JPH0137448B2 - - Google Patents

Info

Publication number
JPH0137448B2
JPH0137448B2 JP21673786A JP21673786A JPH0137448B2 JP H0137448 B2 JPH0137448 B2 JP H0137448B2 JP 21673786 A JP21673786 A JP 21673786A JP 21673786 A JP21673786 A JP 21673786A JP H0137448 B2 JPH0137448 B2 JP H0137448B2
Authority
JP
Japan
Prior art keywords
period
melting
oxidation
during
pulverized coal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP21673786A
Other languages
Japanese (ja)
Other versions
JPS6372814A (en
Inventor
Tomio Suzuki
Takeo Yoshigae
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP61216737A priority Critical patent/JPS6372814A/en
Publication of JPS6372814A publication Critical patent/JPS6372814A/en
Publication of JPH0137448B2 publication Critical patent/JPH0137448B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、電気炉を用いて鉄系材料の溶解・精
錬を行なうに当たり電力原単位の向上や製鋼時間
の短縮を達成した電気炉製鋼法に関するものであ
る。
[Detailed Description of the Invention] [Industrial Application Field] The present invention provides an electric furnace steelmaking method that achieves an improvement in electric power consumption and a reduction in steelmaking time when melting and refining ferrous materials using an electric furnace. It is related to.

[従来の技術] 電気炉製鋼法は、炉内の装入された鉄系原料と
電極との間にアークを発生させ、その高温を利用
して原料を加熱溶解するものであり、高温を得
やすく、脱P・脱Sが容易で有害不純物の混入
が少なく、あらゆる鋼種の精錬が可能である等
の特長を有するところから広く利用されている。
[Prior art] The electric furnace steelmaking method generates an arc between the ferrous raw material charged in the furnace and an electrode, and uses the high temperature to heat and melt the raw material. It is widely used because it has the following characteristics: it is easy to remove P and S, it contains few harmful impurities, and it is possible to refine all types of steel.

第2図はこの様な電気炉製鋼法の概要を示すフ
ロー説明図で、製鋼工程をステツプ別に分ける
と、溶解期、酸化期、及び還元期に分けるこ
とができる。尚図には溶鋼成分組成例を夫々併記
した。まず最初の溶解期では、電気炉1内に装入
した鉄系原料に対して電極4からアークを発生さ
せ、これを溶解する。溶解期は製鋼工程の大部分
を占め、最大電圧及び最大電流でアーク溶解が行
なわれ、溶解が殆んど終了した時点で炉内に石灰
石やスケールを投入する。こうして溶解期が終る
と、有害成分であるPや非金属介在物を除去する
為に酸化精錬を行なうが、酸化精錬には高い鋼浴
温度が必要である為、まず酸化期において電力
により昇温を行なう。これにより鋼浴温度が約
1600℃まで上昇すると、電極4を引きあげた後
O2の吹込みランス3を鋼浴中へ約100mm深さにな
るまで挿入し、O2の吹込み(バブリング)を行
ない、Pや非金属介在物等の有害成分を酸化除去
する(酸化期)。尚鋼浴は酸素富化により沸騰
状態となり鋼中のH2(原材料から混入)も同時に
除去される。次いで脱P等が終了すると再び電極
4を鋼浴に浸漬して電力により鋼浴を所定温度に
維持しつつ、炉内へ還元剤及び合金剤を添加し溶
綱の脱酸・脱硫並びに成分調整を行なう(還元
期)。
FIG. 2 is a flow explanatory diagram showing an overview of such an electric furnace steelmaking method. When the steelmaking process is divided into steps, it can be divided into a melting period, an oxidation period, and a reduction period. In addition, examples of the composition of molten steel are also shown in each figure. First, in the first melting period, an arc is generated from the electrode 4 against the iron-based raw material charged into the electric furnace 1 to melt it. The melting stage occupies most of the steelmaking process, and arc melting is performed at maximum voltage and current, and when the melting is almost complete, limestone and scale are introduced into the furnace. When the melting period ends, oxidation refining is performed to remove harmful P and nonmetallic inclusions, but since oxidation refining requires a high steel bath temperature, the temperature is first raised using electricity during the oxidation period. Do this. This reduces the steel bath temperature to approx.
When the temperature rises to 1600℃, after pulling up electrode 4,
Insert the O 2 injection lance 3 into the steel bath to a depth of approximately 100 mm, and perform O 2 injection (bubbling) to oxidize and remove harmful components such as P and nonmetallic inclusions (during the oxidation period). ). The steel bath becomes boiling due to oxygen enrichment, and H 2 (contaminated from the raw materials) in the steel is also removed at the same time. Next, when the deP removal etc. are completed, the electrode 4 is immersed in the steel bath again, and while the steel bath is maintained at a predetermined temperature by electricity, a reducing agent and an alloying agent are added into the furnace to deoxidize and desulfurize the molten steel and adjust the composition. (reduction period).

