JPH0135305B2 - - Google Patents

Info

Publication number
JPH0135305B2
JPH0135305B2 JP58228244A JP22824483A JPH0135305B2 JP H0135305 B2 JPH0135305 B2 JP H0135305B2 JP 58228244 A JP58228244 A JP 58228244A JP 22824483 A JP22824483 A JP 22824483A JP H0135305 B2 JPH0135305 B2 JP H0135305B2
Authority
JP
Japan
Prior art keywords
gate
cut out
image
target
storage means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58228244A
Other languages
Japanese (ja)
Other versions
JPS60120273A (en
Inventor
Masaari Domon
Hiroshi Higuchi
Takashi Ishigaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP58228244A priority Critical patent/JPS60120273A/en
Publication of JPS60120273A publication Critical patent/JPS60120273A/en
Publication of JPH0135305B2 publication Critical patent/JPH0135305B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S3/00Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received
    • G01S3/78Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received using electromagnetic waves other than radio waves
    • G01S3/782Systems for determining direction or deviation from predetermined direction
    • G01S3/785Systems for determining direction or deviation from predetermined direction using adjustment of orientation of directivity characteristics of a detector or detector system to give a desired condition of signal derived from that detector or detector system
    • G01S3/786Systems for determining direction or deviation from predetermined direction using adjustment of orientation of directivity characteristics of a detector or detector system to give a desired condition of signal derived from that detector or detector system the desired condition being maintained automatically
    • G01S3/7864T.V. type tracking systems
    • G01S3/7865T.V. type tracking systems using correlation of the live video image with a stored image

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Closed-Circuit Television Systems (AREA)
  • Radar Systems Or Details Thereof (AREA)

Description

【発明の詳細な説明】 この発明は、相関演算を用いて、目標位置を検
出する検出装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a detection device that detects a target position using correlation calculation.

従来のこの種装置においては、次のようなもの
があつた。
Conventional devices of this type include the following.

第1図は従来の装置の構成の一例を示す図であ
つて、1は映像信号、2はA/D変換器、3は切
換器、4,5はゲート回路、6,7はメモリ、8
は相関演算回路、9は相関係数信号、10はゲー
トシフト回路、11はゲート位置信号、12は相
関係数判定回路、13は目標位置信号である。
FIG. 1 is a diagram showing an example of the configuration of a conventional device, in which 1 is a video signal, 2 is an A/D converter, 3 is a switch, 4 and 5 are gate circuits, 6 and 7 are memories, and 8
9 is a correlation calculation circuit, 9 is a correlation coefficient signal, 10 is a gate shift circuit, 11 is a gate position signal, 12 is a correlation coefficient determination circuit, and 13 is a target position signal.

映像信号1はA/D変換器2でデジタル信号に
変換される。初期画面においては、切換器3は端
子1側に接続され、目標を囲んで手動設定された
ゲート回路4によりゲート内の画が切りだされ
て、メモリ6に格納される。
A video signal 1 is converted into a digital signal by an A/D converter 2. On the initial screen, the switch 3 is connected to the terminal 1 side, and the image within the gate is cut out by the manually set gate circuit 4 surrounding the target and stored in the memory 6.

続く画面からは、切換器3は端子2側に接続さ
れる。
From the next screen, the switch 3 is connected to the terminal 2 side.

第2図は、画面と、第1および第2のゲートと
の関係を示す図であつて、14は画面、15は第
1のゲート、16は第1のゲートで切りだされた
画、17は第2のゲート、18は第2のゲートで
切りだされる画である。
FIG. 2 is a diagram showing the relationship between the screen and the first and second gates, where 14 is the screen, 15 is the first gate, 16 is an image cut out by the first gate, and 17 is a diagram showing the relationship between the screen and the first and second gates. is the second gate, and 18 is the image cut out by the second gate.

続く画面においては、第2のゲート17の1つ
の設定位置で切りとられる画18を用いて、次の
相関係数が演算される。
In the subsequent screen, the next correlation coefficient is calculated using the image 18 cut out at one setting position of the second gate 17.

