JPH0138049B2 - - Google Patents

Info

Publication number
JPH0138049B2
JPH0138049B2 JP27523884A JP27523884A JPH0138049B2 JP H0138049 B2 JPH0138049 B2 JP H0138049B2 JP 27523884 A JP27523884 A JP 27523884A JP 27523884 A JP27523884 A JP 27523884A JP H0138049 B2 JPH0138049 B2 JP H0138049B2
Authority
JP
Japan
Prior art keywords
crystallization
distillation column
tank
column
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP27523884A
Other languages
Japanese (ja)
Other versions
JPS61158816A (en
Inventor
Tatsuyuki Kasai
Tatsuo Niikura
Masanori Sato
Takao Hashimoto
Ryoya Yamashita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Tsukishima Kikai Co Ltd
Original Assignee
Sumitomo Metal Industries Ltd
Tsukishima Kikai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd, Tsukishima Kikai Co Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP27523884A priority Critical patent/JPS61158816A/en
Priority to US06/813,103 priority patent/US4710215A/en
Priority to CA000498625A priority patent/CA1260225A/en
Publication of JPS61158816A publication Critical patent/JPS61158816A/en
Publication of JPH0138049B2 publication Critical patent/JPH0138049B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、塩基性炭酸亜鉛等の晶析方法とその
装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method and apparatus for crystallizing basic zinc carbonate, etc.

〔従来の技術〕[Conventional technology]

塗料用顔料やタイヤの加硫促進剤として用いら
れる酸化亜鉛が用いられるが、酸化亜鉛の製造に
際しては、乾式法または湿式法が用いられてい
る。
Zinc oxide is used as a pigment for paints and as a vulcanization accelerator for tires, and a dry method or a wet method is used to produce zinc oxide.

これに対して、本出願人は、特開昭59−88319
号として、製鉄所の還元鉄設備のキルンダスト等
からZnOを回収する場合において、Zn含有物を
NH4OHおよび(NH)4CO3を含む液(以下、溶
解液という)と接触させ、Znを溶解させ、後に
加熱晶析する方法が有効であることを提案した。
On the other hand, the present applicant has disclosed that
When recovering ZnO from kiln dust, etc. of reduced iron equipment at a steelworks, Zn-containing substances are
We proposed that an effective method is to bring Zn into contact with a liquid containing NH 4 OH and (NH) 4 CO 3 (hereinafter referred to as a solution), dissolve Zn, and then crystallize it by heating.

他方で、加熱晶析操作を行う場合、晶析槽を1
基または複数基設けるのが通常である。
On the other hand, when performing a heating crystallization operation, the crystallization tank is
Usually, one or more groups are provided.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

前記の先願発明による反応は、次記の通りであ
る。
The reaction according to the prior invention described above is as follows.

Γ溶解工程 Zn+(NH42CO3+2NH4OH→ 〔Zn(NH34〕CO3+H2↑+2H2O …(1) Γイオン置換反応工程 Me2++Zn→Me↓+Zn2+ …(2) Γ晶析工程 ●5〔Zn(NH34〕CO3+3H2O→ 2ZnCO3・3Zn(OH)2↓+3CO2↑ +2ONH3↑ …(3A) ●4〔Zn(NH34〕CO3+4H2O ZnCO3・3Zn(OH)2・H2O↓ +3CO2↑+16NH3↑ …(3B) なお、この場合、3Aの反応が90%以上を占め、
3Bの反応は少いと考えられる。
Γ dissolution process Zn+(NH 4 ) 2 CO 3 +2NH 4 OH→ [Zn(NH 3 ) 4 ]CO 3 +H 2 ↑+2H 2 O …(1) Γ ion replacement reaction process Me 2+ +Zn→Me↓+Zn 2+ …(2) Γ crystallization process ●5 [Zn(NH 3 ) 4 ] CO 3 +3H 2 O→ 2ZnCO 3・3Zn(OH) 2 ↓+3CO 2 ↑ +2ONH 3 ↑ …(3A) ●4 [Zn(NH 3 ) ) 4 ]CO 3 +4H 2 O ZnCO 3・3Zn(OH) 2・H 2 O↓ +3CO 2 ↑+16NH 3 ↑ …(3B) In this case, the reaction of 3A accounts for more than 90%,
3B's reaction is thought to be small.

