関する。
[Detailed Description of the Invention] The present invention relates to semiconductor devices, and in particular to improved power transistors with improved secondary breakdown resistance (Es/b) for use in electronic ignition devices (igniters) for automobiles, motorcycles, etc. Regarding.

一般的に、この二次破壊耐量(Es/b)を増
加させるために、またはサージ電圧からトランジ
スタを保護するために、コレクタ・ベース間にク
リツプダイオードを接続する方法がよく知られて
いる。
Generally, a method of connecting a clip diode between the collector and base in order to increase this secondary breakdown resistance (Es/b) or to protect the transistor from surge voltage is well known.

第1図にダイオードをモノリシツクに内蔵した
ダーリントン接続パワートランジスタの等価回路
を示す。この図において、Q1は前段(ドライブ)
用のトランジスタ、Q2は後段(出力)用のトラ
ンジスタである。Dは逆電圧印加時のトランジス
タQ2にかかるエネルギーを逃がす目的のダイオ
ードであり、R1,R2はエミツタ・ベース間にリ
ーク電流を安定化する目的にて接続されている抵
抗器である。DAは二次破壊耐量(Es/b)を増
加させる目的にて内蔵されたクリツプ用ダイオー
ドである。このダイオードDAはトランジスタ自
体の有するコレクタ・エミツタサステイニング耐
圧VCE(sus)より低い値で、ブレークダウンする
ように設計される。さらに、このダイオードDA
の作用について説明する。
Figure 1 shows the equivalent circuit of a Darlington-connected power transistor with a monolithic built-in diode. In this diagram, Q 1 is the front stage (drive)
Q2 is a transistor for the latter stage (output). D is a diode for the purpose of dissipating the energy applied to the transistor Q2 when a reverse voltage is applied, and R1 and R2 are resistors connected between the emitter and base for the purpose of stabilizing leakage current. D A is a built-in clip diode for the purpose of increasing secondary breakdown resistance (Es/b). This diode DA is designed to break down at a value lower than the collector-emitter sustaining voltage V CE (sus) of the transistor itself. Furthermore, this diode D A
The effect of this will be explained.

フルトランジスタ化イグナイタ回路に適用した
場合、パワートランジスタは印加電圧VCCでしや
断した状態から、ベースに入力信号が入るとオン
状態となり、コレクタ電流がイグニツシヨンコイ
ル(図示せず)を通つて流れる。ついで、ベース
電流を切るとコレクタ電流はしや断されるが、こ
のとき、イグニツシヨンコイルの一次側に蓄積さ
れていたエネルギーにより、高いキツクバツク電
圧がトランジスタに印加される。この時の動作点
はクリツプ用ダイオードDAなしの場合、トラン
ジスタのVCE(sus)値をとり、安全動作領域をは
み出しやすい。クリツプ用ダイオードDAを有す
る場合、キツクバツク電圧はクリツプ用ダイオー
ドDAのブレークダウン電圧VAによりクリツプさ
れるため、動作点は相対的に低くなり、クリツプ
用ダイオードDAのない場合に比較し二次破壊耐
量(Es/b)を増加させることができる。
When applied to a fully transistorized igniter circuit, the power transistor is turned off by an applied voltage V CC and then turned on when an input signal is applied to the base, and the collector current flows through the ignition coil (not shown). flowing. Then, when the base current is cut off, the collector current is cut off, but at this time, a high kickback voltage is applied to the transistor due to the energy stored on the primary side of the ignition coil. If the clip diode DA is not used, the operating point at this time is the V CE (sus) value of the transistor, which tends to exceed the safe operating area. When the clipping diode DA is included, the kickback voltage is clipped by the breakdown voltage V A of the clipping diode DA , so the operating point is relatively low, compared to the case without the clipping diode DA . The secondary breakdown resistance (Es/b) can be increased.

以上のような効果を有するクリツプ用ダイオー
ドDAをモノリシツクに内蔵させたダーリントン
接続パワートランジスタの従来のチツプの断面構
造を第2図に示す。
FIG. 2 shows a cross-sectional structure of a conventional chip of a Darlington-connected power transistor in which a clip diode DA having the above-mentioned effects is monolithically built-in.

