JPH0135243B2 - - Google Patents

Info

Publication number
JPH0135243B2
JPH0135243B2 JP55157058A JP15705880A JPH0135243B2 JP H0135243 B2 JPH0135243 B2 JP H0135243B2 JP 55157058 A JP55157058 A JP 55157058A JP 15705880 A JP15705880 A JP 15705880A JP H0135243 B2 JPH0135243 B2 JP H0135243B2
Authority
JP
Japan
Prior art keywords
pressure
main steam
rate
steam pressure
fcb
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55157058A
Other languages
Japanese (ja)
Other versions
JPS5781616A (en
Inventor
Kunio Hodozuka
Yasuisa Yamamoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP15705880A priority Critical patent/JPS5781616A/en
Publication of JPS5781616A publication Critical patent/JPS5781616A/en
Publication of JPH0135243B2 publication Critical patent/JPH0135243B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K9/00Plants characterised by condensers arranged or modified to co-operate with the engines
    • F01K9/04Plants characterised by condensers arranged or modified to co-operate with the engines with dump valves to by-pass stages

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)
  • Control Of Fluid Pressure (AREA)

Description

【発明の詳細な説明】 この発明は超臨界圧ベンソンボイラのFCB時
における主蒸気圧力の制御の方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for controlling main steam pressure during FCB of a supercritical pressure Benson boiler.

大容量火力発電所において使用されるベンソン
ボイラにおいては送電線側で系統事故が発生する
と発電所を事故系統から解列する。タービン、発
電気の負荷は事故前の負荷から所内負荷まで急速
に絞り込みされ、所内負荷の運転を継続しながら
事故の復旧を待つこととなる。このような発電所
負荷の急速絞り込みを一般にフアストカツトバツ
ク(FAST OUT BACK)と称する。(以下単に
FCBと略称する)このようなFCB機能を備えな
いと急速な運転再開(立上り)ができないものと
なる。
In the Benson boiler used in large-capacity thermal power plants, when a system fault occurs on the power transmission line side, the power plant is disconnected from the fault system. The load on the turbines and power generation will be rapidly reduced from the pre-accident load to the station load, and the station will continue to operate while waiting for the accident to recover. Such rapid reduction of power plant load is generally referred to as fast cutback (FAST OUT BACK). (Hereafter simply
Without this type of FCB function (abbreviated as FCB), rapid restart of operation will not be possible.

しかしこのような急速な負荷の絞り込みに際し
ては特に超臨界圧力(225.56Kg/cm2、374.5℃以
上)のボイラにおいては給水量、燃料量、空気量
を計画通りかつ安全に切り下げしないときはボイ
ラ装置、タービン、ほかの機器に過大な熱応力を
生じさせないようにするために設けられているイ
ンターロツクの領域に制御作動が入りプラント停
止となり再起動に相当の時間と手間を要すること
となる。
However, when reducing the load rapidly, especially in boilers with supercritical pressure (225.56 Kg/cm 2 , 374.5°C or higher), if the water supply amount, fuel amount, and air amount cannot be reduced as planned and safely, the boiler equipment must be The control operation enters the interlock area that is provided to prevent excessive thermal stress from occurring in the turbine, turbine, and other equipment, causing the plant to shut down and requiring considerable time and effort to restart.

この発明はFCBに際しての制御特に超臨界圧
力のベンソンボイラの主制御要素たる給水、燃
料、燃焼用空気、主蒸気圧力のうち主蒸気圧力の
制御につき提案することを目的とする。
The purpose of this invention is to propose control in FCB, particularly control of main steam pressure among the main control elements of feed water, fuel, combustion air, and main steam pressure of a supercritical pressure Benson boiler.