いま、第1のゲートで切りだされた画16を
{ai、j|1≦i≦m、1≦j≦n}、第2のゲー
トで切りだされる画18を{bi+k、j+e|1
≦i≦m、1≦j≦n}とする。ここで、(k、
l)は、第2のゲートの位置を表わし、例えば、
(k、l)=(0、0)は、第2のゲートが図の左
上のすみにあることを示している。
Now, the image 16 extracted by the first gate is {ai, j|1≦i≦m, 1≦j≦n}, and the image 18 extracted by the second gate is {bi+k, j+e|1
≦i≦m, 1≦j≦n}. Here, (k,
l) represents the position of the second gate, e.g.
(k,l)=(0,0) indicates that the second gate is in the upper left corner of the diagram.

このとき、次の相関係数Ck、eが相関演算回
路8で演算される。
At this time, the next correlation coefficients Ck and e are calculated by the correlation calculation circuit 8.

Ck、e=oj=1 ni=1 |bi+k、j+e−ai、j|
………(1) 1つの(k、e)においてCk、eが求められ
ると、ゲートシフト回路10は、第2のゲート位
置をl→l+1にシフトし、あるいは、第2のゲ
ート位置が画面14の右端までくれば、k→k+
1、l→0に第2のゲート位置を移動して、新た
な位置において、相関係数が同様に求められる。
Ck, e= oj=1 ni=1 |bi+k,j+e−ai,j|
......(1) When Ck and e are obtained for one (k, e), the gate shift circuit 10 shifts the second gate position from l to l+1, or shifts the second gate position to the screen When you reach the right end of 14, k→k+
The second gate position is moved from 1, l to 0, and the correlation coefficient is similarly determined at the new position.

第3図は各(k、e)位置におけるCk、eの
分布の1例を示す図で、k=k1、l=l1におい
て、画18は画16と最も良く整合し、このとき
Ck、eは算小値を示す。
FIG. 3 is a diagram showing an example of the distribution of Ck, e at each (k, e) position. At k=k 1 , l=l 1 , the image 18 matches the image 16 best, and in this case,
Ck and e indicate the arithmetic value.

Ck、eを表わす相関係数信号は相関係数判定
回路12に入力され、また同時に、(k、e)を
表わすゲート位置信号11が入力され、ここで、
Ck、eが最小となる(k、e)、が検出され、目
標位置信号13として出力される。
The correlation coefficient signal representing Ck, e is input to the correlation coefficient determination circuit 12, and at the same time, the gate position signal 11 representing (k, e) is input, where:
(k, e) at which Ck, e is the minimum is detected and output as the target position signal 13.

この目標位置信号13は、追尾したい目標の画
16と最も整合した画の位置を示す信号であるの
で、この信号を、たとえば、撮像器の光軸方向を
制御するサーボ機構に入力すれば、目標が追尾さ
れることになる。
This target position signal 13 is a signal indicating the position of the image that most closely matches the image 16 of the target to be tracked, so if this signal is inputted to, for example, a servo mechanism that controls the optical axis direction of the imager, it is possible to will be tracked.

ところで、従来のこの種装置においては、(1)式
の演算において、(n×m)回の加減算ならびに
絶対値化が必要であり、さらに、(k×e)回の
(1)式の演算が必要である。
By the way, in the conventional device of this kind, the calculation of equation (1) requires (n x m) additions and subtractions and absolute value conversion, and also (k x e) times.
It is necessary to calculate equation (1).

例えば、m=n=30、k=e=30とすると、
8.1×105回の(加算+減算+絶対値演算)が必要
となり、1回あたりのこれら演算時間が1マイク
ロ秒であつても、すべてのCk、eを求めるには
0.8秒もかかるので、実時間で目標をを追尾する
ことは著しく困難か、不可能となることがわか
る。
For example, if m=n=30, k=e=30,
8.1×10 5 times (addition + subtraction + absolute value calculation) are required, and even if the time for each calculation is 1 microsecond, in order to calculate all Ck and e,
It takes 0.8 seconds to track the target in real time, making it extremely difficult or impossible to track the target in real time.