[発明が解決しようとする問題点] 電気炉における製鋼は上記の様にして行なわれ
るが、かかる電気炉操業においては、前にも述べ
た様に装入された鉄系原料を溶解期に電力で一気
に昇温・溶解している為最大出力の電力が消費さ
れる。このときの電力消費量は溶解期が操業期間
の大部分を占めていることもあつて相当に大きく
生産コストの主要部を構成している。しかるに鉄
系原料を溶解する過程での電力付加効率は余り高
いものとは言えず、省エネルギーの観点からして
も電力の有効利用が望まれる。又酸化期のうち、
酸素吹込み操業時(酸化期)には電力を停止し
電極を引きあげた状態で操業を行なう為電力によ
る昇温が期待できず、その分昇温期(酸化期)
において大きな電力量が必要となる。この様に電
気炉製鋼法では多大の電力が必要とされるが、前
述の様に電力による昇温・溶解は必ずしも効率が
良くない為電力原単位が高くなる。
[Problems to be Solved by the Invention] Steel making in an electric furnace is carried out as described above, but in the operation of such an electric furnace, as mentioned above, the charged ferrous raw material is heated by electric power during the melting period. Because the temperature rises and melts at once, the maximum output power is consumed. The power consumption at this time is quite large and constitutes a major part of the production cost, partly because the melting period occupies most of the operating period. However, the power addition efficiency in the process of melting iron-based raw materials cannot be said to be very high, and effective use of power is desired from the viewpoint of energy conservation. Also, during the oxidation period,
During oxygen injection operation (oxidation period), the power is stopped and the electrodes are pulled up, so no temperature increase can be expected due to electric power, and therefore the temperature increase period (oxidation period)
A large amount of electricity is required. As described above, the electric furnace steelmaking method requires a large amount of electric power, but as mentioned above, heating and melting using electric power is not necessarily efficient, so the electric power consumption rate becomes high.

本発明はこうした事情に着目して為されたもの
であり、電気炉製鋼法の特長を生かしつつ電力消
費量の低減、さらには操業時間の短縮といつた課
題をも達成しようとするものである。
The present invention has been made with attention to these circumstances, and aims to achieve such issues as reducing power consumption and shortening operating time while taking advantage of the features of the electric furnace steelmaking process. .

[問題点を解決する為の手段] 上記目的を達成した本発明方法は、電気炉を用
いて鉄系材料の溶解・精錬を行なうに当たり、溶
解期には微粉炭を空気比(微粉炭に対する空気比
率)0.75〜1.0で燃焼させて得た還元性ガスを吹
込み、酸化期には微粉炭を空気比1.0〜1.2で燃焼
させて得た酸化性ガスを吹込んで操業を行なう点
に要旨を有するものである。
[Means for Solving the Problems] The method of the present invention, which has achieved the above object, uses an electric furnace to melt and refine iron-based materials, and during the melting period, the ratio of pulverized coal to air The gist is that the operation is carried out by injecting reducing gas obtained by burning pulverized coal at an air ratio of 1.0 to 1.2 during the oxidation period. It is something.

