JPH0135790B2 - - Google Patents

Info

Publication number
JPH0135790B2
JPH0135790B2 JP56006667A JP666781A JPH0135790B2 JP H0135790 B2 JPH0135790 B2 JP H0135790B2 JP 56006667 A JP56006667 A JP 56006667A JP 666781 A JP666781 A JP 666781A JP H0135790 B2 JPH0135790 B2 JP H0135790B2
Authority
JP
Japan
Prior art keywords
calcium silicate
water
dimethylpolysiloxane
emulsion
aqueous slurry
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56006667A
Other languages
Japanese (ja)
Other versions
JPS57123851A (en
Inventor
Takeshi Fushiki
Yasuo Oguri
Tooru Tagawa
Mamoru Kaneko
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kasei Corp
Original Assignee
Mitsubishi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kasei Corp filed Critical Mitsubishi Kasei Corp
Priority to JP666781A priority Critical patent/JPS57123851A/en
Priority to PCT/JP1981/000416 priority patent/WO1982002546A1/en
Priority to AU79374/82A priority patent/AU7937482A/en
Publication of JPS57123851A publication Critical patent/JPS57123851A/en
Publication of JPH0135790B2 publication Critical patent/JPH0135790B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B24/00Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
    • C04B24/40Compounds containing silicon, titanium or zirconium or other organo-metallic compounds; Organo-clays; Organo-inorganic complexes
    • C04B24/42Organo-silicon compounds