この図において、1は高不純物濃度のn形
(n+形)コレクタ領域、2は低不純物濃度のn形
(n-形)コレクタ領域、3はダーリントン接続を
構成する2つのトランジスタQ1,Q2に共通のp
形ベース領域、4はクリツプ用ダイオードDA
構成するために、p形ベース領域3のうちのトラ
ンジスタQ1のベース部分の直下にこれに接して
n-形コレクタ層2内に形成されたn形領域、5
はトランジスタQ1のn+形エミツタ領域、6はト
ランジスタQ2のn+形エミツタ領域、7はトラン
ジスタQ1のベース電極、8はトランジスタQ1
n+形エミツタ領域5とp形ベース領域3のトラ
ンジスタQ2のベース部分とにわたつて形成され
た電極配線、9はトランジスタQ2のエミツタ電
極、10はトランジスタQ1,Q2共通のコレクタ
電極、11はこの装置の主面に露出する各接合の
端部を保護するパツシベーシヨン膜である。
In this figure, 1 is an n-type (n + type) collector region with a high impurity concentration, 2 is an n-type (n - type) collector region with a low impurity concentration, and 3 is two transistors Q 1 , Q forming a Darlington connection. p common to 2
The p-type base region 4 is directly under and in contact with the base portion of the transistor Q1 of the p-type base region 3 to form a clip diode D A.
n - type region formed in n-type collector layer 2, 5
is the n + type emitter region of transistor Q 1 , 6 is the n + type emitter region of transistor Q 2 , 7 is the base electrode of transistor Q 1 , and 8 is the n + type emitter region of transistor Q 1 .
Electrode wiring formed across the n + type emitter region 5 and the base part of the transistor Q 2 in the p type base region 3, 9 is the emitter electrode of the transistor Q 2 , and 10 is the collector electrode common to the transistors Q 1 and Q 2. , 11 is a passivation film that protects the ends of each bond exposed on the main surface of this device.

第3図は第2図に示した従来の構造の一点鎖線
にそつた断面の不純物濃度のプロフアイル図で
ある。従来のクリツプ用ダイオードDA内蔵部分
のプロフアイルにおいて、各々の領域の実例を示
すと、p形ベース領域3の表面不純物濃度Ns
2×1018atoms/cm2、深さxj=20μmであり、n
形領域4はp形ベース領域3の形成前に拡散によ
り形成され、その不純物濃度が1×1015atoms/
cm3、n-形コレクタ領域2の不純物濃度1.2×
1014atoms/cm3と等価になるまでのn形領域4の
深さは10μmである。p形ベース領域3の直下か
らn+形コレクタ領域1までの距離は60μmであ
る。
FIG. 3 is a profile diagram of impurity concentration in a cross section taken along the dashed line of the conventional structure shown in FIG. In the profile of the conventional clip diode D A built-in part, an example of each region is shown as follows: The surface impurity concentration N s of the p-type base region 3 is
2×10 18 atoms/cm 2 , depth x j =20 μm, n
The type region 4 is formed by diffusion before the formation of the p-type base region 3, and its impurity concentration is 1×10 15 atoms/
cm 3 , impurity concentration of n -type collector region 2 1.2×
The depth of the n-type region 4 until it becomes equivalent to 10 14 atoms/cm 3 is 10 μm. The distance from directly below the p-type base region 3 to the n + -type collector region 1 is 60 μm.

このようなプロフアイルにおいて、クリツプ用
ダイオードDAのブレークダウン電圧VAは、p形
ベース領域3直下のn形領域4の最も高不純物濃
度な部分の比抵抗により定まる。このようにして
所望のブレークダウン電圧のクリツプ用ダイオー
ドDAを有するパワートランジスタが実現できる。
In such a profile, the breakdown voltage V A of the clipping diode D A is determined by the resistivity of the highest impurity concentration portion of the n-type region 4 directly below the p-type base region 3 . In this way, a power transistor having a clipping diode DA with a desired breakdown voltage can be realized.

ところが、上記従来の構造においては、クリツ
プ電圧VAが正の大きな温度依存性を有するとい
う欠点がある。第4図に実線で示した曲線イは第
2図の従来例における内蔵クリツプ用ダイオード
のクリツプ電圧VAの周囲温度Taに対する特性を
示す。前述のように、従来の構造ではn形領域4
の比抵抗の対温度変化がクリツプ用ダイオードの
クリツプ電圧に大きく影響を与える。すなわち、
n形領域4の不純物濃度1×1015atoms/cm3であ
るから、その比抵抗は常温で5Ωcm、−30℃では
3Ωcm、+150℃では10Ωcmに変化する。従つて、
クリツプ電圧は270V〜500Vの範囲に亘つて大き
く変化する。
However, the conventional structure described above has a drawback in that the clip voltage V A has a large positive temperature dependence. Curve A shown by a solid line in FIG. 4 shows the characteristics of the clip voltage V A of the built-in clip diode in the conventional example of FIG. 2 with respect to the ambient temperature T a . As mentioned above, in the conventional structure, the n-type region 4
The change in specific resistance with respect to temperature has a large effect on the clip voltage of the clip diode. That is,
Since the impurity concentration of n-type region 4 is 1×10 15 atoms/cm 3 , its specific resistance is 5 Ωcm at room temperature and at -30°C.
3Ωcm, changes to 10Ωcm at +150℃. Therefore,
The clip voltage varies widely over the range 270V to 500V.