[作用] 本発明においては、電力消費を低減する為に電
力に比べて安価で且つ安定供給の期待できる微粉
炭を一部代替エネルギー源として使用する。微粉
炭の使用に当たつては微粉炭を直接炉内へ吹込む
と微粉炭に付随する有害成分を溶綱中へ添加する
ことになるので直接吹込みを行なわず、微粉炭を
例えば予燃焼器で燃焼させ高温の燃焼ガスとして
電気炉内へ吹込む。尚吹込み位置はスラグ界面上
約300mmに設定する。燃焼ガスの吹込みは、電力
消費の大きな溶解期と酸化期に行なうが、溶解期
には炉内に電極を挿入して鉄系原料のアーク溶解
を平行して行なうのでアーク溶解雰囲気が酸化性
雰囲気であると下記反応により電極の酸化消耗が
大きくなる。
[Operation] In the present invention, in order to reduce power consumption, pulverized coal, which is cheaper than electricity and can be expected to be stably supplied, is partially used as an alternative energy source. When using pulverized coal, if the pulverized coal is directly injected into the furnace, harmful components associated with the pulverized coal will be added to the molten steel. It is combusted in a furnace and blown into the electric furnace as high-temperature combustion gas. The injection position is set approximately 300mm above the slag interface. Combustion gas is injected during the melting and oxidation periods, which consume a large amount of electricity, but during the melting period, electrodes are inserted into the furnace and arc melting of iron-based raw materials is performed in parallel, so the arc melting atmosphere is oxidizing. If the atmosphere is present, the oxidative wear and tear of the electrode will increase due to the following reaction.

C(電極表面)+1/2O2→CO C(電極表面)+CO2→2CO 尚電気炉操業において電極に要する費用は熱エ
ネルギーコストに匹敵するものであり、電極の消
耗はできる限り抑制することが望まれる。そこで
本発明においては、溶解期に吹込まれる燃焼ガス
を還元性とすべく予燃焼器において微粉炭を空気
比0.75〜1.0で燃焼させることを必須要件として
いる。こうして得た還元性の燃焼ガスを溶解期の
電力炉内へ吹込むことによつて電極を消耗させる
ことなく炉内の鉄系材料を昇温・溶解させること
ができる。尚空気比が0.75未満では燃焼ガス中の
CO濃度が高くなり、電気炉操業に悪影響を与え
る。他方空気比が1.0を超えると電極の消耗によ
り、熱エネルギーコストの損失が大きくなる。
C (electrode surface) + 1/2O 2 →CO C (electrode surface) + CO 2 →2CO The cost required for electrodes in electric furnace operation is comparable to the cost of thermal energy, and it is important to suppress electrode wear as much as possible. desired. Therefore, in the present invention, it is an essential requirement that pulverized coal be combusted at an air ratio of 0.75 to 1.0 in the pre-combustor in order to make the combustion gas blown in during the melting period reducing. By blowing the reducing combustion gas obtained in this way into the electric power furnace during the melting period, the temperature of the iron-based material in the furnace can be raised and melted without consuming the electrodes. Furthermore, if the air ratio is less than 0.75, the
The CO concentration increases and has a negative impact on electric furnace operation. On the other hand, if the air ratio exceeds 1.0, the loss of thermal energy cost increases due to electrode wear.