ところで、晶析工程において、従来技術をその
まま採用して晶析槽にて行う場合、複数の晶析槽
を多重効用的に操作するのが有利であるが、たと
えば第1効用缶にスチームを吹込み、発生蒸気を
次々に次の効用缶に導き、アンモニアの蒸発・蒸
留し、アンモニア濃度をたとえば1000ppm以下に
しようとすると、晶析槽をかなり多く並べる必要
があるし、かつ大量のスチームを必要とする。
By the way, in the crystallization process, when the conventional technology is adopted as it is and the crystallization process is carried out in a crystallization tank, it is advantageous to operate multiple crystallization tanks in a multi-effect manner. If you want to reduce the ammonia concentration to less than 1000 ppm by evaporating and distilling ammonia by guiding the generated steam one after another to the next effect tank, you will need a large number of crystallization tanks and a large amount of steam. shall be.

具体例によれば、従来法で晶析槽2槽で晶析工
程2時間操業によつて、アンモニア濃度1000ppm
以下にしようとすれば、スチーム量は300Kg/Hr
を必要とする。しかも、操作的に単蒸留のように
なるので、バツチ方式となり、連続運転が不可能
である。
According to a specific example, an ammonia concentration of 1000 ppm was achieved by operating the crystallization process for 2 hours in 2 crystallization tanks using the conventional method.
If you try to reduce the amount below, the steam amount will be 300Kg/Hr.
Requires. Moreover, since the operation is similar to simple distillation, it is a batch system and cannot be operated continuously.

これに対して、本発明者らは、前記の晶析工程
の反応を蒸留塔で行い得ることを見出した。この
ことは、化学工学的技術の常識から全く外れてい
る。
In contrast, the present inventors have discovered that the reaction in the crystallization step described above can be carried out in a distillation column. This is completely outside the common sense of chemical engineering technology.

しかしながら、蒸留塔にて晶析操作を行う場
合、初期のZn濃度として10重量%(以下%は重
量%である)以上の溶液を蒸留し晶出させると、
成品スラリー中の固形分濃度は20%以上となる。
そして、蒸留塔の上部数段の範囲は、アンモニア
の蒸留特性から、アンモニアの揮発度が高く、蒸
発量が多い領域であるので、炭酸亜鉛の晶出量が
多い。その結果、蒸留塔内部の壁、棚段への結晶
の付着が激しく、わずか一日の運転で、泡鐘部分
塔が詰まり、運転を停止し洗浄を要する。
However, when performing crystallization operation in a distillation column, if a solution with an initial Zn concentration of 10% by weight or more (hereinafter % is weight%) is distilled and crystallized,
The solid content concentration in the product slurry is 20% or more.
The upper several stages of the distillation column are a region where the volatility of ammonia is high and the amount of evaporation is large due to the distillation characteristics of ammonia, so a large amount of zinc carbonate is crystallized. As a result, crystals adhered heavily to the internal walls and plates of the distillation column, and the bubble cap column became clogged after just one day of operation, requiring operation to be stopped and cleaning.

しかし、洗浄するためには、蒸留塔を解体せざ
るを得ず、洗浄を前提とする工業的実用化は実際
的でない。
However, in order to clean it, the distillation column must be dismantled, and industrial practical application based on cleaning is impractical.

そこで、本発明者らは、泡鐘塔の材質や、塔型
式を目皿塔に代えるなどの試みを行つたが、結果
は大差なかつた。
Therefore, the present inventors attempted to change the material of the bubble bell tower and the tower type to a perforated tower, but the results were not much different.

本発明は、蒸留塔内の結晶の付着が無く、長時
間の運転が可能であり、また炭酸亜鉛を得るに当
つて、純度の高い結晶を生成させることができる
晶析方法とその装置を提供することにある。
The present invention provides a crystallization method and apparatus that can be operated for a long time without crystals adhering to the distillation column, and that can generate highly pure crystals when obtaining zinc carbonate. It's about doing.