この発明は、データ圧縮により、これらの欠点
を除去する手段を提供するものであつて、以下、
図を用いてこの発明を詳細に説明する。
The present invention provides a means to eliminate these drawbacks through data compression, and includes the following:
This invention will be explained in detail using figures.

第4図は、この発明の構成の1実施例を示す図
であつて、19,20は加算回路、21,22は
メモリであり、映像信号1をA/D変換し、初期
画面においてゲート回路4により、第1のゲート
15で画16が切りとられる過程、ならびに、続
く画面において、ゲート回路5により、第2のゲ
ート17により画18が切りとられる過程は従来
の装置と同様なので、説明を省略する。
FIG. 4 is a diagram showing one embodiment of the configuration of the present invention, in which 19 and 20 are adder circuits, 21 and 22 are memories, which A/D convert the video signal 1, and gate circuits in the initial screen. 4, the process in which the image 16 is cut out by the first gate 15, and the process in which the image 18 is cut out by the second gate 17 in the subsequent screen by the gate circuit 5 are the same as those in the conventional device, and therefore will not be explained. omitted.

第5図は、データ圧縮の方法を示す図であつ
て、ゲート回路4で切りとられる画16{ai、j
|1≦i≦m、1≦j≦n}は、加算回路19に
おいて、第5図aに示すように、次のデータ{pi
|1≦i≦m}および{qj|1≦j≦n}に圧縮
される。
FIG. 5 is a diagram showing a data compression method, in which an image 16 {ai, j
|1≦i≦m, 1≦j≦n}, the addition circuit 19 calculates the next data {pi
|1≦i≦m} and {qj|1≦j≦n}.

pioj=1 ai,j ………(2) qjni=1 ai,j ………(3) 同様に、ゲート回路5で切りとられる画18
{bi+k,j+e|1≦i≦m、1≦j≦n}は、加算回
路20において、第5図bに示すように、次のデ
ータ{ui|1≦i≦m}、および{vj|1≦j≦
n}に圧縮される。
p i = oj=1 a i,j ………(2) q j = ni=1 a i,j ………(3) Similarly, the image 18 cut out by the gate circuit 5
{b i+k,j+e |1≦i≦m, 1≦j≦n} is the next data {u i |1≦i≦m, as shown in FIG. }, and {v j |1≦j≦
n}.

ui (k,e)oj=1 bi+k,j+l ………(4) vj (k,e)ni=1 bi+k,j+l ………(5) 第6図aおよびbは各々、これらデータ圧縮さ
れたデータのメモリ21、および22への格納の
1例を示す図である。このように、データ圧縮さ
れた結果、メモリに要する容量は、従来の(i×
j)画素から、(i+j)画素に大幅に減少する
ことがわかる。
u i (k,e) = oj=1 b i+k,j+l ………(4) v j (k,e) = ni=1 b i+k,j+l …… (5) FIGS. 6a and 6b are diagrams showing an example of storing the compressed data in the memories 21 and 22, respectively. As a result of data compression, the capacity required for memory is reduced compared to the conventional (i×
It can be seen that the number of pixels decreases significantly from pixel j) to pixel (i+j).

相関演算回路8においては、これら圧縮された
データを用いて、次の演算が実行される。
In the correlation calculation circuit 8, the following calculation is executed using these compressed data.

Dk、e=ni=1 |ui−pi|+oj=1 |vj−qj| ………(6) 上式の演算で得られた相関係数信号9は、従来
の装置のように、相関係数判定回路12に入力さ
れ、Dk、eが最小となる(k、e)が検出され
て、目標位置が検出される。
Dk, e= ni=1 |u i −p i |+ oj=1 |v j −q j | ………(6) The correlation coefficient signal 9 obtained by the calculation of the above formula is As in the conventional device, the signal is input to the correlation coefficient determination circuit 12, and (k, e) for which Dk, e is the minimum is detected, and the target position is detected.