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、優れた撥水性を有する珪酸カルシウ
ム成形体の製造法に関するものである。詳しく
は、嵩密度が低く、耐火性、耐熱性、機械的強度
及び寸法安定性が良好で、且つ、内部迄均一に撥
水化されており、耐火被覆材、耐火断熱材、或い
は、保温・保冷材として好適な珪酸カルシウム成
形体の製造法に関するものである。 一般に、耐火被覆材、耐火断熱材、保温・保冷
材として用いられる珪酸カルシウム成形体は熱伝
導率が低いことが要求され、近年、低嵩密度で高
強度の製品が生産される様になつた。 しかしながら、製品の軽量化は本質的な空隙率
の増大、即ち、潜在的な吸水量の増大をもたら
す。そのため、一旦吸水すれば熱伝導率の著しい
上昇が起つて、断熱材、保温・保冷材としての機
能を低下させるという欠点があつた。 このため、撥水性を有する珪酸カルシウム成形
体を得る試みが種々なされている。例えば、アル
カリメチルシリコネートを含有する撥水剤を珪酸
カルシウム成形体の表面に刷毛塗りし、次いで、
乾燥する方法が知られている。 しかしながら、この様な従来法を、特に低嵩密
度の珪酸カルシウム成形体に適用しても、未だ表
面撥水性は十分とはいえず、また、施工現場にお
いて寸法合せ等のために実施される切削、破断等
により新たに生じた面に対しては改めてその面に
撥水剤を塗布し、乾燥しなければならないので施
工手間がかかる等著しく不便であつた。 本発明者等は、この点につき鋭意検討した結
果、珪酸カルシウム水和物を含む水性スラリーに
特定のエマルシヨンを添加混合することによつて
所期の目的が達成されることを見い出し、本発明
を完成するに到つた。 すなわち、本発明の要旨は、水中に分散させた
石灰質原料と珪酸質原料とを加熱下反応させて得
られる珪酸カルシウム水和物を含む水性スラリー
に、アニオン系界面活性剤で乳化して得られるジ
メチルポリシロキサン及び/またはその誘導体の
エマルシヨンを添加混合して脱水成形した後、乾
燥または水蒸気養生後乾燥することを特徴とする
撥水性珪酸カルシウム成形体の製造法に存する。 以下本発明を詳細に説明する。 本発明で使用される珪酸カルシウム水和物スラ
リーは、公知の方法に従つて得られたものが使用
出来る。即ち、水中に分散させた珪酸原料および
石灰原料を加熱下反応させることにより得られた
珪酸カルシウム水和物、好ましくは、沈降体積が
15cm3/g以上のトバモライトグループの化合物か
ら成る珪酸カルシウム水和物を含む水性スラリー
が使用できる。 珪酸原料としては珪藻土、珪石等の天然品ある
いはシリコンダスト、湿式燐酸製造プロセスで副
生する珪弗化水素酸と水酸化アルミニウムとを反
応させて得られるシリカ(以下単に湿式燐酸副生
シリカという)等の工業副産物が挙げられる。こ
れらの珪酸原料は非晶質でも結晶質でもよいが、
珪藻土、湿式燐酸副生シリカ、シリコンダクト等
の非晶質のものの方が沈降体積15cm3/g以上の珪
酸カルシウム水和物を製造し易いので好ましい。 石灰原料としては生石灰、消石灰、カーバイド
滓等の従来公知のものを使用することができる。 珪酸原料と石灰原料の配合モル比(CaO/
SiO2)は通常0.7〜1.2の範囲から選ばれる。そし
てこれら両原料は固形原料分に対して15重量倍以
上の水に分散され、常法に従い80〜230℃、30分
〜10時間水熱反応すれば、珪酸カルシウム水和物
を含有する水性スラリーが得られる。 珪酸カルシウム水和物は一般にテーラー(H.
F.W.Taylor)著「ザケミストリーオブセメント
(The Chemistry of Cements)」第1巻第182頁
表に示す分類に従つて整理されるが、本発明に
おいては、トバモライトゲル、C−S−H()、
C−S−H()及び結晶性トバモライトから選
ばれるトバモライトグループの化合物、或いはゾ
ノトライトのいずれであつてもよい。 本発明において水性スラリー中の珪酸カルシウ
ム水和物は、沈降体積が15cm3/g以上であること
が好ましい。 ここで沈降体積とは次式()によつて算出さ
れる値である。 沈降体積=V/W ……() 式()においてWは原料(石灰原料+珪酸原
料)の総重量であり、Vは反応後得られた水性ス
ラリーを24時間静置後に沈降した固形分が占める
体積である。実際には通常次のようにして求め
る。まず反応後得られた総重量Wogの水性スラ
リーからW1gをメスシリンダーに採取し、これ
を24時間静置し、沈降した固形分が占める体積
V1cm3を測定し、次式()より算出する。 沈降体積=V1/W1×W/W0 ……() なお、Wは式()と同義で原料の総重量を示
す。 沈降体積を15cm3/g以上にする方法としては、
反応を撹拌下、130℃以上、とくに150〜230℃、
最適には160〜210℃で実施する方法が好適であ
る。その際、反応系は液状に保持する必要があ
り、従つて反応は加圧下で実施される。 かくして得られた水性スラリーに、アニオン系
界面活性剤で乳化したジメチルポリシロキサン及
び/またはその誘導体のエマルシヨンを添加混合
する。 ジメチルポリシロキサン及びその誘導体として
は、通常、25℃における粘土が0.5〜1010センチ
ストークス、好ましくは、102〜108センチストー
クスのものが使用される。 具体的には、SH−200(商品名、東レシリコー
ン(株)製、ジメチルポリシロキサン)、KF−54及び
KF−99(以上商品名、信越化学工業(株)製、メ
チルフエニルポリシロキサン及びメチルハイドロ
ジエンポリシロキサン)、SF−8418(商品名、東
レシリコーン(株)製、メチルカルボキシポリシロキ
サン)、両末端にOH基を有する変性ジメチルポ
リシロキサン、アミノメチルポリシロキサン等が
挙げられる。 アニオン系界面活性剤としては、式−COOM
で示されるカルボン酸塩、式−SO3Mで示される
スルホン酸塩、式−OSO3Mで示される硫酸エス
テル塩及び式
The present invention relates to a method for producing a calcium silicate molded body having excellent water repellency. Specifically, it has a low bulk density, good fire resistance, heat resistance, mechanical strength, and dimensional stability, and is uniformly water-repellent to the inside, making it suitable for fire-resistant coatings, fire-resistant insulation materials, or heat retention. The present invention relates to a method for producing a calcium silicate molded body suitable as a cold insulating material. In general, calcium silicate molded bodies used as fireproof coating materials, fireproof insulation materials, and heat/cold insulation materials are required to have low thermal conductivity, and in recent years, products with low bulk density and high strength have been produced. . However, reducing the weight of the product inherently increases the porosity and thus increases the potential water absorption. Therefore, once water is absorbed, there is a significant increase in thermal conductivity, which has the disadvantage of reducing its function as a heat insulating material and a heat/cold insulating material. For this reason, various attempts have been made to obtain water-repellent calcium silicate molded bodies. For example, a water repellent containing alkali methyl siliconate is brushed onto the surface of a calcium silicate molded body, and then
There are known drying methods. However, even when such conventional methods are applied to calcium silicate molded bodies with a particularly low bulk density, the surface water repellency is still not sufficient, and the cutting process performed at the construction site for dimension matching, etc. However, if a new surface is created due to a break or the like, the water repellent agent must be applied to that surface again and dried, which is extremely inconvenient and time consuming. As a result of intensive studies on this point, the present inventors discovered that the intended purpose could be achieved by adding and mixing a specific emulsion to an aqueous slurry containing calcium silicate hydrate, and developed the present invention. It has come to completion. That