〔問題点を解決するための手段〕[Means for solving problems]

上記問題点を解決するための本発明方法は、塩
基性炭酸アンモニウム亜鉛{〔Zn(NH34〕CO3
溶液(以下、亜鉛溶液という)から塩基性炭酸亜
鉛〔2ZnCO3・3Zn(OH)2または/および
ZnCO3・3Zn(OH)2・H2O〕(以下、炭酸亜鉛と
いう)を晶析させるに際して、1基以上の晶析槽
と、棚段を複数有する蒸留塔とを組合せ、前記亜
鉛溶液を晶析槽に供給して、ある割合の晶析操作
を行つた後、蒸留塔で最終的な蒸留晶析操作を行
うとともに、蒸留塔下部に与えられた熱によつて
発生した蒸留ベーパーを塔頂部分から前の晶析槽
へ送り、前記亜鉛溶液の最終的な蒸留塔までの流
れと前記蒸留ベーパーの最初の晶析槽までの流れ
とが向流状態とすることを特徴とするものであ
る。
The method of the present invention for solving the above problems uses basic ammonium zinc carbonate {[Zn(NH 3 ) 4 ]CO 3 }
Basic zinc carbonate [ 2ZnCO3・3Zn(OH) 2 or/and
When crystallizing ZnCO 3.3Zn (OH) 2.H 2 O] (hereinafter referred to as zinc carbonate), one or more crystallization tanks and a distillation column having multiple trays are combined, and the zinc solution is After being supplied to the crystallization tank and performing a certain percentage of crystallization operation, the final distillation crystallization operation is performed in the distillation column, and the distillation vapor generated by the heat given to the bottom of the distillation column is transferred to the distillation column. The zinc solution is sent from the top to the previous crystallization tank, and the flow of the zinc solution to the final distillation column and the flow of the distillation vapor to the first crystallization tank are in a countercurrent state. .

また、本発明装置は、1基以上の晶析槽と、棚
段を複数有し、下部に熱が与えられる蒸留塔とを
備え、前記晶析槽へ導かれる炭酸アンモニウム亜
鉛溶液は最終的に蒸留塔へ供給され、蒸留塔で発
生する蒸留ベーパーは最終的は最初の晶析槽へ導
かれるように構成され、さらにその際亜鉛溶液と
前記蒸留ベーパーとの流れが向流接触し、成品結
晶スラリーが蒸留塔の塔底部分から抜き出される
ように構成されたことを特徴としている。
Furthermore, the apparatus of the present invention includes one or more crystallization tanks and a distillation column having a plurality of trays and to which heat is applied at the bottom, and the ammonium zinc carbonate solution led to the crystallization tank is finally The structure is such that the distilled vapor that is supplied to the distillation column and generated in the distillation column is ultimately led to the first crystallization tank, and furthermore, at this time, the flow of the zinc solution and the distilled vapor are brought into countercurrent contact, and the product crystals are formed. It is characterized in that the slurry is extracted from the bottom of the distillation column.

〔作用〕[Effect]

本発明は、蒸留塔を用いて晶析操作を行つてい
る。その結果、この蒸留塔と晶析槽とを含めた基
数は、一般に3〜5基程度で足り、晶析槽のみで
晶析操作を行う場合に比較して、基数および占有
面積が大巾に低減(たとえば基数は1/4となる)
する。さらに使用蒸気量としては、蒸留塔へ供給
する加熱蒸気のみで足りる。すなわち、この加熱
蒸気によつて蒸留塔内の溶液・スラリーは加熱さ
れ、蒸留塔下部から中段域において溶液がアンモ
ニアストリツピング作用を受け、その結果発生し
たアンモニアベーパーが、上方に移行するに従い
反応生成量を増大し、高温状態のまま蒸留ベーパ
ーとして、順次晶析槽へ導かれるから、結果的に
蒸留塔へ供給する蒸気使用量は少くて済み、しか
も連続運転が可能となる利点がもたらされる。
In the present invention, a distillation column is used to perform the crystallization operation. As a result, the number of bases including this distillation column and crystallization tank is generally about 3 to 5, and the number of bases and the occupied area are significantly larger than when performing the crystallization operation using only the crystallization tank. reduction (for example, the base becomes 1/4)
do. Further, as for the amount of steam used, only the heated steam supplied to the distillation column is sufficient. That is, the solution/slurry in the distillation column is heated by this heated steam, and the solution is subjected to an ammonia stripping action from the bottom to the middle area of the distillation column, and as a result, the ammonia vapor generated reacts as it moves upward. Since the amount of produced vapor is increased and the distilled vapor is successively guided to the crystallization tank while still in a high temperature state, the amount of vapor supplied to the distillation column can be reduced, and the advantage is that continuous operation is possible. .

