JPH0138262B2 - - Google Patents

Info

Publication number
JPH0138262B2
JPH0138262B2 JP55184357A JP18435780A JPH0138262B2 JP H0138262 B2 JPH0138262 B2 JP H0138262B2 JP 55184357 A JP55184357 A JP 55184357A JP 18435780 A JP18435780 A JP 18435780A JP H0138262 B2 JPH0138262 B2 JP H0138262B2
Authority
JP
Japan
Prior art keywords
gas
lanthanide
present
resistance value
contact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55184357A
Other languages
Japanese (ja)
Other versions
JPS57108652A (en
Inventor
Masatake Matsuo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP18435780A priority Critical patent/JPS57108652A/en
Publication of JPS57108652A publication Critical patent/JPS57108652A/en
Publication of JPH0138262B2 publication Critical patent/JPH0138262B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid
    • G01N27/125Composition of the body, e.g. the composition of its sensitive layer
    • G01N27/126Composition of the body, e.g. the composition of its sensitive layer comprising organic polymers

Description

【発明の詳細な説明】 本発明は、ランタニドジフタロシアニン錯体を
用いたガス検出素子に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a gas detection element using a lanthanide diphthalocyanine complex.

詳しくは、酸性ガスあるいは塩基性ガスに、特
に大きな感度を有するガス検出素子に関する。
Specifically, the present invention relates to a gas detection element that has particularly high sensitivity to acidic gases or basic gases.

従来の酸性ガスあるいは塩基性ガスの定量的な
検出方法としては、ガスクロマトグラフ法、およ
び溶液導電率法が知られている。ところがこれら
の方法は、次のような欠点をもつ。すなわち、ガ
スクロマトグラフ法においては、いわゆる、その
場測定ができないという欠点をもち、溶液導電率
法についても、試料ガスと溶液の混合手段に手間
がかかり、純水の製造など溶液の調整もめんどう
であるという欠点をもつ。
Gas chromatography and solution conductivity methods are known as conventional quantitative detection methods for acidic gases or basic gases. However, these methods have the following drawbacks. In other words, the gas chromatography method has the disadvantage of not being able to perform in-situ measurements, and the solution conductivity method also requires time and effort to mix the sample gas and solution, and the preparation of the solution, such as the production of pure water, is also troublesome. It has the disadvantage of being.

本発明のガス検出素子は、かかる欠点をもたな
い手法を用いたもので、その目的は、比較的簡単
な電気的手法を用いて、酸性ガスあるいは塩基性
ガスを定量的に検出するものである。
The gas detection element of the present invention uses a method that does not have such drawbacks, and its purpose is to quantitatively detect acidic gas or basic gas using a relatively simple electrical method. be.

以下、実施例に基づいて本発明を詳しく説明す
る。
Hereinafter, the present invention will be explained in detail based on Examples.

第1図は、本発明のガス検出素子の断面図であ
る。1は基板、2は電極、3はランタニドジフタ
ロシアニン錯体薄膜である。基板1はガラス板よ
りなるが、適当な絶縁性物質でおきかえてもよ
い。電極2は、ランタニドジフタロシアニン錯体
薄膜と電気的に接続される導電性物質、たとえば
蒸着、あるいはスパツタリングによつてつくられ
た金の薄膜が用いられる。本発明の特徴であるラ
ンタニドジフタロシアニン錯体薄膜3は、真空蒸
着によつて形成されるが、ランタニドジフタロシ
アニン錯体のたとえばクロロホルム溶液を滴下、
乾燥することによつてつくられてもよい。ランタ
ニドジフタロシアニン錯体の中心金属としては、
ユーロピウムなどのいわゆるランタン系列に属す
る金属が選ばれる。素子の製法として、電極2と
ランタニドジフタロシアニン錯体薄膜の製作順序
を、逆にしてもよい。また、素子の構造として、
サンドイツチ型の構造をもつていてもよい。
FIG. 1 is a sectional view of the gas detection element of the present invention. 1 is a substrate, 2 is an electrode, and 3 is a lanthanide diphthalocyanine complex thin film. Although the substrate 1 is made of a glass plate, it may be replaced with a suitable insulating material. The electrode 2 is made of a conductive material, such as a thin film of gold made by vapor deposition or sputtering, which is electrically connected to the lanthanide diphthalocyanine complex thin film. The lanthanide diphthalocyanine complex thin film 3, which is a feature of the present invention, is formed by vacuum deposition.
It may also be made by drying. The central metal of the lanthanide diphthalocyanine complex is
A metal belonging to the so-called lanthanum series, such as europium, is chosen. As a method for manufacturing the device, the order of manufacturing the electrode 2 and the lanthanide diphthalocyanine complex thin film may be reversed. In addition, as the structure of the element,
It may have a sandwich-type structure.