ところで、(6)式の演算の演算回路を求めると、
(m+n)×(k×e)回の(加算+減算+絶対値
演算)であり、従つて、相関演算所要時間は、従
来の装置の場合の(m+n)/mnに減少してい
ることがわかる。
By the way, when we find the arithmetic circuit for the calculation of equation (6), we get
(m+n) x (k x e) times (addition + subtraction + absolute value calculation), therefore, the time required for correlation calculation is reduced to (m + n) / mn in the case of the conventional device. Recognize.

例えば、前述の例m=n=30、k=l=30を用
いると、演算回数は5.4×104となり、演算時間
は、54ミリ秒と、従来の1/15となるので、実時間
での目標追尾性能が著しく向上することがわか
る。
For example, if we use the above example m = n = 30, k = l = 30, the number of calculations will be 5.4 × 10 4 and the calculation time will be 54 milliseconds, 1/15 of the conventional time, so in real time. It can be seen that the target tracking performance is significantly improved.

なお、(2)〜(5)式における加算演算は、画面の画
素読みだし走査と並列して実行することができる
ので、これによる演算時間の増加はほとんど無視
することができる。
Note that since the addition operations in equations (2) to (5) can be executed in parallel with the pixel reading scan of the screen, the increase in calculation time due to this can be almost ignored.

このように、この発明によれば、相関演算時間
を大幅に削減することができるので、目標の検出
速度を高め、目標の追尾性能を向上させることが
できる。
As described above, according to the present invention, the correlation calculation time can be significantly reduced, so that the target detection speed can be increased and the target tracking performance can be improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の装置の構成を示す図、第2図は
画面と第1および第2のゲートの関係を示す図、
第3図は相関係数を示す図、第4図はこの発明に
おける構成の一実施例を示す図、第5図はデータ
圧縮の方法を示す図、第6図は圧縮データのメモ
リ格納方法の1例を示す図である。 図中、4,5はゲート回路、8は相関演算回
路、10はゲートシフト回路、12は相関係数判
定回路、19,20は加算回路、21,22はメ
モリである。なお、図中、同一あるいは相当部分
には、同一符号が付して示してある。
FIG. 1 is a diagram showing the configuration of a conventional device, FIG. 2 is a diagram showing the relationship between the screen and the first and second gates,
FIG. 3 is a diagram showing correlation coefficients, FIG. 4 is a diagram showing an embodiment of the configuration according to the present invention, FIG. 5 is a diagram showing a data compression method, and FIG. 6 is a diagram showing a method for storing compressed data in memory. It is a figure showing one example. In the figure, 4 and 5 are gate circuits, 8 is a correlation calculation circuit, 10 is a gate shift circuit, 12 is a correlation coefficient determination circuit, 19 and 20 are adder circuits, and 21 and 22 are memories. In addition, in the drawings, the same or corresponding parts are denoted by the same reference numerals.

Claims (1)

【特許請求の範囲】[Claims] 1 目標をかこむ第1のゲートで切りとられた画
を初期画面において記憶し、続く画面において、
前記第1のゲートで切りとられた画と最も整合す
る画の位置を求めることにより、目標位置を検出
する目標位置検出装置において、第1のゲートで
切りとられた画の画素を水平、および垂直方向に
加算し、両加算結果を、定められた順序で記憶す
る第1の記憶手段と、続く画面において、第1の
ゲートと同寸法の第2のゲートを生成する手段
と、前記第2のゲートで切りとられた画の画素を
水平、および垂直方向に加算し、両加算結果を、
前記定められた順序で記憶する第2の記憶手段
と、前記第1の記憶手段の内容と、前記第2の記
憶手段の内容との一致度を演算する演算手段と、
前記第2のゲート設置位置を、1画素の整数倍の
ピツチで、水平、あるいは垂直方向にシフトさせ
る手段と、前記第2のゲートの各設置位置で演算
された一致度の中から、最も一致度が高くなる、
前記第2ゲートの設置位置を検出する手段とを備
えたことを特徴とする、目標位置検出装置。
1 The image cut out by the first gate surrounding the target is memorized in the initial screen, and in the subsequent screen,
In a target position detection device that detects a target position by determining the position of an image that most closely matches the image cut out by the first gate, the pixels of the image cut out by the first gate are horizontally and a first storage means for performing addition in the vertical direction and storing both addition results in a predetermined order; means for generating a second gate having the same dimensions as the first gate in a subsequent screen; The pixels of the image cut out by the gate are added horizontally and vertically, and the results of both additions are expressed as
a second storage means for storing in the predetermined order; a calculation means for calculating the degree of coincidence between the contents of the first storage means and the contents of the second storage means;
A method for shifting the second gate installation position in the horizontal or vertical direction by a pitch that is an integral multiple of one pixel, and a means for shifting the second gate installation position in the horizontal or vertical direction, and a method that determines the best match among the coincidence degrees calculated at each installation position of the second gate. The degree becomes higher,
A target position detection device comprising: means for detecting the installation position of the second gate.
JP58228244A 1983-12-02 1983-12-02 Target position detecting apparatus Granted JPS60120273A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58228244A JPS60120273A (en) 1983-12-02 1983-12-02 Target position detecting apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58228244A JPS60120273A (en) 1983-12-02 1983-12-02 Target position detecting apparatus