他方で、蒸留塔のみであると、前述のように、
塔内に結晶の付着が起るので、その前に晶析槽を
設けて、この晶析槽である必要量の晶析操作を行
い、蒸留塔へはZn濃度の低い供給液として供給
するので、蒸留塔内での結晶の付着は非常に少な
くなる。さらに、蒸留塔内を上昇する蒸留ベーパ
ーによる撹拌作用によつても結晶の付着が低減さ
れる。
On the other hand, if there is only a distillation column, as mentioned above,
Since crystals will adhere to the inside of the column, a crystallization tank is installed before that, and the required amount of crystallization is performed in this crystallization tank, and the feed liquid with a low concentration of Zn is supplied to the distillation column. , crystal adhesion within the distillation column is greatly reduced. Furthermore, the agitation effect of the distillation vapor rising inside the distillation column also reduces the adhesion of crystals.

また、全体として亜鉛溶液と蒸留塔での蒸留ベ
ーパーを向流接触するようにしたから、晶析効率
の高い連続運転が可能となる。
Moreover, since the zinc solution and the distilled vapor in the distillation column are brought into countercurrent contact with each other as a whole, continuous operation with high crystallization efficiency is possible.

〔発明の具体例〕[Specific examples of the invention]

以下本発明を図面に示す具体例によつてさらに
詳説する。
The present invention will be explained in more detail below with reference to specific examples shown in the drawings.

第2図は、製鉄所の亜鉛メツキ設備等から排出
されるZn含有物から炭酸亜鉛として回収する場
合のフロシートの一例を示したもので、まずこの
第2図によつて全体の工程を説明する。
Figure 2 shows an example of a flow sheet used to recover zinc carbonate from Zn-containing materials discharged from galvanizing equipment, etc. at a steelworks. First, the entire process will be explained using Figure 2. .

対象のZn含有物50は、NH4OHおよび
(NH42CO3を含む溶解液に溶解される。すなわ
ち、3基の溶解槽51の最終溶解槽にZn含有物
50が添加され、溶解液とZn含有物50と向流
接触溶解し、溶解剤液は沈降分離槽を経て、3基
のイオン置換槽および沈降分離槽へ導かれ溶解液
の精製52が行なわれる。第3イオン置換槽に
は、金属亜鉛粉末53が添加され、イオン置換反
応に供せられる。
The target Zn-containing material 50 is dissolved in a solution containing NH 4 OH and (NH 4 ) 2 CO 3 . That is, the Zn-containing material 50 is added to the final dissolving tank of the three dissolving tanks 51, and the solution and the Zn-containing material 50 are dissolved in countercurrent contact, and the dissolving agent liquid passes through the sedimentation separation tank and undergoes ion replacement in the three groups. The solution is purified 52 by being introduced into a tank and a sedimentation tank. Metal zinc powder 53 is added to the third ion replacement tank and subjected to an ion replacement reaction.

イオン置換反応工程後の液は濾過工程54を経
て、本発明に係る晶析工程55へ導かれる。図示
の晶析装置は、4基の晶析槽1A〜1Dと蒸留塔
2とよりなる。続いて、成品スラリーは、濾過機
56に供給され、乾燥機57にて乾燥されて製品
58とされる。
The liquid after the ion replacement reaction step passes through a filtration step 54 and is led to a crystallization step 55 according to the present invention. The illustrated crystallizer includes four crystallizers 1A to 1D and a distillation column 2. Subsequently, the product slurry is supplied to a filter 56 and dried in a dryer 57 to form a product 58.