本発明のガス検出素子を用いた装置例として
は、第2図に示されたように配線される。すなわ
ち、直列に接続された素子4と適当な抵抗値をも
つた補助抵抗5の両端に、安定な直流電圧あるい
は交流電圧を印加するように定電圧電源6が接続
される。さらに、素子の両端、あるいは補助抵抗
5の両端の電位差を測定するために、十分入力イ
ンピーダンスの高い電圧計7が接続される。素子
の抵抗を出力できる回路が、第2図に示された回
路のかわりに用いられてもよい。また、出力情報
をモニターするためのX−Tレコーダー、ある出
力領域を超えると作動する機能を備えたブザーな
ど、出力をデイジタル化して記録・処理できるマ
イクロコンピュータシステムなどの補助装置8
が、電圧計7に並列に、あるいは電圧計7の出力
端子に接続されてもよい。また、第2図には示し
ていないが、素子の抵抗値の温度特性を補償する
必要がある時は、温度特性補償回路をつけ加える
か、素子をある一定温度に保つための装置を有し
てもよい。
An example of a device using the gas detection element of the present invention is wired as shown in FIG. That is, a constant voltage power source 6 is connected to both ends of the element 4 and the auxiliary resistor 5 having an appropriate resistance value, which are connected in series, so as to apply a stable DC voltage or AC voltage. Further, in order to measure the potential difference between both ends of the element or between both ends of the auxiliary resistor 5, a voltmeter 7 having a sufficiently high input impedance is connected. A circuit capable of outputting the resistance of an element may be used in place of the circuit shown in FIG. In addition, auxiliary equipment 8 such as an X-T recorder for monitoring output information, a buzzer with a function that activates when a certain output range is exceeded, and a microcomputer system that can digitize, record, and process the output.
may be connected in parallel to the voltmeter 7 or to the output terminal of the voltmeter 7. Although it is not shown in Figure 2, when it is necessary to compensate for the temperature characteristics of the resistance value of the element, it is necessary to add a temperature characteristics compensation circuit or to have a device to maintain the element at a certain temperature. Good too.

本発明のガス検出素子において、ガス接触にと
もなう素子4の抵抗値変化の典型的な例を第3図
に示す。空気中で素子の抵抗値はある一定の値を
示しているが、塩化水素ガス接触にともなつて、
素子の抵抗値は小さくなる。この抵抗値の変化は
すみやかに起こり、ガス濃度がきわめて高く、飽
和現象をおこさない限り、塩化水素ガス濃度が高
いほうが、抵抗値の変化が大きい。塩化水素ガス
接触をやめた後も、長時間この抵抗値は保持さ
れ、素子を空気中に放置しておくだけは、抵抗値
はなかなかもとの値にもどらない。この状態で素
子をアンモニアガスに短時間接触させると、抵抗
値がすみやかに大きくなり、再びある一定の値を
示すようになる。この時、素子に再び塩化水素ガ
スを接触させると、再び抵抗値が小さくなり、あ
る一定の値を保持する。これらの抵抗値の変化
は、この後も可逆性があり、応答もはやい。
FIG. 3 shows a typical example of a change in resistance value of the element 4 due to gas contact in the gas detection element of the present invention. The resistance value of the element shows a certain value in air, but as it comes into contact with hydrogen chloride gas,
The resistance value of the element becomes smaller. This change in resistance occurs quickly, and as long as the gas concentration is extremely high and saturation does not occur, the higher the hydrogen chloride gas concentration, the greater the change in resistance. This resistance value is maintained for a long time even after contact with hydrogen chloride gas is stopped, and if the element is left in the air, the resistance value will not easily return to its original value. When the element is brought into contact with ammonia gas for a short time in this state, the resistance value quickly increases and returns to a certain value again. At this time, when the element is brought into contact with hydrogen chloride gas again, the resistance value decreases again and maintains a certain value. These changes in resistance value are reversible even after this, and the response is fast.