要するにこの発明はFCBに際し超臨界圧力ベ
ンソンボイラの主蒸気圧力を制御する方法におい
て、FCB後1分間は制御装置の主蒸気圧力設定
値を保持し、ついで第1の圧力変化速度の降下率
で主蒸気圧力設定値を下げて行き、分離タンク圧
力が第1の所定圧力以下になつたなら、再循環ポ
ンプを起動し、再循環圧力起動後は第2の圧力変
化速度の降下率で主蒸気圧力設定値を下げてゆ
き、主蒸気圧力第2の所定圧力までは前記第2の
圧力変化速度の降下率を保持し、主蒸気圧力第2
の所定圧力以降は降下率を第3の圧力変化速度に
保持するFCB時主蒸気圧力制御方法であること
を特徴とする。
In short, this invention provides a method for controlling the main steam pressure of a supercritical pressure Benson boiler during FCB, in which the main steam pressure set value of the control device is held for one minute after FCB, and then the main steam pressure is When the steam pressure set value is lowered and the separation tank pressure is below the first predetermined pressure, the recirculation pump is started, and after the recirculation pressure is started, the main steam pressure is decreased at the rate of decrease of the second pressure change rate. As the set value is lowered, the rate of decrease of the second pressure change rate is maintained until the main steam pressure reaches the second predetermined pressure, and the main steam pressure reaches the second predetermined pressure.
The main steam pressure control method during FCB is characterized in that the rate of decline is maintained at the third pressure change rate after the predetermined pressure.

まず本発明の実施されるベンソンボイラの給水
系につき図面により以下説明する。第1図は従来
の貫流ボイラの管系統を示す図面である。ボイラ
給水ポンプ1′より送出される給水は高圧給水加
熱器2′で加熱され節炭器3′、蒸発部4′、1次
過熱器5a′、2次過熱器5b′を経由して高圧ター
ビン6′に蒸気を供給する。また図示の如くフラ
ツシユタンク7′と脱気器8′が設けられ起動時及
び負荷変動時に対処するため過熱器止弁200、
過熱蒸気減圧弁201、1次過熱器バイパス弁2
02、2次過熱器バイパス弁207が配置され、
起動時には気水混合物、タービン負荷減のときは
過熱蒸気をフラツシユタンク7′に送出すること
ができるように配置してある。なおフラツシユタ
ンク7′からは高圧給水加熱器加熱蒸気弁220
を経由し高圧給水加熱器加熱用の蒸気を、また脱
気器加熱蒸気弁231を経由し脱気器加熱用蒸気
が供給される。即ち本発明におけるごとき言わば
節炭器と蒸発部をバイパスする如き再循環系統が
ないため最大連続負荷(MCR)時の給水量の約
35%以下に負荷の切り下げは困難であつた。
First, a water supply system for a Benson boiler in which the present invention is implemented will be described below with reference to the drawings. FIG. 1 is a drawing showing the pipe system of a conventional once-through boiler. The feed water sent out from the boiler feed water pump 1' is heated by the high pressure feed water heater 2', and then sent to the high pressure turbine via the energy saver 3', the evaporator 4', the primary superheater 5a', and the secondary superheater 5b'. 6' is supplied with steam. In addition, as shown in the figure, a flash tank 7' and a deaerator 8' are provided, and a superheater stop valve 200 is provided to cope with startup and load fluctuations.
Superheated steam pressure reducing valve 201, primary superheater bypass valve 2
02, a secondary superheater bypass valve 207 is arranged,
The arrangement is such that a steam/water mixture can be delivered to the flash tank 7' at startup, and superheated steam can be delivered to the flash tank 7' when the turbine load is reduced. Furthermore, from the flush tank 7', there is a high-pressure feed water heater heating steam valve 220.
Steam for heating the high-pressure feedwater heater is supplied via the deaerator heating steam valve 231, and steam for heating the deaerator is supplied via the deaerator heating steam valve 231. In other words, since there is no recirculation system that bypasses the energy saver and evaporator as in the present invention, the amount of water supplied at maximum continuous load (MCR) is reduced.
It was difficult to reduce the load to below 35%.