一方、蒸留塔2での炭酸ガス、アンモニアおよ
び水蒸気からなる蒸留ベーパーは、第1晶析槽1
Aから、吸収塔からなる溶解液調製装置59に導
かれ、ここで炭酸ガスおよびアンモニア60が加
えられ、所定濃度の溶解液として、溶解槽へ戻さ
れる。なお、溶解およびイオン置換反応での未溶
解残渣は、第1溶解槽から除去された後、残渣溶
解槽および濾過機61を経て系外へ排出される。
On the other hand, distillation vapor consisting of carbon dioxide gas, ammonia and water vapor in the distillation column 2 is transferred to the first crystallization tank 1.
From A, the solution is led to a solution preparation device 59 consisting of an absorption tower, where carbon dioxide gas and ammonia 60 are added, and the solution is returned to the dissolution tank as a solution with a predetermined concentration. Note that undissolved residues from the dissolution and ion replacement reactions are removed from the first dissolution tank and then discharged to the outside of the system via the residue dissolution tank and the filter 61.

次に、上記プロセスフローにおいて好適に使用
可能な本発明を、第1図を参照しながら説明する
と、溶解、イオン置換反応および精密濾過の各工
程を経た亜鉛溶液の原液3は供給液管8Aを介し
て第1晶析槽1Aに導かれる。各晶析槽1A〜1
Dは、同構造をなしており、内部にドラフトチユ
ーブ4、撹拌羽根5およびクラツカーパイプ6を
それぞれ有している。
Next, the present invention, which can be suitably used in the above process flow, will be explained with reference to FIG. It is guided to the first crystallization tank 1A through the crystallization tank 1A. Each crystallization tank 1A~1
D has the same structure and has a draft tube 4, a stirring blade 5, and a Kratzker pipe 6 inside.

第1槽1Aから最終の第4槽1Dまで、蒸留塔
2の直接吹込まれる生蒸気7の熱による晶析操作
終了液は、順次その前の槽へ供給液管8B〜8D
を通つて亜鉛溶液として供給されるようになつて
いる。
From the first tank 1A to the final fourth tank 1D, the liquid that has been crystallized by the heat of the live steam 7 that is directly blown into the distillation column 2 is sequentially supplied to the previous tank through the supply liquid pipes 8B to 8D.
It is designed to be supplied as a zinc solution through the

最終の第4結晶槽1Dの底部からは、Zn濃度
約1〜5%程度の低亜鉛濃度溶液がポンプ9によ
り抜き出されて、蒸留塔2の塔頂へ供給液管8B
を介して供給される。
A low zinc concentration solution with a Zn concentration of about 1 to 5% is extracted from the bottom of the final fourth crystallization tank 1D by a pump 9 and sent to the top of the distillation column 2 through a feed pipe 8B.
Supplied via.

蒸留塔2は、たとえば20段の目皿からなる棚段
2a,2a,…を有し、塔底には直接生蒸気7が
吹込まれる。10は撹拌羽根である。
The distillation column 2 has, for example, 20 perforated plates 2a, 2a, . . . , and live steam 7 is directly blown into the bottom of the column. 10 is a stirring blade.

蒸留塔2内では、前述の(3A)または(3B)
式の反応が生じ、晶析操作が行なわれ、成品の塩
基性炭酸亜鉛スラリーは塔底からスラリーポンプ
11により抜き出され、続く、濾過・乾燥工程へ
と移行される。蒸留塔2内での発生蒸気は、塔内
を上昇して、塔頂から蒸気供給管12Aを通つて
最終の第4晶析槽1Dのクラツカーパイプ6へ導
かれ、同晶析槽1Dでの晶出熱源とされる。
In distillation column 2, the above-mentioned (3A) or (3B)
The following reaction occurs, a crystallization operation is performed, and the basic zinc carbonate slurry is extracted from the bottom of the column by a slurry pump 11, and transferred to the subsequent filtration and drying steps. The steam generated in the distillation column 2 rises inside the column and is led from the top of the column through the steam supply pipe 12A to the Kratzker pipe 6 of the fourth and final crystallization tank 1D. It is said to be the heat source for crystallization.