クリツプ電圧の許容できる範囲は、その下限が
イグニツシヨンコイルの二次側出力電圧との関
係、その上限が二次破壊耐量(Es/b)との関
係により決定される。また、この関係はイグナイ
タに荷せられる全温度範囲(−30℃〜+130℃)
において保証する必要がある。従つて、常温にお
けるクリツプ電圧VAが所望の範囲にあるものを
選ぶことは勿論、実際的に運用する場合、低温特
性と高温特性と常温特性とを考慮してクリツプダ
イオードDAを選別せねばならず、上述のように
温度による特性の変化は実使用上問題になる場合
が起り得る。
The allowable range of clip voltage is determined by its lower limit in relation to the secondary output voltage of the ignition coil, and its upper limit in relation to secondary breakdown resistance (Es/b). Also, this relationship applies to the entire temperature range (-30℃ to +130℃) loaded on the igniter.
It is necessary to ensure that Therefore, in addition to selecting a clip diode D A whose clip voltage V A at room temperature is within the desired range, for practical use, it is necessary to select a clip diode D A taking into account low-temperature characteristics, high-temperature characteristics, and room-temperature characteristics. However, as mentioned above, changes in characteristics due to temperature may become a problem in actual use.

この発明は、クリツプダイオード内蔵形トラン
ジスタの上記欠点(クリツプ電圧VAの温度依存
性)を除去することを目的とし、トランジスタの
p形ベース領域内に、n-形コレクタ層につなが
るn-形領域を形成して、上記ダイオードを構成
するとともに、該n-形領域内に、クリツプ電圧
の調整用領域として該領域とp形ベース領域との
間隔が該調整用領域の全周にわたつて等しくなる
ようn+形領域を形成し、さらに該ダイオード領
域を完全に覆うよう、絶縁膜を介してベース電極
を形成したものである。
The purpose of this invention is to eliminate the above-mentioned drawback (temperature dependence of clip voltage V A ) of a transistor with a built - in clip diode . is formed to constitute the diode, and a clip voltage adjustment region is formed in the n - type region, and the distance between the region and the p-type base region is equal over the entire circumference of the adjustment region. An n + -type region is formed, and a base electrode is further formed with an insulating film interposed therebetween so as to completely cover the diode region.

以下、この発明の実施例について説明する。 Examples of the present invention will be described below.

第5図はこの発明の一実施例を示す断面構造図
である。第6図は第5図の一点鎖線にそつた断
面の不純物濃度のプロフアイル図であり、従来例
と同一符号は同一領域を示す。この実施例では、
従来例におけるp形ベース領域3の下にこれに接
して設けられていたn形領域4は形成することな
く、p形ベース領域3は下面および全周面がすべ
てn-形コレクタ領域2に接しており、しかも、
n-形コレクタ領域2がp形ベース領域3のトラ
ンジスタQ1のベース部分に突入して表面に到達
しており、これにより上記金属電極、つまりベー
ス電極7a直下の、p形ベース領域3とn-形コ
レクタ領域の表面部との接合部がクリツプ用ダイ
オードとなつており、さらに上記n-形コレクタ
領域表面部にクリツプ電圧の調整用領域として該
領域とp形ベース領域3との間隔が該調整用領域
の全周にわたつて等しくなるようn+形領域4a
が形成されている。図において、n-形コレクタ
領域2の突入によつて両側に分離されたp形ベー
ス領域3は相互間を金属電極7aで接続され、表
面に露出したn-形コレクタ領域2及びn+形領域
4aは金属電極7aに接触しないように表面を絶
縁膜で覆つており、その上を金属電極7aで完全
に覆つている。その他の部分は従来列と同様であ
る。
FIG. 5 is a cross-sectional structural diagram showing an embodiment of the present invention. FIG. 6 is a profile diagram of the impurity concentration in a cross section taken along the dashed line in FIG. 5, and the same reference numerals as in the conventional example indicate the same regions. In this example,
The n-type region 4 provided under and in contact with the p-type base region 3 in the conventional example is not formed, and the lower surface and the entire circumferential surface of the p-type base region 3 are all in contact with the n - type collector region 2. and, moreover,
The n - type collector region 2 protrudes into the base portion of the transistor Q 1 of the p type base region 3 and reaches the surface, thereby causing the p type base region 3 and n The junction with the surface of the n - type collector region serves as a clipping diode, and the gap between the n-type collector region and the p-type base region 3 serves as a clip voltage adjustment region on the surface of the n-type collector region. n + shaped area 4a so that it is equal over the entire circumference of the adjustment area
is formed. In the figure, the p-type base region 3 separated on both sides by the entry of the n - type collector region 2 is connected to each other by a metal electrode 7a, and the n - type collector region 2 and the n + -type region exposed on the surface. The surface of the electrode 4a is covered with an insulating film so as not to come into contact with the metal electrode 7a, and the metal electrode 7a completely covers the surface thereof. The other parts are the same as the conventional row.