一方溶解期につづく酸化期は前述の如く酸化期
(昇温期)と酸化期(酸化精錬期)に分か
れ、酸化期では専ら酸化精錬反応を進行させる
為の準備としての昇温を行なう。本発明において
はここでも昇温の為の電力エネルギーを低減する
為に酸化期において微粉炭燃焼ガスを炉内へ吹
込み溶鋼の昇温をはかる。ところで酸化期は次
の酸化期の予備段階であり、酸化期には溶鋼
中へのインジエクシヨンが行なわれて酸化精錬が
行なわれるので酸化精錬を促進する意味から酸化
期における微粉炭燃焼ガスは酸化性とする必要
があり、その為に予燃焼器では空気比1.0〜1.2で
微粉炭を燃焼させる。これにより炉内雰囲気を酸
化性とすると共に溶鋼の昇温を促進することがで
きる。尚空気比が1.0未満では燃焼ガスは還元性
のガスとなり、酸化精錬反応に悪影響を与える。
他方空気比が1.2を超えると断熱火炎温度が低く
なり、熱エネルギーコストの損失が大きくなる。
又酸化期は溶解期に比べるとその期間は短く、
酸化期では溶鋼から電極を引き上げるので酸化
性燃焼ガスを吹込んでもこの間の電極の消耗は比
較的少なくて済み溶解期における様な危倶は殆ん
ど問題とならない。次いで酸化期では電極を引
き上げた後もひきつづき微粉炭燃焼ガスを吹込ん
で溶鋼温度の維持をはかるが、このとき酸化期
と同様燃焼ガスを酸化性とすることにより酸化精
錬を促進することができ精錬時間を短縮すること
ができる。そして還元期には微粉炭燃焼ガスの吹
込みを停止して再び電極を溶鋼中へ浸漬して従来
と同様に脱酸・脱硫・成分調整を行なう。
On the other hand, the oxidation period following the melting period is divided into the oxidation period (temperature raising period) and the oxidation period (oxidation refining period) as described above, and in the oxidation period, the temperature is raised exclusively in preparation for proceeding with the oxidation refining reaction. In the present invention, pulverized coal combustion gas is blown into the furnace during the oxidation period to raise the temperature of the molten steel, in order to reduce the electrical energy needed to raise the temperature. By the way, the oxidation period is a preliminary stage for the next oxidation period, and during the oxidation period, injection into the molten steel is carried out to perform oxidation refining, so in order to promote oxidation refining, the pulverized coal combustion gas during the oxidation period is oxidizing. Therefore, the pre-combustor burns pulverized coal at an air ratio of 1.0 to 1.2. This makes it possible to make the atmosphere in the furnace oxidizing and to accelerate the temperature rise of the molten steel. If the air ratio is less than 1.0, the combustion gas becomes a reducing gas, which adversely affects the oxidation refining reaction.
On the other hand, if the air ratio exceeds 1.2, the adiabatic flame temperature will be low and the loss in thermal energy cost will be large.
Also, the oxidation period is shorter than the dissolution period,
During the oxidation period, the electrodes are lifted from the molten steel, so even if oxidizing combustion gas is blown into the electrodes, wear and tear on the electrodes during this period is relatively small, and accidents like those during the melting period do not pose a problem. Next, in the oxidation stage, even after the electrode is lifted, pulverized coal combustion gas is continuously blown in to maintain the temperature of the molten steel.At this time, as in the oxidation stage, oxidation refining can be promoted by making the combustion gas oxidizing. It can save time. Then, during the reduction period, the injection of pulverized coal combustion gas is stopped, and the electrode is immersed in the molten steel again to perform deoxidation, desulfurization, and component adjustment in the same manner as before.

[実施例] 第1図は本発明方法の実施態様を示すフロー説
明図で、工程は第2図と同様溶解期、酸化期;
、還元期に分かれている。尚各工程図の下には
そのときの溶鋼成分組成例を示している。
[Example] Fig. 1 is a flow explanatory diagram showing an embodiment of the method of the present invention, and the steps are the same as in Fig. 2, including a dissolution period, an oxidation period;
, divided into reduction periods. Below each process diagram, an example of the composition of the molten steel at that time is shown.