is, the gist of the present invention is to emulsify an aqueous slurry containing calcium silicate hydrate obtained by reacting a calcareous raw material and a silicate raw material dispersed in water under heating with an anionic surfactant. The present invention relates to a method for producing a water-repellent calcium silicate molded article, which comprises adding and mixing an emulsion of dimethylpolysiloxane and/or its derivatives, dehydration molding, drying or steam curing, and then drying. The present invention will be explained in detail below. As the calcium silicate hydrate slurry used in the present invention, one obtained according to a known method can be used. That is, a calcium silicate hydrate obtained by reacting a silicic acid raw material and a lime raw material dispersed in water under heating, preferably with a sedimentation volume of
An aqueous slurry containing 15 cm 3 /g or more of calcium silicate hydrate consisting of a compound of the tobermorite group can be used. Silicic acid raw materials include natural products such as diatomaceous earth and silica stone, silicon dust, and silica obtained by reacting hydrosilicic acid, a by-product of the wet phosphoric acid manufacturing process, with aluminum hydroxide (hereinafter simply referred to as wet phosphoric acid by-product silica). Industrial by-products such as These silicic acid raw materials may be amorphous or crystalline, but
Amorphous materials such as diatomaceous earth, wet phosphoric acid by-product silica, and silicone ducts are preferred because it is easier to produce calcium silicate hydrate with a sedimentation volume of 15 cm 3 /g or more. As the lime raw material, conventionally known materials such as quicklime, slaked lime, and carbide slag can be used. Mixing molar ratio of silicic acid raw material and lime raw material (CaO/
SiO 2 ) is usually selected from the range of 0.7 to 1.2. When these two raw materials are dispersed in water at least 15 times the weight of the solid raw materials and subjected to a hydrothermal reaction at 80 to 230°C for 30 minutes to 10 hours according to a conventional method, an aqueous slurry containing calcium silicate hydrate is obtained. is obtained. Calcium silicate hydrate is generally produced by Taylor (H.
FWTaylor) "The Chemistry of Cements" Vol. 1, page 182. In the present invention, tobermorite gel, C-S-H (),
It may be a tobermorite group compound selected from C-S-H() and crystalline tobermorite, or xonotrite. In the present invention, the calcium silicate hydrate in the aqueous slurry preferably has a sedimentation volume of 15 cm 3 /g or more. Here, the sedimentation volume is a value calculated by the following equation (). Sedimentation volume = V/W... () In formula (), W is the total weight of the raw materials (lime raw material + silicic acid raw material), and V is the solid content that settled after leaving the aqueous slurry obtained after the reaction for 24 hours. It is the volume it occupies. In practice, it is usually determined as follows. First, from the aqueous slurry with a total weight of Wog obtained after the reaction, 1 g of W was collected into a graduated cylinder, and this was left to stand for 24 hours to calculate the volume occupied by the settled solids.
Measure V 1 cm 3 and calculate from the following formula (). Sedimentation volume=V 1 /W 1 ×W/W 0 () Note that W has the same meaning as in formula () and indicates the total weight of the raw materials. The method of increasing the sedimentation volume to 15 cm 3 /g or more is as follows:
The reaction is carried out under stirring at 130°C or higher, especially between 150 and 230°C.
Optimally, a method carried out at 160 to 210°C is suitable. In this case, the reaction system must be kept in a liquid state, and therefore the reaction is carried out under pressure. An emulsion of dimethylpolysiloxane and/or its derivative emulsified with an anionic surfactant is added and mixed to the aqueous slurry thus obtained. As the dimethylpolysiloxane and its derivatives, those having a clay content at 25° C. of 0.5 to 10 10 centistokes, preferably 10 2 to 10 8 centistokes are used. Specifically, SH-200 (trade name, manufactured by Toray Silicone Co., Ltd., dimethylpolysiloxane), KF-54 and
KF-99 (trade name, manufactured by Shin-Etsu Chemical Co., Ltd., methyl phenyl polysiloxane and methyl hydrodiene polysiloxane), SF-8418 (trade name, manufactured by Toray Silicone Co., Ltd., methyl carboxy polysiloxane), both Examples include modified dimethylpolysiloxane and aminomethylpolysiloxane having an OH group at the end. As an anionic surfactant, the formula −COOM
Carboxylate salts of the formula -SO 3 M, sulfonate salts of the formula -OSO 3 M and sulfonate salts of the formula -OSO 3 M