次に作用効果について説明する。 Next, the effects will be explained.

この実施例構成の耐圧値Vは V=(2/XnBWC−WC 2/XnB)VB ここで、XnB:理論的なブレークダウン時の空
乏層の幅 VB:理論的なブレークダウン値 VC:実際の高抵抗値の幅 で与えられる。理論的なブレークダウン値とは仮
にWCがXnBより充分大きい場合の耐圧のことを
いう。この場合、抵抗に温度依存性がありVB
変化しても、抵抗の増大とxnBの増大とが比例す
るので、耐圧Vの温度変化は抑制される。
The breakdown voltage value V of this example configuration is V=(2/X nB W C −W C 2 /X nB )V B , where, X nB : Theoretical width of the depletion layer at breakdown V B : Theoretical Breakdown value V C : Given by the range of actual high resistance values. The theoretical breakdown value refers to the withstand voltage when W C is sufficiently larger than X nB . In this case, resistance has temperature dependence, and even if V B changes, the increase in resistance is proportional to the increase in x nB , so temperature changes in breakdown voltage V are suppressed.

具体的数値例を示すと、第5図の実施例におい
て、p形ベース領域3とn-形コレクタ領域2と
の接合からn+形領域4aとの間の距離l(上式の
WCに相当)を15μm、n-形コレクタ領域2の不純
物濃度を1.2×1014atoms/cm2(常温での比抵抗ρ
=60Ωcm)とした場合、−30℃〜+150℃の温度範
囲での比抵抗ρの変化は40〜100Ωcm、上記XnB
変化は100〜150μmである。従つて耐圧値Vの最
大変化は300〜380Vであり、前述の従来例より大
幅に改善される。このようなクリツプ用ダイオー
ドを用いた実施例のクリツプ電圧VAの周囲温度
Taに対する特性を従来例のものと比較するため
に第4図に破線曲線ロに示す。この図から、本実
施例装置ではクリツプ電圧が温度変化に対してほ
とんど変動しないことがわかる。
To give a specific numerical example, in the embodiment shown in FIG.
The impurity concentration of n - type collector region 2 is 1.2×10 14 atoms/cm 2 (specific resistance ρ at room temperature ) .
= 60 Ωcm), the change in specific resistance ρ in the temperature range of -30°C to +150°C is 40 to 100 Ωcm, and the change in the above-mentioned X nB is 100 to 150 μm. Therefore, the maximum change in breakdown voltage value V is 300 to 380V, which is significantly improved over the conventional example described above. Ambient temperature of clip voltage V A in an example using such a clip diode
In order to compare the characteristics with respect to T a with those of the conventional example, the broken line curve B is shown in FIG. From this figure, it can be seen that in the device of this embodiment, the clip voltage hardly changes with respect to temperature changes.

また、上記ダイオード領域及びクリツプ電圧調
整用領域をベース領域3内に組み込んでいるた
め、チツプ面積の有効利用が可能となる。さらに
p形ベース領域3で囲まれたn-形コレクタ領域
を絶縁膜11を介してベース電極7aにより完全
に覆つたので、外気による絶縁膜の変質、劣下、
すなわちクリツプ電圧の経時変化、さらにはダイ
オード領域や調整用領域への外部電界の影響を防
止することができる。
Furthermore, since the diode region and the clip voltage adjustment region are incorporated into the base region 3, the chip area can be used effectively. Furthermore, since the n - type collector region surrounded by the p-type base region 3 is completely covered by the base electrode 7a via the insulating film 11, the insulating film is not deteriorated or degraded by outside air.
That is, it is possible to prevent the clip voltage from changing over time and furthermore to prevent the influence of an external electric field on the diode region and the adjustment region.