電気炉1内への原料装入を行なつた後、溶解期
では図示する電極4に110KWHの電力を送給し
且つ予燃焼器2では微粉炭480Kg/Hを空気比
0.75〜1.0で燃焼させて還元性ガスを発生させた。
予燃焼器2では灰分がスラグ状で除去され、クリ
ーンな還元性の燃焼ガス(CO)が炉内へ吹込ま
れ、湯溜りを作り溶解が進行した(溶解時間:約
1時間)。この間の電力原単位は従来に比べて約
20%向上した。次いで溶解が完了すると電力負荷
を55KWHに低下させ、且つ予燃焼器2では微粉
炭240Kg/Hを空気比1で燃焼させて酸化性燃焼
ガス(CO2+H2O)を約10分間炉内へ吹込み溶鋼
温度を約1600℃まで上昇させた。昇温が終わると
電極4を溶鋼中から引きあげる一方、十分に脱水
した酸素ガスを酸素吹込みランス3から溶鋼中へ
インジエクシヨンし酸素富化を行なつた。同時に
予燃焼器2では微粉炭240Kg/Hを燃焼させて得
た酸化性燃焼ガスを炉内に吹込んだ(約20分間)。
酸化期に酸化性の燃焼ガスを吹込むことによつて
酸化精錬時間を約10分間短縮することができた。
又第1図中に示す様にP含有量を約0.02%低減す
ることができた。次いで除滓した後還元期には微
粉炭燃焼ガスの吹込みを停止し、電極を再び浸漬
して110KWHの電力を送給しつつ還元剤コーク
ス粉:150Kg及び合金剤を炉内へ投入して脱酸、
脱硫並びに成分調整を行ない、得られた溶鋼を出
鋼した。
After charging raw materials into the electric furnace 1, during the melting period, 110KWH of electricity is sent to the electrode 4 shown in the figure, and in the pre-combustor 2, pulverized coal is heated to an air ratio of 480Kg/H.
Reducing gas was generated by combustion at 0.75-1.0.
In pre-combustor 2, ash was removed in the form of slag, and clean reducing combustion gas (CO) was blown into the furnace, creating a puddle and melting proceeded (melting time: approximately 1 hour). The electricity consumption rate during this period was approximately
Improved by 20%. Next, when melting is completed, the power load is reduced to 55KWH, and 240Kg/H of pulverized coal is combusted at an air ratio of 1 in pre-combustor 2, and the oxidizing combustion gas (CO 2 + H 2 O) is injected into the furnace for about 10 minutes. The temperature of blown molten steel was raised to approximately 1600℃. When the temperature was raised, the electrode 4 was pulled out of the molten steel, and oxygen gas, which had been sufficiently dehydrated, was injected into the molten steel from the oxygen injection lance 3 to enrich the molten steel with oxygen. At the same time, in pre-combustor 2, oxidizing combustion gas obtained by burning 240 kg/h of pulverized coal was blown into the furnace (for about 20 minutes).
By injecting oxidizing combustion gas during the oxidation period, the oxidation refining time could be shortened by about 10 minutes.
Furthermore, as shown in Figure 1, the P content could be reduced by approximately 0.02%. Next, in the reduction period after slag removal, the injection of pulverized coal combustion gas was stopped, the electrodes were immersed again, and while 110KWH of electricity was being supplied, 150Kg of reducing agent coke powder and alloying agent were introduced into the furnace. deacidification,
After desulfurization and component adjustment, the resulting molten steel was tapped.

尚上記では酸化期に電力を併用したが、酸化期
には電力を一切使用せず480Kg/H以上の微粉炭
を空気比1で燃焼させて燃焼ガスを吹込み昇温・
温度維持を行なえば一層の電力コスト削減をはか
ることができた。
In the above example, electricity was used in conjunction with the oxidation period, but during the oxidation period, no electricity was used at all, and pulverized coal of 480 kg/h or more was combusted at an air ratio of 1, and combustion gas was blown in to raise the temperature.
By maintaining the temperature, it was possible to further reduce electricity costs.