この例における蒸留ベーパーとは、前記生蒸気
の、蒸留塔内上昇流分と、塔内の各上昇過程で加
熱反応により生成するアンモニア・ベーパー、該
塔内上部で生成するCO2ベーパーの総合されたも
のであつて、前記蒸留塔の塔頂より導出される部
位にあつては、全体としてアンモニア・リツチの
ベーパーとなつて、前段の晶析槽群の晶出熱源と
されるものである。
Distilled vapor in this example is the sum total of the upward flow of the live steam in the distillation column, the ammonia vapor produced by heating reaction in each ascending process in the column, and the CO 2 vapor produced in the upper part of the column. In the case where the ammonia is discharged from the top of the distillation column, the vapor becomes ammonia-rich vapor as a whole and is used as a crystallization heat source for the crystallization tank group in the first stage.

さらに、第4晶析槽1Dの蒸留ベーパーは、蒸
気供給管12Bにより第3晶析槽1Cへ導かれ
る。このようにして、順次前の晶析槽へと蒸気供
給管12C,12Dを介して蒸留ベーパーが供給
され、最終的に第1晶析槽からの蒸留ベーパー
は、溶解液調整工程へ移行される。
Further, the distilled vapor in the fourth crystallization tank 1D is guided to the third crystallization tank 1C by the vapor supply pipe 12B. In this way, the distilled vapor is sequentially supplied to the previous crystallization tank via the steam supply pipes 12C and 12D, and finally the distilled vapor from the first crystallization tank is transferred to the solution adjustment step. .

このようにして、本発明では、全体として亜鉛
溶液と蒸留ベーパーとの流れが向流接触してい
る。
Thus, in the present invention, the overall flow of zinc solution and distilled vapor is in countercurrent contact.

上記例では、晶析槽を4基設けたが、1基もし
くは他の数の基数でもよい。いずれにしても、最
終の晶析槽から蒸留塔2へ移行するZn濃度とし
ては、1〜5%、特に2〜3.5%程度が好ましい
ので、亜鉛溶液の原液のZn濃度(通常約10%)
に対してその分を各晶析槽で負担することが必要
である。また各晶析槽の晶出速度としては、30〜
100Kg/m3が好ましい。さらに、4基の晶析槽の
場合、第4〜第1晶析槽の順で、アンモニア濃度
はたとえば約3%、4%、6%、8%と順次高ま
る。
In the above example, four crystallization tanks were provided, but one or other number of crystallization tanks may be used. In any case, the Zn concentration transferred from the final crystallization tank to the distillation column 2 is preferably about 1 to 5%, especially about 2 to 3.5%, so the Zn concentration of the raw zinc solution (usually about 10%)
Therefore, it is necessary for each crystallization tank to bear the cost. In addition, the crystallization rate of each crystallization tank is 30~
100Kg/m 3 is preferred. Furthermore, in the case of four crystallization tanks, the ammonia concentration increases successively, for example, about 3%, 4%, 6%, and 8% in the order of the fourth to first crystallization tanks.

〔実施例〕〔Example〕

第1図および第2図に示すプロセスによつて、
製鉄所から排出される亜鉛メツキダスト等からの
Zn含有物を処理した。
By the process shown in Figures 1 and 2,
from galvanized dust etc. discharged from steelworks.
Zn-containing material was treated.

ただ、晶析槽は2槽のみで、液容量が50のも
のである。蒸留塔は、200mmφ×6900mmHのもの
で、ステンレスの内面にゴムライニングを施した
塔体内に、8×100mmの長孔を多数有するステン
レス製目皿板を棚段として12段配置した。
However, there are only two crystallization tanks, and the liquid capacity is 50. The distillation column was 200 mmφ x 6900 mmH, and 12 stainless steel perforated plate plates each having a large number of 8 x 100 mm elongated holes were arranged as shelves inside the column body, which was made of stainless steel and had a rubber lining on its inner surface.

第1晶析槽へ、Zn濃度10.2%の〔Zn(NH34
CO3溶液を100/hrの割合で供給した。他方で、
蒸留塔の塔底には、110℃の生蒸気を約60Kg/hr
で直接吹込んだ。その結果、第1晶析槽、第2晶
析槽および蒸留塔頂の各温度は、約80、90、100
℃であつた。塔底のアンモニア濃度は200〜
500ppmであつた。
[Zn(NH 3 ) 4 ] with a Zn concentration of 10.2% to the first crystallization tank
CO 3 solution was supplied at a rate of 100/hr. On the other hand,
Approximately 60 kg/hr of live steam at 110°C is placed at the bottom of the distillation column.
Injected directly. As a result, the temperatures at the first crystallization tank, second crystallization tank, and distillation column top were approximately 80, 90, and 100°C.
It was warm at ℃. Ammonia concentration at the bottom of the tower is 200~
It was 500ppm.