【式】または[expression] or

【式】で 示されるリン酸エステル塩から任意に選ばれたア
ニオン性付与基を有するものが使用される。な
お、式中、MはK、Na、NH4またはトリエタノ
ールアミンを表わす。 具体的には、例えば、デイプロジンK−25(商
品名、東邦化学工業(株)製、デヒドロアビエチン酸
カリウム)、ペレツクスOTP、ネオペレツクスF
−25、ペレツクスNB、デモールNL、レベノー
ルWX、レベノールWZ、エレクトロストリツパ
ーK及びデモールEP(以上商品品、花王アトラス
(株)製、ジアルキルスルホコハク酸ナトリウム、ド
デシルベンゼンスルホン酸ナトリウム、アルキル
ナフタレンスルホン酸ナトリウム、ナフタレンス
ルホン酸ナトリウムホルマリン縮合物、ポリオキ
シエチレンアルキルエーテル硫酸ナトリウム、ポ
リオキシエチレンアルキルフエニルエーテル硫酸
ナトリウム、ポリオキシエチレンジアルキルエー
テルリン酸カリウム及びポリアクリル酸ナトリウ
ム)、NIKKOL SMD−10(商品名、日光ケミカ
ルズ(株)製、スチレン−マレイン酸共重合体のナト
リウム塩)等が挙げられる。 本発明のエマルシヨンは、上記ジメチルポリシ
ロキサン又はその誘導体100重量部に対し、アニ
オン系界面活性剤0.1〜30重量部、好ましくは、
1〜15重量部を添加混合し、通常の方法に従い、
ホモミキサー、ホモゲナイザー、コロイドミル、
超音波乳化機等の乳化機を用いて乳化することに
よつて容易に得ることができる。 また、本発明のエマルシヨンは、
{(CH32SiO}3、{(CH32SiO}4等の環状シロキサ
ンモノマーをドデシルベンゼンスルホン酸等の酸
性触媒の共存下、上記アニオン系界面活性剤によ
り乳化重合することによつても得ることができ
る。 本発明においては、ジメチルポリシロキサン又
はその誘導体のエマルシヨンとして市販されてい
るSH−490、SM−8701及びSM−7060(以上商品
名、東レシリコーン(株)製、いずれにもジメチルポ
リシロキサンのアニオンエマルシヨン)、SM−
8706(商品名、東レシリコーン(株)製、ジメチルポ
リシロキサン両未端OH基変性アニオンエマルシ
ヨン)等も有利に使用できる。 本発明のエマルシヨンの水性スラリーに対する
添加量は得られる成形体の撥水性を左右するが、
添加量があまり多過ぎるとエマルシヨンに含有さ
れる有機分(炭化水素基)のために、防火性・耐
火性、耐熱性等が低下するので、通常、成形品重
量当りエマルシヨン中の固形分(不揮発分)換算
で20重量%以下、好ましくは、1〜15重量%含有
するように添加する。 かくして得られた水性スラリーとエマルシヨン
との混合物は常法に従つて補強繊維を添加した
後、加圧脱水成形される。勿論、補強繊維はスラ
リー製造前に予め添加しておいてもよい。その際
の温度および圧力は通常30〜80℃および1〜200
Kg/cm2Gの範囲であり、成形体の嵩密度の調整は
加圧成形機のピストンストロークの調整により行
なわれる。補強繊維としては周知の種々のものが
いずれも使用でき、例えば石綿、岩綿、ガラス繊
維、パルプ等が使用される。普通、最終成形品中
に0.5〜10重量%含有するように添加される。 次いで得られた成形体を常法に従つて加圧下で
水蒸気養生、いわゆるオートクレーブ養生する。
この水蒸気養生により珪酸カルシウム水和物を、
トバモライトゲル、C−S−H()またはC−
S−H()の場合は結晶性トバモライトまたは
ゾノトライトに、結晶性トバモライトの場合はゾ
ノトライトにそれぞれ転移させる。この水蒸気養
生による結晶の転移により嵩密度が低く機械的強
度の優れた成形体を得ることができる。水蒸気圧
は一般に高い程反応時間を短縮できるが、通常は
5〜50Kg/cm2Gの範囲である。最終成形品の結晶
としてゾノトライトを所望する場合には12〜40
Kg/cm3G、結晶性トバモライトを所望する場合に
は6〜30Kg/cm3G水蒸気が好適である。このよう
な条件において前記した転移は普通容易に行なわ
れる。転移が所望するように行なわれない場合、
このような場合は極めて稀であるが、例えばゾノ
トライトを所望するのに結晶性トバモライトが得
られる場合は水蒸気圧を上げるか水蒸気養生の時
間を延長すればよいし、また結晶性トバモライト
を所望するのにゾノトライトが得られる場合は逆
に水蒸気圧を下げるか水蒸気養生の時間を短縮す
ればよい。 高耐熱性の要求される用途においてはゾノトラ
イトに転移させることが好ましい。次いで、乾燥
処理すれば、所望の珪酸カルシウム成形体を得る
ことができる。 ゾノトライトを含む水性スラリーと前記エマル
シヨンとの混合物を脱水成形して得られる成形体
の場合は、前記水蒸気養生を行なうことなく、直
ちに乾燥処理を行なえばよい。 かくして嵩密度が低く、耐火性、耐熱性、機械
的強度及び寸法安定性が良好で、且つ、内部まで
均一に撥水化された珪酸カルシウム成形体が得ら
れる。 次に本発明を実施例により更に具体的に説明す
る。なお、実施例中、「部」は「重量部」を示す。
また、自由破断面中芯部の撥水性(接触角)は次
の様にして測定した。 即ち、成形体の破断面を水平になるように設置
し、上方より静かに約0.05〜0.1mlの水滴を滴下
したときの成形体破断面と水滴外周端部の接線が
なす角度を測定した。 実施例1〜13および比較例1〜5 生石灰(CaO98%)43.2部に温水を加えて消化
し、これに珪石(SiO297%、Al2O31.2%、
Fe2O30.09%)46.8部を添加した後、総水量が固
形分に対し30倍になるように水を加えた。この様
にして得られた懸濁液をオートクレーブ中で15
Kg/cm3G、200℃の条件下で2.5時間撹拌しながら
反応させたところ沈降体積23cm3/gのトバモライ
トグループの化合物から成る水性スラリーが得ら
れた。この水性スラリーに、表1に示したジメチ
ルポリシロキサン又はその誘導体90部をアニオン
系界面活性剤10部にてホモミキサー中で乳化して
得られたエマルシヨンを不揮発分換算で成形体重
量の10重量%となる様に耐アルカリガラス繊維3
部とともに添加混合し、成形品嵩密度が0.10g/
cm3になる様に液量を調整し加圧脱水成形した。 得られた成形体をオートクレーブに仕込み、水
蒸気圧10Kg/cm2G、180℃の条件で7時間水蒸気
養生した後乾燥し、夫々厚さ30m/mの成形体を
得た。 これら成形体の嵩密度は0.10±0.02g/cm3、曲
げ強さは5±1.5Kg/cm2の範囲内にあり、実施例
1〜13で得られた成形体の自由破断面中芯部の撥
水性は表1に示す如く優れていた。これに対し、
比較例1〜5で得られた成形体は撥水性を示さ
ず、水滴を吸収した。
A phosphoric acid ester salt having an anionicity-imparting group arbitrarily selected from the phosphoric acid ester salts represented by the formula is used. In the formula, M represents K, Na, NH 4 or triethanolamine. Specifically, for example, Diprozin K-25 (trade name, manufactured by Toho Chemical Industry Co., Ltd., potassium dehydroabietate), Perex OTP, Neo Perex F
-25, Perex NB, Demol NL, Levenol WX, Levenol WZ, Electro Stripper K and Demol EP (the above products, Kao Atlas