これらのことより、塩化水素ガスのような酸性
ガスを検出したい時は、あらかじめたとえばアン
モニアガスと短時間接触させた素子が用いられ
る。また、たとえば塩化水素ガスに素子を短時間
接触させることによつて、アンモニアガスのよう
な塩基性ガスを検出することができる。本発明の
ガス検出素子は、酸性ガスあるいは塩基性ガスの
定常濃度を示すものではないが、こらのガスの発
生によるガス濃度の増加に対して出力変化を起こ
し、カス検出装置として十分な機能を備えてい
る。
For these reasons, when it is desired to detect an acidic gas such as hydrogen chloride gas, an element that has been brought into contact with, for example, ammonia gas for a short period of time is used. Furthermore, a basic gas such as ammonia gas can be detected by, for example, bringing the element into contact with hydrogen chloride gas for a short time. Although the gas detection element of the present invention does not indicate the steady concentration of acidic gas or basic gas, it causes an output change in response to an increase in gas concentration due to the generation of these gases, and has sufficient functionality as a waste detection device. We are prepared.

上記説明の第3図において、検出する酸性ガス
がHClガス、塩基性ガスがNH3ガスの場合の例
であるが、その他に酸性ガスは塩素ガス、硝酸ガ
ス、亜鉛酸ガス等がHClガスと同程度の感度を、
炭酸、酢酸等がHClと較べて1/2程度の感度を、
塩基性ガスはアミン類がNH3に較べて1/2程度の
感度を有するものである。
In Figure 3 of the above explanation, the acidic gas to be detected is HCl gas and the basic gas is NH 3 gas, but other acidic gases include chlorine gas, nitric acid gas, zinc acid gas, etc. same level of sensitivity,
Carbonic acid, acetic acid, etc. have about 1/2 the sensitivity compared to HCl.
As for basic gases, amines have a sensitivity that is about 1/2 that of NH 3 .

本発明のガス検出素子の欠点として、素子の抵
抗値が温度によつても変化することがあげられ
る。ガス接触時における抵抗値変化を、温度変化
による素子の抵抗値変化の影響を除いてはつきり
観察するために、前記の温度補償回路、あるいは
素子をある一定の温度に保つ装置が組み入れられ
る。また、ランタニドジフタロシアニン錯体中の
イオンによる電流をしつかり反映させることと、
ランタニドジフタロシアニン錯体と電極との間の
接触抵抗を除くために、電源として交流電源を使
用する方が望ましい。ただ実施例において、簡単
な直流電源でも十分な特性を示した。(第3図) 本発明のガス検出素子の別の特性として、醸性
ガスあるいは塩基性ガス以外のガスに対する感度
が低いことがあげられ、実施例において、たとえ
ばアセント、クロロホルム、エーテル、ベンゼ
ン、各種アルコールなどの有機溶剤の蒸気に対す
る感度は低かつた。
A drawback of the gas detection element of the present invention is that the resistance value of the element also changes depending on temperature. In order to observe the change in resistance value upon contact with gas while excluding the influence of change in resistance value of the element due to temperature change, the above-mentioned temperature compensation circuit or a device for keeping the element at a certain temperature is incorporated. In addition, by firmly reflecting the current caused by ions in the lanthanide diphthalocyanine complex,
In order to eliminate contact resistance between the lanthanide diphthalocyanine complex and the electrode, it is preferable to use an alternating current power source as the power source. However, in the examples, even a simple DC power supply showed sufficient characteristics. (Figure 3) Another characteristic of the gas detection element of the present invention is that it has low sensitivity to gases other than acidic gases or basic gases. The sensitivity to vapors of organic solvents such as alcohol was low.