そして、蒸留塔の塔底からは100〜120/Hr
のスラリーが得られ、これを濾過、乾燥させたと
ころ、Feは5ppm以下であり、Pb等の重金属はい
ずれも1ppm以下と純度の高い炭酸亜鉛が得られ
た。
And from the bottom of the distillation column, 100 to 120/Hr
A slurry was obtained, and when this was filtered and dried, zinc carbonate with high purity was obtained, containing less than 5 ppm of Fe and less than 1 ppm of heavy metals such as Pb.

さらに、1日当り1時間程度、溶解液により洗
浄すれば、少くとも1ケ月以上の連続的な運転が
可能であることが判つた。しかも、蒸気使用量と
して、単に並列的に晶析槽のみを用いる場合に比
較して、上記実験結果との対比の下での試算によ
れば、少くとも1/5以下であることが判つた。
Furthermore, it has been found that continuous operation for at least one month is possible by washing with a dissolving solution for about one hour per day. Moreover, the amount of steam used was found to be at least 1/5 or less compared to the case where only parallel crystallization tanks were used, according to a trial calculation based on comparison with the above experimental results. .

〔発明の効果〕〔Effect of the invention〕

以上の通り、本発明は、晶析槽と晶析を可能と
する改良した蒸留塔とを組合せ、かつ亜鉛溶液と
蒸留ベーパーとの流れを向流接触させたから、従
来一般的に考えられる方法に比べ、蒸気使用量は
1/5以下で済み、蒸留塔内の結晶の付着が無く、
長時間の連続運転が可能となり、しかも高純度の
成品を得ることができるなどの利点がある。
As described above, the present invention combines a crystallization tank and an improved distillation column that enables crystallization, and brings the zinc solution and distilled vapor into countercurrent contact, which makes it possible to overcome conventional methods. Compared to this, the amount of steam used is less than 1/5, and there is no crystal adhesion inside the distillation column.
It has the advantage of being able to operate continuously for long periods of time and producing highly pure products.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の具体例の概略図、第2図は本
発明が好適に使用されるプロセス全体のフローシ
ートである。 1A〜1D……晶析槽、2……蒸留塔、2a…
…棚段、3……亜鉛溶液の原液、8A〜8E……
供給液管、11……スラリーポンプ、12A〜1
2E……蒸気供給管。
FIG. 1 is a schematic diagram of a specific example of the present invention, and FIG. 2 is a flow sheet of the entire process in which the present invention is preferably used. 1A to 1D...Crystallization tank, 2...Distillation column, 2a...
... Shelf, 3... Stock solution of zinc solution, 8A to 8E...
Supply liquid pipe, 11...Slurry pump, 12A~1
2E...Steam supply pipe.

Claims (1)