Co., Ltd., sodium dialkyl sulfosuccinate, sodium dodecylbenzene sulfonate, sodium alkylnaphthalene sulfonate, sodium naphthalene sulfonate formalin condensate, sodium polyoxyethylene alkyl ether sulfate, sodium polyoxyethylene alkyl phenyl ether sulfate, polyoxy Potassium ethylene dialkyl ether phosphate and sodium polyacrylate), NIKKOL SMD-10 (trade name, manufactured by Nikko Chemicals Co., Ltd., sodium salt of styrene-maleic acid copolymer), and the like. The emulsion of the present invention contains 0.1 to 30 parts by weight of anionic surfactant, preferably 0.1 to 30 parts by weight, based on 100 parts by weight of the dimethylpolysiloxane or its derivative.
Add and mix 1 to 15 parts by weight and follow the usual method.
homomixer, homogenizer, colloid mill,
It can be easily obtained by emulsifying using an emulsifying machine such as an ultrasonic emulsifying machine. Furthermore, the emulsion of the present invention is
By emulsion polymerizing cyclic siloxane monomers such as {(CH 3 ) 2 SiO} 3 and {(CH 3 ) 2 SiO} 4 with the above anionic surfactant in the coexistence of an acidic catalyst such as dodecylbenzenesulfonic acid. You can even get it. In the present invention, SH-490, SM-8701 and SM-7060, which are commercially available as emulsions of dimethylpolysiloxane or its derivatives (all of which are manufactured by Toray Silicone Co., Ltd., are anionic emulsions of dimethylpolysiloxane). Roussillon), SM−
8706 (trade name, manufactured by Toray Silicone Co., Ltd., dimethylpolysiloxane double-terminated OH group-modified anion emulsion) and the like can also be advantageously used. The amount of the emulsion of the present invention added to the aqueous slurry affects the water repellency of the resulting molded product, but
If the amount added is too large, the organic content (hydrocarbon groups) contained in the emulsion will reduce the fire retardancy, fire resistance, heat resistance, etc. It is added in an amount of 20% by weight or less, preferably 1 to 15% by weight. The mixture of the aqueous slurry and emulsion thus obtained is pressurized and dehydrated after adding reinforcing fibers in a conventional manner. Of course, the reinforcing fibers may be added in advance before producing the slurry. The temperature and pressure at that time are usually 30 to 80℃ and 1 to 200℃.
Kg/cm 2 G, and the bulk density of the molded product is adjusted by adjusting the piston stroke of the pressure molding machine. Any of a variety of well-known reinforcing fibers can be used, such as asbestos, rock wool, glass fiber, pulp, etc. It is usually added to the final molded product in an amount of 0.5 to 10% by weight. Next, the obtained molded body is subjected to steam curing under pressure, so-called autoclave curing, according to a conventional method.
Through this steam curing, calcium silicate hydrate,
Tobermorite gel, C-S-H () or C-
In the case of S-H(), the transition is made to crystalline tobermorite or xonotlite, and in the case of crystalline tobermorite, it is transferred to xonotrite. The crystal transformation caused by this steam curing makes it possible to obtain a molded article with low bulk density and excellent mechanical strength. Generally, the higher the water vapor pressure, the shorter the reaction time, but it is usually in the range of 5 to 50 kg/cm 2 G. 12 to 40 if xonotlite is desired as crystals in the final molded product