この発明の実施にかかる600MW 246Kg/cm2
級のベンソンボイラの管系統図を第2図に示す。
同一数字符号でダツシユのない数字は同一名称の
機器を示すものとする。蒸発部9の後流に位置す
る気水分離器10を含む再循環系9には貯水をす
る分離タンク11、再循環ポンプ12、再循環水
流量制御弁360(以下360弁が直列に位置す
る。)高圧給水加熱器2の後流、かつ再循環系9
の管路の接続点9a前に流量計14が設けられ
る。また流量計14と高圧給水加熱器2間の管路
より分岐する管路15は更に管路15a,15b
に分岐し、過熱蒸気の減温用水スプレーノズルに
接続する。またこの装置には第3次過熱器5cが
設けられている。
600MW required for carrying out this invention 246Kg/cm 2 g
Figure 2 shows the pipe system diagram of the Benson boiler.
Numbers with the same numerical code without a dash indicate equipment with the same name. A recirculation system 9 including a steam separator 10 located downstream of the evaporation section 9 includes a separation tank 11 for storing water, a recirculation pump 12, and a recirculation water flow rate control valve 360 (hereinafter 360 valves are arranged in series). .) Afterstream of high pressure feed water heater 2 and recirculation system 9
A flow meter 14 is provided in front of the connection point 9a of the pipe line. Further, the pipe line 15 branching from the pipe line between the flow meter 14 and the high-pressure feed water heater 2 further includes pipe lines 15a and 15b.
branch to and connect to a water spray nozzle for cooling superheated steam. This device is also provided with a tertiary superheater 5c.

気水分離器10と1次過熱器5aとを接続する
管路から分岐する管路114には気水分離器蒸気
ダンプ弁302(以下302弁と称す)が設けら
れる。高圧タービンバイパス管路16には高圧タ
ービンバイパス弁316(以下316弁と称す)
が設けられこの管路16はフラツシユタンク7に
接続する。符号331は脱気器加熱蒸気弁であ
る。(以下331弁と称す)。
A steam separator steam dump valve 302 (hereinafter referred to as 302 valve) is provided in a pipe line 114 branching from a pipe line connecting the steam separator 10 and the primary superheater 5a. The high pressure turbine bypass line 16 has a high pressure turbine bypass valve 316 (hereinafter referred to as 316 valve).
This conduit 16 is connected to the flash tank 7. Reference numeral 331 is a deaerator heating steam valve. (hereinafter referred to as 331 valve).

このような発電プラントが事故系統から解列さ
れると所内負荷まで瞬間的に軽くなるのでタービ
ン発電機は加速され、タービン速度調定率に従い
タービン加減弁及びインターセプト弁は急閉す
る。負荷運転中にタービン加減弁が無負荷位置、
インターセプト弁が全閉となつたということを
各々の弁のリミツトスイツチで検出して制御盤
(図示せず)よりFCBの一連の動作指令が出され
る。
When such a power generation plant is disconnected from the accident system, the load within the plant is instantaneously reduced, so the turbine generator is accelerated, and the turbine control valve and intercept valve are suddenly closed according to the turbine speed regulation rate. During load operation, the turbine control valve is in the no-load position,
When the limit switch of each valve detects that the intercept valve is fully closed, a series of operation commands for the FCB are issued from a control panel (not shown).