なお、p形ベース領域3とn+形領域4aとで
挾まれたn-形領域2の部分はすべて絶縁膜11
を介して、金属電極7aによつて完全に覆われる
ようにすれば、外部からのイオン性の汚染の影響
を防止でき、信頼性の高いクリツプ用ダイオード
が得られる。
Note that the entire portion of the n - type region 2 sandwiched between the p type base region 3 and the n + type region 4a is covered with the insulating film 11.
By completely covering the metal electrode 7a through the metal electrode 7a, the influence of ionic contamination from the outside can be prevented, and a highly reliable clip diode can be obtained.

第7図aはこの実施例のクリツプ用ダイオード
部分のみの平面図で、第7図bはそのn+形領域
4のパターンの変形例を示す平面図である。いず
れの場合も、また、更に複雑なパターンにしても
同様な効果が得られることはいうまでもない。
FIG. 7a is a plan view of only the clipping diode portion of this embodiment, and FIG. 7b is a plan view showing a modified example of the pattern of the n + type region 4. In either case, it goes without saying that similar effects can be obtained even if a more complicated pattern is used.

以上のように本発明に係る半導体装置によれ
ば、素子の二次破壊耐量を増大するためのクリツ
プ用ダイオードを有する半導体装置において、ト
ランジスタのp形ベース領域内に、n-形コレク
タ層につながるn-形領域を形成して、上記ダイ
オードを構成するとともに、該n-形領域内に、
クリツプ電圧の調整用領域として該領域とp形ベ
ース領域との間隔が該調整用領域の全周にわたつ
て等しくなるようn+形領域を形成し、さらに該
ダイオード領域を完全に覆うよう、絶縁膜を介し
てベース電極を形成したので、これによりチツプ
面積を低減でき、またクリツプ電圧の温度変化に
対する変動を小さくできるだけでなく、クリツプ
電圧の経時変化や外部電界による変動を小さく抑
えることができる効果がある。
As described above, according to the semiconductor device according to the present invention, in a semiconductor device having a clip diode for increasing the secondary breakdown resistance of an element, a p-type base region of a transistor is connected to an n - type collector layer. An n - type region is formed to configure the diode, and within the n - type region,
An n + -type region is formed as a clip voltage adjustment region so that the distance between the region and the p-type base region is equal over the entire circumference of the adjustment region, and an insulating region is formed so as to completely cover the diode region. Since the base electrode is formed through the film, it is possible to reduce the chip area, and it is also possible to reduce fluctuations in clip voltage due to temperature changes, as well as to suppress fluctuations in clip voltage over time and due to external electric fields. There is.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は電圧クリツプ用ダイオード内蔵形ダー
リントン接続パワートランジスタの等価回路図、
第2図は上記構成を集積化した従来の半導体装置
を示す断面図、第3図は第2図の一点鎖線に沿
つた断面における不純物濃度のプロフアイル図、
第4図はクリツプ用ダイオードのクリツプ電圧の
温度依存性を示す特性図、第5図はこの発明の一
実施例を示す断面図、第6図は第5図の一点鎖線
に沿つた断面における不純物濃度のプロフアイ
ル図、第7図aはこの実施例のクリツプ用ダイオ
ード部分のみの平面図、第7図bはその他の形態
例を示す平面図である。 図において、2はn-形コレクタ領域、3はp
形ベース領域、4aはn+形(第1伝導形の高不
純物濃度)領域、5,6はn+形エミツタ領域、
7aは金属電極(低抵抗導体層)、11は絶縁膜
である。なお、図中同一符号は同一又は相当部分
を示す。
Figure 1 is an equivalent circuit diagram of a Darlington-connected power transistor with a built-in voltage clip diode.
FIG. 2 is a cross-sectional view showing a conventional semiconductor device in which the above structure is integrated, and FIG. 3 is a profile diagram of impurity concentration in a cross section taken along the dashed line in FIG.
FIG. 4 is a characteristic diagram showing the temperature dependence of the clipping voltage of a clipping diode, FIG. 5 is a cross-sectional view showing an embodiment of the present invention, and FIG. FIG. 7a is a plan view of only the clipping diode portion of this embodiment, and FIG. 7b is a plan view showing another embodiment. In the figure, 2 is an n - type collector region, and 3 is a p-type collector region.
4a is an n + type (first conductivity type high impurity concentration) region, 5 and 6 are n + type emitter regions,
7a is a metal electrode (low resistance conductor layer), and 11 is an insulating film. Note that the same reference numerals in the figures indicate the same or equivalent parts.