Kg/cm 3 G, and if crystalline tobermorite is desired, 6 to 30 Kg/cm 3 G water vapor is suitable. Under such conditions, the above-mentioned transfer is usually easily carried out. If the transfer does not occur as desired,
Such cases are extremely rare, but if, for example, you want xonotlite but crystalline tobermorite is obtained, you can increase the steam pressure or extend the steam curing time; If xonotlite can be obtained, conversely, the steam pressure should be lowered or the steam curing time should be shortened. In applications requiring high heat resistance, it is preferable to transform it into xonotlite. Then, by drying, a desired calcium silicate molded body can be obtained. In the case of a molded article obtained by dehydrating and molding a mixture of an aqueous slurry containing xonotlite and the emulsion, drying treatment may be performed immediately without performing the steam curing. In this way, a calcium silicate molded body having a low bulk density, good fire resistance, heat resistance, mechanical strength, and dimensional stability, and which is uniformly water-repellent to the inside can be obtained. Next, the present invention will be explained in more detail with reference to Examples. In the examples, "parts" indicate "parts by weight."
Further, the water repellency (contact angle) of the core portion of the free fracture surface was measured as follows. That is, the molded body was placed so that the fractured surface was horizontal, and a water droplet of about 0.05 to 0.1 ml was gently dropped from above, and the angle formed by the tangent between the fractured surface of the molded body and the outer peripheral edge of the water droplet was measured. Examples 1 to 13 and Comparative Examples 1 to 5 43.2 parts of quicklime (CaO 98%) was digested by adding warm water, and silica stone (SiO 2 97%, Al 2 O 3 1.2%,
After adding 46.8 parts of Fe 2 O 3 (0.09%), water was added so that the total amount of water was 30 times the solid content. The suspension thus obtained was placed in an autoclave for 15
Kg/cm 3 G and 200° C. for 2.5 hours with stirring, an aqueous slurry consisting of tobermorite group compounds with a sedimentation volume of 23 cm 3 /g was obtained. To this aqueous slurry, 90 parts of the dimethylpolysiloxane or its derivative shown in Table 1 was emulsified with 10 parts of an anionic surfactant in a homomixer, and an emulsion obtained was added to the emulsion, which was 10 parts by weight of the molded weight in terms of non-volatile content. Alkali-resistant glass fiber 3%
The bulk density of the molded product is 0.10g/
The liquid volume was adjusted so that the volume was 3 cm 3 and pressure dehydration molding was performed. The obtained molded bodies were placed in an autoclave, steam-cured for 7 hours at a steam pressure of 10 Kg/cm 2 G and 180° C., and then dried to obtain molded bodies each having a thickness of 30 m/m. The bulk density of these molded bodies was within the range of 0.10±0.02 g/cm 3 and the bending strength was within the range of 5 ± 1.5 Kg/cm 2 . The water repellency was excellent as shown in Table 1. On the other hand,
The molded bodies obtained in Comparative Examples 1 to 5 did not exhibit water repellency and absorbed water droplets.