Publications (2)

Publication Number Publication Date
JPS60120273A JPS60120273A (en) 1985-06-27
JPH0135305B2 true JPH0135305B2 (en) 1989-07-25

Family

ID=16873416

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58228244A Granted JPS60120273A (en) 1983-12-02 1983-12-02 Target position detecting apparatus

Country Status (1)

Country Link
JP (1) JPS60120273A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4118605A1 (en) * 1990-06-06 1991-12-19 Mitsubishi Electric Corp INTERMEDIATE VEHICLE DETECTING DEVICE FOR AUTOMATICALLY TARGETING A PRESENT VEHICLE

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2603215B2 (en) * 1985-07-04 1997-04-23 キヤノン株式会社 Image recognition method and apparatus
JPH04120413A (en) * 1990-09-10 1992-04-21 Mitsubishi Electric Corp Tracking apparatus in vehicle gap meter
JPH04157889A (en) * 1990-10-20 1992-05-29 Fujitsu Ltd Automatic adjusting method for person image pickup position
JPH0827188B2 (en) * 1990-11-22 1996-03-21 三菱電機株式会社 Inter-vehicle distance detector

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4118605A1 (en) * 1990-06-06 1991-12-19 Mitsubishi Electric Corp INTERMEDIATE VEHICLE DETECTING DEVICE FOR AUTOMATICALLY TARGETING A PRESENT VEHICLE
DE4118605C2 (en) * 1990-06-06 1995-06-14 Mitsubishi Electric Corp Inter-vehicle distance detection device for automatic target tracking of a preceding vehicle

Also Published As

Publication number Publication date
JPS60120273A (en) 1985-06-27

Similar Documents

Publication Publication Date Title
EP0181215B1 (en) Apparatus for detecting motion of television images
US4695882A (en) Movement estimation system for video signals using a recursive gradient method
US5214504A (en) Moving video image estimation system
US4783833A (en) Method of extracting an image of a moving object
US5210559A (en) Camera shake correcting device
JPH0622298A (en) Scene change detector
EP0643538A2 (en) Motion vector detecting apparatus and methods
EP0481421B1 (en) Moving vector extractor
JPH0135305B2 (en)
JP3271101B2 (en) Digital image signal processing apparatus and processing method
JPH0220988A (en) Moving vector detection system for animation encoding device
JP3175914B2 (en) Image encoding method and image encoding device
WO1999017256A3 (en) Method for determining block vectors for estimating motion
JPH0476557B2 (en)
JPH1042300A (en) Motion vector detection device
JPH0537916A (en) Image transmission equipment
JP3038935B2 (en) Motion detection device
EP0479323A2 (en) Moving vector extractor
JPH0368597B2 (en)
JPS62104387A (en) High-efficiency encoding device
JPS61126407A (en) Tracking device for moving body using dither method
JP3214660B2 (en) Motion vector detection device
JPH0728406B2 (en) Motion vector detector
KR100215205B1 (en) Target tracking method and device for video phone
JPH07264598A (en) Compensating method for motion, motion vector detecting circuit and motion compensating circuit