[発明の効果] 本発明は以上の様に構成されており、電気炉製
鋼法の特長を生かしつつ電力コストの低減並びに
溶解時間及び精錬時間の短縮をはかることができ
る。特に最大20%もの電力コスト低減に成功して
おり、さらに改善の余地がある。又電極の消耗も
可及的少量に抑えることができ、電極コストが高
騰することもない。
[Effects of the Invention] The present invention is configured as described above, and it is possible to reduce electric power cost and shorten melting time and refining time while taking advantage of the features of the electric furnace steel manufacturing method. In particular, we have succeeded in reducing electricity costs by up to 20%, and there is still room for further improvement. Further, consumption of the electrodes can be suppressed to the minimum possible level, and the cost of the electrodes does not rise.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法の実施態様を示す説明図、
第2図は従来方法を示すフロー説明図である。 1……電気炉、2……予燃焼器、3……酸素吹
込みランス、4……電極。
FIG. 1 is an explanatory diagram showing an embodiment of the method of the present invention,
FIG. 2 is a flow explanatory diagram showing a conventional method. 1... Electric furnace, 2... Pre-combustor, 3... Oxygen injection lance, 4... Electrode.

Claims (1)

【特許請求の範囲】[Claims] 1 電気炉を用いて鉄系材料の溶解・精錬を行な
うに当たり、溶解期には微粉炭を空気比(微粉炭
に対する空気比率)0.75〜1.0で燃焼させて得た
還元性ガスを吹込み、酸化期には微粉炭を空気比
1.0〜1.2で燃焼させて得た酸化性ガスを吹込んで
操業を行なうことを特徴とする電気炉製鋼法。
1. When melting and refining iron-based materials using an electric furnace, during the melting period, reducing gas obtained by burning pulverized coal at an air ratio (air ratio to pulverized coal) of 0.75 to 1.0 is injected to oxidize the material. During the period, pulverized coal is mixed with air.
An electric furnace steelmaking method characterized by operating by injecting oxidizing gas obtained by combustion at a temperature of 1.0 to 1.2.
JP61216737A 1986-09-12 1986-09-12 Steel making method in electric furnace Granted JPS6372814A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61216737A JPS6372814A (en) 1986-09-12 1986-09-12 Steel making method in electric furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61216737A JPS6372814A (en) 1986-09-12 1986-09-12 Steel making method in electric furnace

Publications (2)

Publication Number Publication Date
JPS6372814A JPS6372814A (en) 1988-04-02
JPH0137448B2 true JPH0137448B2 (en) 1989-08-07

Family

ID=16693140

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61216737A Granted JPS6372814A (en) 1986-09-12 1986-09-12 Steel making method in electric furnace

Country Status (1)

Country Link
JP (1) JPS6372814A (en)

Also Published As

Publication number Publication date
JPS6372814A (en) 1988-04-02

Similar Documents

Publication Publication Date Title
JP5552754B2 (en) Arc furnace operation method
JPWO2015012354A1 (en) Exhaust gas treatment method and exhaust gas treatment equipment
JP5042308B2 (en) Electric arc furnace steelmaking using coconut shell charcoal
JP5236926B2 (en) Manufacturing method of molten steel
CN110423858A (en) A kind of cost-efficiently electric furnace smelting method
JPH0137448B2 (en)
JP7142154B2 (en) Method for refining low-nitrogen steel using electric furnace
JPH0255484B2 (en)
JPH1121607A (en) Operation of arc furnace
JPH0120208B2 (en)
JP2000008115A (en) Melting of cold iron source
JPH08157929A (en) Arc furnace for steelmaking and its operation
US2786748A (en) Method of melting iron and steel
KR101388063B1 (en) Method for foaming slag in electric furnace
JPH0770624A (en) Method for melting cold iron source
RU1786092C (en) Process for steelmaking in blind bottom converter
JP2022143183A (en) Molten iron dephosphorization method
SU969744A1 (en) Method for smelting steel
JPS6342351A (en) Manufacture of chromium-containing molten iron
CN117280048A (en) Electric furnace and steel making method
JP2001262216A (en) Method for melting iron scrap
Yuasa How to Achieve Low kWh Operation in the EAF, Including Scrap Preheating--Present State of Energy Saving Operations in EAF Steelmaking in Japan
JPS63100119A (en) Scrap melting method
Snitko et al. Rational Steelmaking Practice in High Power 100 t Electric Furnaces
JPH08283818A (en) Production of low sulfur and high carbon molten iron from scrap