なお、本願発明の2個のフタロシアニン環にそ
れぞれ1個のランタニド元素が配位しているラン
タニドジフタロシアン錯体と、1個のフタロシア
ニン環に1個のランタニド元素が酸位しているフ
タロシアニンのランタニド錯体類との比較例を第
4図に基づいて説明する。第4図はランタニドフ
タロシアニンが塩酸ガス、及びNH3ガスに触れ
た場合の電気抵抗変化を示したものである。
The lanthanide diphthalocyanine complex of the present invention in which one lanthanide element is coordinated to each of two phthalocyanine rings, and the lanthanide phthalocyanine in which one lanthanide element is coordinated to one phthalocyanine ring at the acid position. A comparative example with complexes will be explained based on FIG. Figure 4 shows the change in electrical resistance when lanthanide phthalocyanine comes into contact with hydrochloric acid gas and NH 3 gas.

第4図から明らかなようにランタニドのフタロ
シアニン錯体も、本願発明のランタニドジフタロ
シアニン錯体と同様に酸性ガス及び塩基性ガスに
触れると電気抵抗変化を示すが、復元性の点にお
いて大きな違いがある。
As is clear from FIG. 4, like the lanthanide diphthalocyanine complex of the present invention, the lanthanide phthalocyanine complex also shows a change in electrical resistance when exposed to acidic gas and basic gas, but there is a big difference in restorability.

すなわち、塩酸ガスに触れると抵抗値は低くな
るが、次にNH3ガスに触れても元の状態(塩酸
ガスに触れる前)に戻るまでの時間に非常に長い
時間を要する。
In other words, the resistance value decreases when exposed to hydrochloric acid gas, but it takes a very long time to return to the original state (before exposure to hydrochloric acid gas) even after next exposure to NH 3 gas.

以上の通り、本発明によれば、 ンタニドジフタロシアニン錯体を用いることに
より、 復元性がよく、さらには非常事態例えば電源が
切れたり、誤動作をしたとしてもランタニドジフ
タロシアニン錯体が多色に変化するので、その色
の変化をみることによつても容易にガスを検出す
ることができる安全確実なガス検出装置を提供す
ることができる。
As described above, according to the present invention, by using the lanthanide diphthalocyanine complex, the lanthanide diphthalocyanine complex has good restorability, and furthermore, even in emergency situations such as power outage or malfunction, the lanthanide diphthalocyanine complex changes to multiple colors. Therefore, it is possible to provide a safe and reliable gas detection device that can easily detect gas by observing the change in color.