計画し設定された指令信号により燃料供給量
(バーナを必要本数順次消火)と燃焼用空気量を
プログラムにより制御されて低減されるが火炉を
形成する蒸発部はFCB時には相当の熱量を保有
するものでありまた事故復旧後の急速立ち上りの
ために使用する最低本数のバーナからの供給熱量
に対する蒸発部の保護よりしてMCR(最大連続負
荷)時の給水流量の約28%を節炭器入口に供給し
循環せねばならない。この場合において所内負荷
に対応してMCR時の約5%の水が給水として給
水ポンプより供給される必要がある。必要とする
火炉保護の水量確保のためMCR時の約28%の水
量が給水ポンプより供給されるときは第1図のよ
うな管系統では到底処理することができない。
The amount of fuel supplied (sequentially extinguishing the required number of burners) and the amount of air for combustion are controlled and reduced by the program according to planned and set command signals, but the evaporator that forms the furnace retains a considerable amount of heat during FCB. In addition, to protect the evaporator from the amount of heat supplied from the minimum number of burners used for rapid startup after recovery from an accident, approximately 28% of the water supply flow rate during MCR (maximum continuous load) is sent to the inlet of the economizer. It must be supplied and circulated. In this case, approximately 5% of the water during MCR needs to be supplied from the water pump as water supply, corresponding to the in-house load. In order to secure the required amount of water to protect the furnace, approximately 28% of the water amount during MCR is supplied from the water pump, which cannot be handled by the pipe system shown in Figure 1.

このため発明者等が先に提案したごとく気水分
離器16を設け蒸発部4より送出される気水混合
物から約23%(MCRの)の水を分離し給水ポン
プからの約5%(MCRの)の給水に加えて節炭
器3に循環供給するものである。
For this reason, as previously proposed by the inventors, a steam/water separator 16 is provided to separate approximately 23% (MCR) of water from the steam/water mixture sent out from the evaporator 4, and to separate approximately 5% (MCR) of the water from the water supply pump. In addition to the water supplied in ), the water is circulated and supplied to the energy saver 3.

またこの運転をより確実に行うため本発明にお
いては分離タンクのレベルを信号として360弁
と361弁を効率よく組合せ運転するものであ
る。
Further, in order to perform this operation more reliably, in the present invention, the 360 valve and 361 valve are efficiently operated in combination using the level of the separation tank as a signal.

前述したようにFCBに際しては急速に負荷の
低減がされるため分離タンク11に環流する水の
量は相当の量となり到底分離タンク容量内で処理
することができないので管路13より分岐する管
路たるフラツシユ用管路17に設けた流量制御弁
361(以下361弁と称す)の開度を調節して
収容水量の調節をする。361弁より過剰の水は
フラツシユタンク7に排出し分離タンクレベルを
適正に保持する。そのためには開のときは緊急に
分離タンク内の水を放出しないと分離タンク内レ
ベルを最高レベル警報レベル以下に保持できない
ので急速に開とする。ほぼ全開になつているので
レベル低になつてから正規制御レベルに回復する
には緩かにしないとレベルのハンチングを生ずる
こととなる。
As mentioned above, in the case of FCB, the load is rapidly reduced, so the amount of water that flows back into the separation tank 11 is considerable and cannot be treated within the capacity of the separation tank, so a pipe branching from the pipe line 13 is used. The amount of water accommodated is adjusted by adjusting the opening degree of a flow rate control valve 361 (hereinafter referred to as 361 valve) provided in the barrel flashing conduit 17. Excess water is discharged from the 361 valve into the flash tank 7 to maintain the separation tank level appropriately. In order to do this, the level in the separation tank cannot be maintained below the highest alarm level unless the water in the separation tank is released urgently when it is opened, so it must be opened rapidly. Since it is almost fully open, level hunting will occur if the level is not gradually increased to recover to the normal control level after the level becomes low.

つぎにこの発明の実施にかかる主蒸気圧力の制
御装置における主蒸気圧力を降下させる設定値プ
ログラムと計測値をグラフにして第3図に示す。
Next, a set value program for lowering the main steam pressure in the main steam pressure control device according to the present invention and measured values are shown in a graph in FIG.

246Kg/cm2gの主蒸気圧力で運転されていたベ
ンソンボイラにFCBを必要とする事態が発生し
たとする。FCB事態発生し、FCBの信号が入る
とまず約1分間はそのまま圧力を保持する指令を
出したままにしておく。急速なFCB対応動作を
することはかえつて制御に混乱を生ずることとな
るからである。
Suppose that a situation occurred in the Benson boiler, which was operating at a main steam pressure of 246 kg/cm 2 g, requiring an FCB. When an FCB situation occurs and an FCB signal is received, a command is issued to maintain the pressure for approximately one minute. This is because rapid FCB-compatible operations will only cause confusion in control.