【表】【table】

【表】 実施例14〜17および比較例6〜7 実施例1において、表2に示したジメチルポリ
シロキサン又はその誘導体のエマルシヨンを使用
するほかは全く同様にして厚さ30m/m、嵩密度
0.10±0.02g/cm3、曲げ強度5±1.5Kg/cm2の成形
体を得た。そのうち、実施例14〜17で得られた成
形体の自由破断面中芯部の撥水性は表2に示す如
く優れていた。これに対し、比較例6および7で
得られた成形体は撥水性を示さず、水滴を瞬時に
吸収した。
[Table] Examples 14 to 17 and Comparative Examples 6 to 7 The same procedure as in Example 1 was carried out except that the emulsion of dimethylpolysiloxane or its derivative shown in Table 2 was used, and the thickness was 30 m/m and the bulk density was 30 m/m.
A molded article having a weight of 0.10±0.02 g/cm 3 and a bending strength of 5±1.5 Kg/cm 2 was obtained. Among them, the water repellency of the core portion of the free fracture surface of the molded bodies obtained in Examples 14 to 17 was excellent as shown in Table 2. In contrast, the molded bodies obtained in Comparative Examples 6 and 7 did not exhibit water repellency and instantly absorbed water droplets.

【表】【table】

Claims (1)

【特許請求の範囲】[Claims] 1 水中に分散させた石灰質原料と珪酸質原料と
を加熱下反応させて得られる珪酸カルシウム水和
物を含む水性スラリーに、アニオン系界面活性剤
で乳化して得られるジメチルポリシロキサン及
び/またはその誘導体のエマルシヨンを添加混合
して脱水成形した後、乾燥または水蒸気養生後乾
燥することを特徴とする撥水性珪酸カルシウム成
形体の製造法。
1 Dimethylpolysiloxane and/or its dimethylpolysiloxane obtained by emulsifying with an anionic surfactant into an aqueous slurry containing calcium silicate hydrate obtained by reacting a calcareous raw material and a silicic raw material dispersed in water under heating. 1. A method for producing a water-repellent calcium silicate molded article, which comprises adding and mixing an emulsion of a derivative, dehydrating it, molding it, drying it or drying it after steam curing.
JP666781A 1981-01-20 1981-01-20 Manufacture of water-repellent calcium silicate formed body Granted JPS57123851A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP666781A JPS57123851A (en) 1981-01-20 1981-01-20 Manufacture of water-repellent calcium silicate formed body
PCT/JP1981/000416 WO1982002546A1 (en) 1981-01-20 1981-12-25 Process for producing water-repelling calcium silicate molding
AU79374/82A AU7937482A (en) 1981-01-20 1981-12-25 Process for producing water-repelling calcium silicate molding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP666781A JPS57123851A (en) 1981-01-20 1981-01-20 Manufacture of water-repellent calcium silicate formed body

Publications (2)

Publication Number Publication Date
JPS57123851A JPS57123851A (en) 1982-08-02
JPH0135790B2 true JPH0135790B2 (en) 1989-07-27

Family

ID=11644719

Family Applications (1)

Application Number Title Priority Date Filing Date
JP666781A Granted JPS57123851A (en) 1981-01-20 1981-01-20 Manufacture of water-repellent calcium silicate formed body

Country Status (2)