Claims (1)

【特許請求の範囲】 1 素子の二次破壊耐量を増大する機能を有する
半導体装置において、 第1伝導形高濃度コレクタ層上に形成された第
1伝導形低濃度コレクタ層と、該低濃度コレクタ
層の表面領域に形成された第2伝導形ベース領域
と、該ベース領域内に形成された第1伝導形のエ
ミツタ領域とからなるトランジスタと、 上記第2伝導形ベース領域と、該ベース領域内
に形成され、上記第1伝導形低濃度コレクタ層に
つながる第1伝導形低濃度領域とからなり、ベー
ス・コレクタ電圧を所定電位にクリツプするクリ
ツプ用ダイオードと、 上記第1伝導形低濃度領域内に上記第2伝導形
ベース領域までの距離がその全周にわたつて等し
くなるよう形成された第1伝導形高濃度領域から
なり、上記クリツプ電圧を所定範囲内に調整する
ためのクリツプ電圧調整用領域と、 上記第1伝導形低濃度領域上にこれを完全に覆
うよう、絶縁膜を介して形成されたベース電極と
を備えたことを特徴とする半導体装置。
[Scope of Claims] 1. A semiconductor device having a function of increasing secondary breakdown resistance of an element, comprising: a first conductivity type low concentration collector layer formed on a first conductivity type high concentration collector layer; and the low concentration collector layer. A transistor comprising a second conductivity type base region formed in a surface region of a layer, and a first conductivity type emitter region formed in the base region, the second conductivity type base region and in the base region. a clipping diode for clipping the base-collector voltage to a predetermined potential; and a first conductive type high concentration region formed so that the distance to the second conductive type base region is equal over the entire circumference, and for adjusting the clip voltage within a predetermined range. and a base electrode formed on the first conductivity type low concentration region through an insulating film so as to completely cover the first conductivity type low concentration region.
JP57141404A 1982-08-13 1982-08-13 Semiconductor device Granted JPS5931059A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57141404A JPS5931059A (en) 1982-08-13 1982-08-13 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57141404A JPS5931059A (en) 1982-08-13 1982-08-13 Semiconductor device

Publications (2)

Publication Number Publication Date
JPS5931059A JPS5931059A (en) 1984-02-18
JPH0138379B2 true JPH0138379B2 (en) 1989-08-14

Family

ID=15291209

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57141404A Granted JPS5931059A (en) 1982-08-13 1982-08-13 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS5931059A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4231829A1 (en) * 1992-09-23 1994-03-24 Telefunken Microelectron Planar semiconductor device

Also Published As

Publication number Publication date
JPS5931059A (en) 1984-02-18

Similar Documents

Publication Publication Date Title
JPH0563949B2 (en)
JPS6358380B2 (en)
JPH0669501A (en) Diode structure for protection of pad against static discharge in integrated circuit
US4543593A (en) Semiconductor protective device
JP3146579B2 (en) Programmable overvoltage protection circuit
JPH0324791B2 (en)
JPH0262966B2 (en)
US4103181A (en) Monolithic integrated transistor and protective circuit therefor
US3230429A (en) Integrated transistor, diode and resistance semiconductor network
JP2553037B2 (en) High power integrated circuit device
JPH0550852B2 (en)
JPS5967670A (en) Semiconductor device
JPH0378787B2 (en)
US4260910A (en) Integrated circuits with built-in power supply protection
US4922316A (en) Infant protection device
JP2003060059A (en) Protective circuit and protective element
JPH0138379B2 (en)
EP0730300A1 (en) Device for the protection of an integrated circuit against electrostatic discharges
JPH0581066B2 (en)
JPS6211787B2 (en)
JP2650180B2 (en) Two-way two-terminal thyristor
JPH0888326A (en) Electrostatic protection structure of semiconductor device
JPS6410101B2 (en)
US4398206A (en) Transistor with integrated diode and resistor
JPH0638419B2 (en) Semiconductor device