また、酸性ガス、塩基性ガス以外のガスには極
めて感度が低いので余り誤差を生ずることのない
すぐれた検知性能を有する。
In addition, it has extremely low sensitivity to gases other than acidic gases and basic gases, so it has excellent detection performance without causing much error.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図、第3図は、本発明の実施例を
示す図面であり、第1図は、本発明のガス検出素
子の断面図である。第2図は本装置の簡単な回路
図、第3図は、実施例における本発明のガス検出
素子を用いた装置のガス接触にともなう典型的な
応答特性を示す図である。第4図はランタニドフ
タロシアニン錯体がHClガス、NH3ガスに触れ
た場合の電気抵抗の変化を示す図である。 1……基板、2……電極、3……ランタニドジ
フタロシアニン錯体薄膜、4……素子、5……補
助抵抗、6……定電圧電源、7……電圧計、8…
…補助装置。
1, 2, and 3 are drawings showing embodiments of the present invention, and FIG. 1 is a sectional view of the gas detection element of the present invention. FIG. 2 is a simple circuit diagram of the present device, and FIG. 3 is a diagram showing typical response characteristics due to gas contact of the device using the gas detection element of the present invention in an example. FIG. 4 is a diagram showing changes in electrical resistance when a lanthanide phthalocyanine complex comes into contact with HCl gas and NH 3 gas. DESCRIPTION OF SYMBOLS 1... Substrate, 2... Electrode, 3... Lanthanide diphthalocyanine complex thin film, 4... Element, 5... Auxiliary resistor, 6... Constant voltage power supply, 7... Voltmeter, 8...
...Auxiliary equipment.

Claims (1)

【特許請求の範囲】[Claims] 1 絶縁基板と、前記絶縁基板上に形成されたラ
ンタニドジフタロシアニン錯体薄膜と、前記ラン
タニドジフタロシアニン錯体薄膜の端部にそれぞ
れ接して前記絶縁基板上に形成された複数の電極
とからなることを特徴とするガス検出素子。
1. Consists of an insulating substrate, a lanthanide diphthalocyanine complex thin film formed on the insulating substrate, and a plurality of electrodes formed on the insulating substrate in contact with respective ends of the lanthanide diphthalocyanine complex thin film. gas detection element.
JP18435780A 1980-12-25 1980-12-25 Gas detecting device Granted JPS57108652A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18435780A JPS57108652A (en) 1980-12-25 1980-12-25 Gas detecting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18435780A JPS57108652A (en) 1980-12-25 1980-12-25 Gas detecting device

Publications (2)

Publication Number Publication Date
JPS57108652A JPS57108652A (en) 1982-07-06
JPH0138262B2 true JPH0138262B2 (en) 1989-08-11

Family

ID=16151824

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18435780A Granted JPS57108652A (en) 1980-12-25 1980-12-25 Gas detecting device

Country Status (1)

Country Link
JP (1) JPS57108652A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53113596A (en) * 1977-03-11 1978-10-04 Frey Yvan A R Detecting method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53113596A (en) * 1977-03-11 1978-10-04 Frey Yvan A R Detecting method

Also Published As

Publication number Publication date
JPS57108652A (en) 1982-07-06

Similar Documents

Publication Publication Date Title
US4587104A (en) Semiconductor oxide gas combustibles sensor
US4324760A (en) Hydrogen detector
JPH0242429B2 (en)
JPH0138262B2 (en)
JP3447341B2 (en) Gas sensor
JPH0731153B2 (en) Flammable gas sensor
JPH0138261B2 (en)
CA1198345A (en) Sensor for determining the oxygen content in a gas
JP2918394B2 (en) Nitrogen oxide detection sensor
JP2813423B2 (en) Electrochemical gas sensor
US4807187A (en) Method and device of memory using liquid crystal
Pfeifer et al. Viologen Polymer‐Coated Impedance Sensors for Midrange Humidity Levels and Other Volatile Organic Compounds
JPH06148115A (en) Gas sensor
JP2761086B2 (en) Electrochemical gas sensor device
JP2959122B2 (en) Moisture sensitive element
JP2918393B2 (en) Nitrogen oxide detection sensor
JP2948984B2 (en) Nitrogen oxide detection sensor
JP2966646B2 (en) Nitrogen oxide detection sensor
JP2918390B2 (en) Nitrogen oxide detection sensor
JPH0711496B2 (en) Gas detection method
JP2813424B2 (en) Electrochemical gas sensor device
JPH06265506A (en) Ph sensor
JP2918392B2 (en) Nitrogen oxide detection sensor
JPH04208848A (en) Electrochemical gas sensor and manufacture thereof
JPH06118045A (en) Humidity sensor