従つて主蒸気の流れは遮断されることとなる故
フラツシユタンク7へ蒸気を送る管路の316弁
を急速開にする。しかし全量の放出が適当にされ
ることは困難であり主蒸気圧力はAB線で示すよ
うに急昇する。
Therefore, the flow of main steam is cut off, so valve 316 in the pipe line that sends steam to flash tank 7 is quickly opened. However, it is difficult to release the entire amount appropriately, and the main steam pressure rises rapidly as shown by line AB.

また急速な給水量減は熱容量の大なる蒸発管の
損傷と各部の熱応力を極力少くすること、圧力―
エンタルピの関係線図よりしても急速な圧力低減
は蒸気を湿り蒸気とし分離タンク11に過大な負
担をかけることとなる。このため分離タンク内圧
力が160Kg/cm2g(D点)になるまで約12Kg/cm2
g/minの降圧指令を出しかつこれを継続するこ
のような状態になるまでFCBより約9分掛るこ
ととなる。なおこの場合においてFCB条件が解
除され急速立ち上り(タービン併入条件にする)
ときの時間を短くするため約85Kg/cm2g(主蒸気
圧力)になる迄、主蒸気圧力の降下速度約2Kg/
cm2g/minとする(D―E間)。それでも送電事
故等が解決しないときは主蒸気圧力の降下速度を
0.5Kg/cm2g/minとする(E―F)。
In addition, a rapid decrease in the amount of water supplied can damage the evaporator tube, which has a large heat capacity, and it is important to minimize the thermal stress in each part.
As shown in the enthalpy relationship diagram, rapid pressure reduction causes the steam to turn into wet steam and places an excessive burden on the separation tank 11. Therefore, the pressure inside the separation tank is approximately 12Kg/cm 2 until the pressure reaches 160Kg/cm 2 g (point D).
It takes approximately 9 minutes from the FCB to reach such a state where the command to lower the blood pressure at 1 g/min is issued and continued. In this case, the FCB condition is canceled and rapid start-up (turbine annex condition is applied)
In order to shorten the time, the main steam pressure decreases at a rate of approximately 2 kg/cm2 until it reaches approximately 85 kg/cm 2 g (main steam pressure).
cm 2 g/min (between D and E). If the power transmission accident, etc. is still not resolved, reduce the rate of drop in main steam pressure.
0.5Kg/cm 2 g/min (EF).