Country Link
JP (1) JPS57123851A (en)
WO (1) WO1982002546A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS582252A (en) * 1981-06-25 1983-01-07 日本インシュレーション株式会社 Manufacture of water-repellent calcium silicate formed body
JPS5992962A (en) * 1982-11-17 1984-05-29 日本インシュレーション株式会社 Water-repellent calcium silicate formed body
JPS62252357A (en) * 1986-04-23 1987-11-04 三菱化学株式会社 Manufacture of water-repellant calcium silicate formed body
JPH02311348A (en) * 1989-05-26 1990-12-26 Tokuyama Soda Co Ltd Production of calcium silicate formed body
JPH09194245A (en) * 1996-01-17 1997-07-29 Kubota Corp Production of water-repellent ceramic building material
JP2005022913A (en) 2003-07-01 2005-01-27 Shin Etsu Chem Co Ltd Mortar or concrete composition
JP2007091541A (en) * 2005-09-29 2007-04-12 Taiheiyo Cement Corp Admixture for cement based composition and cement based composition containing the same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4915940A (en) * 1972-06-07 1974-02-12
JPS53109252A (en) * 1977-03-04 1978-09-22 Kansai Hoon Kogyo Kk Method of producing calcium silicate heat insulating material containing no fibrous material
JPS5542272A (en) * 1978-09-21 1980-03-25 Sumitomo Metal Mining Co Manufacture of waterproofing vaporrcuring light weight foamed concrete
JPS5585452A (en) * 1978-12-22 1980-06-27 Sumitomo Metal Mining Co Manufacture of waterproofing steammcured lightweight foamed concrete
JPS55113655A (en) * 1979-02-15 1980-09-02 Siporex Int Ab Manufacture of hydrophobic vapor cured light weight foamed concrete
JPS55162467A (en) * 1979-05-30 1980-12-17 Sumitomo Metal Mining Co Manufacture of waterproofing vaporrcured lightweight foamed concrete
JPS5627465A (en) * 1979-08-09 1981-03-17 Toshiba Corp Electronic computer system output system

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1769950C3 (en) * 1968-08-10 1978-04-13 Enka Ag, 5600 Wuppertal Process for the continuous production of profiles from thermosetting synthetic resin
JPS5525452A (en) * 1978-08-11 1980-02-23 Sumitomo Chem Co Ltd Urethane resin composition

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4915940A (en) * 1972-06-07 1974-02-12
JPS53109252A (en) * 1977-03-04 1978-09-22 Kansai Hoon Kogyo Kk Method of producing calcium silicate heat insulating material containing no fibrous material
JPS5542272A (en) * 1978-09-21 1980-03-25 Sumitomo Metal Mining Co Manufacture of waterproofing vaporrcuring light weight foamed concrete
JPS5585452A (en) * 1978-12-22 1980-06-27 Sumitomo Metal Mining Co Manufacture of waterproofing steammcured lightweight foamed concrete
JPS55113655A (en) * 1979-02-15 1980-09-02 Siporex Int Ab Manufacture of hydrophobic vapor cured light weight foamed concrete
JPS55162467A (en) * 1979-05-30 1980-12-17 Sumitomo Metal Mining Co Manufacture of waterproofing vaporrcured lightweight foamed concrete
JPS5627465A (en) * 1979-08-09 1981-03-17 Toshiba Corp Electronic computer system output system

Also Published As

Publication number Publication date
JPS57123851A (en) 1982-08-02
WO1982002546A1 (en) 1982-08-05

Similar Documents

Publication Publication Date Title
US4775505A (en) Process for preparing a water repellent calcium silicate shaped product
US3501324A (en) Manufacturing aqueous slurry of hydrous calcium silicate and products thereof
AU2009249672B2 (en) Durable magnesium oxychloride cement and process therefor
WO2012023825A2 (en) Paste composition for artificial marble and method of manufacturing artificial marble using the same
EP0033522B1 (en) Process for preparing calcium silicate shaped product
US4402892A (en) Method for making xonotlite insulation by foaming an aqueous slurry of calcareous and siliceous reactants and cellulosic and glass fibers
JPH0135790B2 (en)
JP5425326B2 (en) Molded body for heat insulating material and manufacturing method thereof
JP5925034B2 (en) Composition for heat insulating material, molded body for heat insulating material, and production method thereof
JPS5926957A (en) Manufacture of calcium silicate hydrate hardened body
CA1058828A (en) Process of producing calcium aluminate monosulfate hydrate
JP2686792B2 (en) Hydraulic inorganic composition
JPH0627021B2 (en) Method for producing water repellent calcium silicate compact
JPS6149264B2 (en)
JPH06128011A (en) Water-repellent calcium silicate molding and its production
RU2162455C1 (en) Raw mix for manufacturing foam concrete based on magnesia binder
JPH03141172A (en) Production of formed article of xonotlite-type light-weight calcium silicate hydrate
CN108689667A (en) A kind of pnenolic aldehyde foam board exterior wall external thermal insulation decorative mortar and preparation method thereof
JPH0158147B2 (en)
JPH0338226B2 (en)
SU1463727A1 (en) Composition for making heat insulation material
JPH06128012A (en) Water-repellent calcium silicate molding and its production
JP2004051379A (en) Method of manufacturing calcium silicate formed body and calcium silicate formed body
JPS6143304B2 (en)
WO1996034839A1 (en) Process for producing insulating materials and products thereof