【特許請求の範囲】 1 炭酸アンモニウム亜鉛溶液から塩基性炭酸亜
鉛を晶析させるに際して、1基以上の晶析槽と、
棚段を複数有する蒸留塔とを組合せ、前記亜鉛溶
液を晶析槽に供給して、ある割合の晶析操作を行
つた後、蒸留塔で最終的な晶析操作を行うととも
に、蒸留塔下部に与えられた熱によつて発生した
蒸留ベーパーを塔頂部分から前の晶析槽へ送り、
前記溶液の最終的な蒸留塔までの流れと、前記蒸
留ベーパーの、最初の晶析槽までの流れとを向流
状態とすることを特徴とする晶析方法。 2 1基以上の晶析槽と、棚段を複数有し、下部
に熱が与えられる蒸留塔とを備え、前記晶析槽へ
導かれる炭酸アンモニウム亜鉛溶液は最終的に蒸
留塔へ供給され、蒸留塔で発生する蒸留ベーパー
は最終的に最初の晶析槽へ導かれるように構成さ
れ、さらにその際亜鉛溶液と前記蒸留ベーパーと
の流れが向流接触し、成品結晶スラリーが蒸留塔
の塔底部分から抜き出されるように構成されたこ
とを特徴とする晶析装置。
[Claims] 1. When crystallizing basic zinc carbonate from an ammonium zinc carbonate solution, one or more crystallization tanks;
After the zinc solution is supplied to the crystallization tank and a certain proportion of the crystallization operation is performed, the final crystallization operation is performed in the distillation tower, and the lower part of the distillation tower is The distilled vapor generated by the heat applied to the column is sent from the top of the column to the previous crystallization tank.
A crystallization method characterized in that the flow of the solution to the final distillation column and the flow of the distilled vapor to the first crystallization tank are in a countercurrent state. 2. Equipped with one or more crystallization tanks and a distillation column having a plurality of trays and to which heat is applied at the bottom, the ammonium zinc carbonate solution led to the crystallization tank is finally supplied to the distillation column, The distillation vapor generated in the distillation column is configured to be finally led to the first crystallization tank, and furthermore, at that time, the flow of the zinc solution and the distillation vapor are brought into countercurrent contact, and the product crystal slurry is transferred to the column of the distillation column. A crystallizer characterized in that it is configured to be extracted from a bottom portion.
JP27523884A 1984-12-28 1984-12-28 Crystallization process and apparatus therefor Granted JPS61158816A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP27523884A JPS61158816A (en) 1984-12-28 1984-12-28 Crystallization process and apparatus therefor
US06/813,103 US4710215A (en) 1984-12-28 1985-12-24 Process for distillation-crystallization of zinc carbonate
CA000498625A CA1260225A (en) 1984-12-28 1985-12-24 Process for distillation-crystallization of zinc carbonate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27523884A JPS61158816A (en) 1984-12-28 1984-12-28 Crystallization process and apparatus therefor

Publications (2)

Publication Number Publication Date
JPS61158816A JPS61158816A (en) 1986-07-18
JPH0138049B2 true JPH0138049B2 (en) 1989-08-10

Family

ID=17552618

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27523884A Granted JPS61158816A (en) 1984-12-28 1984-12-28 Crystallization process and apparatus therefor

Country Status (1)

Country Link
JP (1) JPS61158816A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107961557B (en) * 2017-10-24 2020-03-17 湖北民族大学 Apparatus and method for rapid crystallization of biomolecules

Also Published As

Publication number Publication date
JPS61158816A (en) 1986-07-18

Similar Documents

Publication Publication Date Title
EP0754673B1 (en) Process for the production of terephthalic acid
EP0417829B2 (en) Process for purifying the effluent from urea production plants
US4144092A (en) Process for regenerating a nitric acid-hydrofluoric acid pickling solution
EP0400169A1 (en) Removal of volatile acids from aqueous solutions
CN1069631C (en) Process for making adipic acid and dibasic acid
US4292043A (en) Process for working up effluent containing ammonium sulphate
CN87103373A (en) Reclaim the method for iron oxide red and sulphur ammonium in the spent pickle liquor
US2785999A (en) Process for pickling iron, steel and alloys thereof
US2769735A (en) Method of pickling iron and recovering pickling agent
JPH0138049B2 (en)
US3218121A (en) Manufacture of ammonium perchlorate
JPH0794005B2 (en) Treatment method of cleaning water from gas cleaning system of iron ore reduction plant
CN103890184A (en) Method for separating and purifying 1,4-diaminobutane from fermented solution
CN102602890A (en) Method and device for recycling useful substances from waste hydrochloric acid liquor
US3449067A (en) Production of sodium bicarbonate
US4252602A (en) Apparatus for recovering nitric acid and hydrofluoric acid from solutions
US5603839A (en) Process for the recovery of waste sulphuric acid
RU2105717C1 (en) Method for production of potassium sulfate
US1327536A (en) Process for chemical separation of ores
US3203894A (en) Method for the conversion of sea water into fresh water
US3849489A (en) Purification of terephthalic acid
US2785957A (en) Regeneration of pickling liquor
US4158006A (en) Refining saccharin sodium
US4138559A (en) Recovery of chlorine and cyanuric acid values from polychloroisocyanuric acids and salts thereof
US3732280A (en) Process for separation of terephthalonitrile