これらの主蒸気圧力の降下率の設定は主蒸気圧
力を信号として記憶と計測値と対比し指令信号を
出す制御箱に送りその制御箱内の主蒸気圧力降下
率設定装置に指令して記憶するプログラムにより
制御をするものである。制御対象要素としては各
316弁,302弁、給水ポンプ出口弁、供給燃
料量、燃焼用空気量等があるが、これらのものの
制御部に指令信号は送られることとなる。(制御
箱及び指令回路は図示せず) 本発明の実施にかかるこのようなプログラムに
よる降圧指示はボイラ本体の各部に熱応力による
損傷を生ずることもなく、立ち上りも急速にする
ことができ、FCB対応処置は円滑にされ、しか
も制御装置のプログラムによりされるのでボイラ
装置の安全運転に格別の貢献することとなる。
These main steam pressure drop rate settings are made by storing the main steam pressure as a signal, comparing it with the measured value, sending it to a control box that issues a command signal, and instructing the main steam pressure drop rate setting device in the control box to memorize it. It is controlled by a program. The elements to be controlled include the 316 valves, the 302 valves, the water supply pump outlet valve, the amount of fuel to be supplied, the amount of combustion air, etc., and command signals are sent to the control units of these items. (The control box and command circuit are not shown.) The step-down instruction by such a program according to the present invention does not cause any damage to the various parts of the boiler body due to thermal stress, and can quickly start up the FCB. Since the countermeasures are carried out smoothly and in accordance with the program of the control device, this makes a special contribution to the safe operation of the boiler system.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の貫流ボイラの管系統図、第2図
はこの発明の実施にかかるベンソンボイラの管系
統図、第3図は主蒸気圧力降下率と実測した圧力
降下の状況を示す線図である。 1……給水ポンプ、2……高圧給水加熱器、3
……節炭器、4……蒸発部、5a……1次過熱
器、6……高圧タービン、5b……2次過熱器、
5c……3次過熱器、7……フラツシユタンク、
8……脱気器、9……再循環系統、10……気水
分離器、11……分離タンク、12……再循環ポ
ンプ、360……再循環水流量制御弁、361…
…フラツシユの流量制御弁。
Figure 1 is a pipe system diagram of a conventional once-through boiler, Figure 2 is a pipe system diagram of a Benson boiler according to the present invention, and Figure 3 is a line diagram showing the main steam pressure drop rate and the actually measured pressure drop situation. It is. 1...Water pump, 2...High pressure water heater, 3
...Economic saver, 4...Evaporator, 5a...Primary superheater, 6...High pressure turbine, 5b...Secondary superheater,
5c...Third superheater, 7...Flush tank,
8... Deaerator, 9... Recirculation system, 10... Steam water separator, 11... Separation tank, 12... Recirculation pump, 360... Recirculation water flow rate control valve, 361...
...Flash flow control valve.

Claims (1)

【特許請求の範囲】 1 FCBに際し超臨界圧力ベンソンボイラの主
蒸気圧力を制御する方法において、FCB後一定
時間は制御装置の主蒸気圧力設定値を保持し、つ
いで第1の圧力変化速度の降下率で主蒸気圧力の
設定値を下げて行き、分離タンク圧力が第1の所
定圧力に下つたとき、再循環ポンプを起動し、再
循環ポンプ起動後は第1の圧力変化速度よりも小
なる第2の圧力変化速度の降下率で主蒸気圧力設
定値を下げて行き、前記第1の所定圧力より小な
る第2の所定圧力までは前記第2の圧力変化速度
の降下率を保持し、主蒸気圧力が第2の所定圧力
以降は降下率を前記第2の圧力変化速度より小な
る第3の圧力変化速度に保持することを特徴とす
るFCB時主蒸気圧力制御方法。 2 前記一定時間は1分間、第1の圧力変化速度
は約12Kg/cm2/min、第1の所定圧力は160Kg/
cm2、第2の圧力変化速度は約2Kg/cm2/min、第
2の所定圧力は85Kg/cm2、第3の圧力変化速度は
約0.5Kg/cm2/minとすることを特徴とする特許
請求の範囲第1項記載のFCB時主蒸気圧力制御
方法。 3 主蒸気圧力を信号として記憶と計測値を対比
して指令信号を出す制御箱に送り、制御箱内の主
蒸気圧力降下率設定装置に指令して主蒸気圧力降
下率を制御することを特徴とする特許請求の範囲
第1項または第2項記載のFCB時主蒸気圧力制
御方法。
[Claims] 1. In a method of controlling the main steam pressure of a supercritical pressure Benson boiler upon FCB, the main steam pressure set value of the control device is held for a certain period of time after FCB, and then the first pressure change rate is decreased. When the separation tank pressure falls to a first predetermined pressure, the recirculation pump is started, and after the recirculation pump is started, the set value of the main steam pressure is lowered at a rate lower than the first pressure change rate. Lowering the main steam pressure set value at a rate of decrease of a second rate of pressure change, and maintaining the rate of decrease of the second rate of pressure change until a second predetermined pressure that is smaller than the first predetermined pressure; A method for controlling main steam pressure during FCB, characterized in that, after the main steam pressure reaches a second predetermined pressure, a drop rate is maintained at a third pressure change rate that is smaller than the second pressure change rate. 2 The predetermined time is 1 minute, the first pressure change rate is approximately 12Kg/cm 2 /min, and the first predetermined pressure is 160Kg/min.
cm 2 , the second pressure change rate is about 2Kg/cm 2 /min, the second predetermined pressure is 85Kg/cm 2 , and the third pressure change rate is about 0.5Kg/cm 2 /min. A method for controlling main steam pressure during FCB according to claim 1. 3 The main steam pressure is used as a signal to compare the stored and measured values and send it to a control box that issues a command signal, which instructs the main steam pressure drop rate setting device in the control box to control the main steam pressure drop rate. A method for controlling main steam pressure during FCB according to claim 1 or 2.
JP15705880A 1980-11-10 1980-11-10 Control method of main vapor pressure for first cut back Granted JPS5781616A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15705880A JPS5781616A (en) 1980-11-10 1980-11-10 Control method of main vapor pressure for first cut back

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15705880A JPS5781616A (en) 1980-11-10 1980-11-10 Control method of main vapor pressure for first cut back

Publications (2)

Publication Number Publication Date
JPS5781616A JPS5781616A (en) 1982-05-21
JPH0135243B2 true JPH0135243B2 (en) 1989-07-24

Family

ID=15641284

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15705880A Granted JPS5781616A (en) 1980-11-10 1980-11-10 Control method of main vapor pressure for first cut back

Country Status (1)

Country Link
JP (1) JPS5781616A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0713524B2 (en) * 1985-09-27 1995-02-15 三菱重工業株式会社 Steam pressure control method in a variable pressure operation boiler

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5431803A (en) * 1977-08-15 1979-03-08 Hitachi Ltd Primary steam pressure control system
JPS5551203A (en) * 1978-10-09 1980-04-14 Mitsubishi Heavy Ind Ltd Pressure change operation boiler

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5431803A (en) * 1977-08-15 1979-03-08 Hitachi Ltd Primary steam pressure control system
JPS5551203A (en) * 1978-10-09 1980-04-14 Mitsubishi Heavy Ind Ltd Pressure change operation boiler

Also Published As

Publication number Publication date
JPS5781616A (en) 1982-05-21

Similar Documents

Publication Publication Date Title
JP3800384B2 (en) Combined power generation equipment
JP5183305B2 (en) Startup bypass system in steam power plant
CN112431642A (en) Steam turbine system based on FCB control logic
JPH08246814A (en) Combined cycle generation plant using refuse incinerator
CN112128734A (en) Undisturbed switching control method for electric feed pump of subcritical unit of 135MW coal-fired drum furnace
JPH0135243B2 (en)
JP7291010B2 (en) power plant
JPS6239653B2 (en)
JPH0135242B2 (en)
JP4162371B2 (en) Start-up control method for single-shaft combined power plant
JP5409882B2 (en) Operation method of start-up bypass system in steam power plant
CN215979528U (en) Steam condensing type isolated thermal state starting system without auxiliary steam for external heat supply unit
JP3641518B2 (en) Steam temperature control method and apparatus for combined cycle plant
JP3144440B2 (en) Multi-shaft combined cycle power plant
KR102173808B1 (en) Method for preventing reactor trip during vacuum loss of condenser
CN217444077U (en) Start-stop reactor system of high-temperature gas cooled reactor unit
JP2531801B2 (en) Exhaust heat recovery heat exchanger controller
JPS6239655B2 (en)
JPS6149487B2 (en)
JPS6156402B2 (en)
JPS622129B2 (en)
JPS5914615B2 (en) Gas turbine generator operation and stop equipment
JPS6355601B2 (en)
Byeon et al. Designing a standard thermal power plant for daily startup/shutdown: the HP Bypass control and safety function
JPH0135244B2 (en)