JPH0134943B2 - - Google Patents
Info
- Publication number
- JPH0134943B2 JPH0134943B2 JP6027781A JP6027781A JPH0134943B2 JP H0134943 B2 JPH0134943 B2 JP H0134943B2 JP 6027781 A JP6027781 A JP 6027781A JP 6027781 A JP6027781 A JP 6027781A JP H0134943 B2 JPH0134943 B2 JP H0134943B2
- Authority
- JP
- Japan
- Prior art keywords
- concrete
- added
- performance water
- cement
- tartaric acid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000003638 chemical reducing agent Substances 0.000 claims description 18
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 18
- FEWJPZIEWOKRBE-UHFFFAOYSA-N Tartaric acid Natural products [H+].[H+].[O-]C(=O)C(O)C(O)C([O-])=O FEWJPZIEWOKRBE-UHFFFAOYSA-N 0.000 claims description 17
- 239000004568 cement Substances 0.000 claims description 17
- 235000002906 tartaric acid Nutrition 0.000 claims description 17
- 239000011975 tartaric acid Substances 0.000 claims description 16
- 150000003839 salts Chemical class 0.000 claims description 13
- 235000000346 sugar Nutrition 0.000 claims description 11
- 150000008163 sugars Chemical class 0.000 claims description 8
- 238000000034 method Methods 0.000 claims description 7
- 230000000694 effects Effects 0.000 description 7
- 238000002474 experimental method Methods 0.000 description 7
- 230000007423 decrease Effects 0.000 description 6
- 230000003111 delayed effect Effects 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 4
- 239000002270 dispersing agent Substances 0.000 description 4
- 239000004570 mortar (masonry) Substances 0.000 description 4
- AEQDJSLRWYMAQI-UHFFFAOYSA-N 2,3,9,10-tetramethoxy-6,8,13,13a-tetrahydro-5H-isoquinolino[2,1-b]isoquinoline Chemical compound C1CN2CC(C(=C(OC)C=C3)OC)=C3CC2C2=C1C=C(OC)C(OC)=C2 AEQDJSLRWYMAQI-UHFFFAOYSA-N 0.000 description 3
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 3
- 230000002265 prevention Effects 0.000 description 3
- 239000000176 sodium gluconate Substances 0.000 description 3
- 235000012207 sodium gluconate Nutrition 0.000 description 3
- 229940005574 sodium gluconate Drugs 0.000 description 3
- KDYFGRWQOYBRFD-UHFFFAOYSA-N succinic acid Chemical compound OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 2
- 229930006000 Sucrose Natural products 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 150000001720 carbohydrates Chemical class 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 239000004576 sand Substances 0.000 description 2
- 239000005720 sucrose Substances 0.000 description 2
- WURBVZBTWMNKQT-UHFFFAOYSA-N 1-(4-chlorophenoxy)-3,3-dimethyl-1-(1,2,4-triazol-1-yl)butan-2-one Chemical compound C1=NC=NN1C(C(=O)C(C)(C)C)OC1=CC=C(Cl)C=C1 WURBVZBTWMNKQT-UHFFFAOYSA-N 0.000 description 1
- CYDQOEWLBCCFJZ-UHFFFAOYSA-N 4-(4-fluorophenyl)oxane-4-carboxylic acid Chemical compound C=1C=C(F)C=CC=1C1(C(=O)O)CCOCC1 CYDQOEWLBCCFJZ-UHFFFAOYSA-N 0.000 description 1
- LSNNMFCWUKXFEE-UHFFFAOYSA-M Bisulfite Chemical compound OS([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-M 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- FEWJPZIEWOKRBE-JCYAYHJZSA-N Dextrotartaric acid Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O FEWJPZIEWOKRBE-JCYAYHJZSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- 229920000877 Melamine resin Polymers 0.000 description 1
- UFWIBTONFRDIAS-UHFFFAOYSA-N Naphthalene Chemical compound C1=CC=CC2=CC=CC=C21 UFWIBTONFRDIAS-UHFFFAOYSA-N 0.000 description 1
- 239000011398 Portland cement Substances 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 235000016127 added sugars Nutrition 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- KDYFGRWQOYBRFD-NUQCWPJISA-N butanedioic acid Chemical compound O[14C](=O)CC[14C](O)=O KDYFGRWQOYBRFD-NUQCWPJISA-N 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 150000002016 disaccharides Chemical class 0.000 description 1
- IVJISJACKSSFGE-UHFFFAOYSA-N formaldehyde;1,3,5-triazine-2,4,6-triamine Chemical compound O=C.NC1=NC(N)=NC(N)=N1 IVJISJACKSSFGE-UHFFFAOYSA-N 0.000 description 1
- NVVZQXQBYZPMLJ-UHFFFAOYSA-N formaldehyde;naphthalene-1-sulfonic acid Chemical compound O=C.C1=CC=C2C(S(=O)(=O)O)=CC=CC2=C1 NVVZQXQBYZPMLJ-UHFFFAOYSA-N 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 150000004676 glycans Chemical class 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000004898 kneading Methods 0.000 description 1
- 229920005610 lignin Polymers 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 150000002772 monosaccharides Chemical class 0.000 description 1
- PSZYNBSKGUBXEH-UHFFFAOYSA-N naphthalene-1-sulfonic acid Chemical compound C1=CC=C2C(S(=O)(=O)O)=CC=CC2=C1 PSZYNBSKGUBXEH-UHFFFAOYSA-N 0.000 description 1
- 229920001282 polysaccharide Polymers 0.000 description 1
- 239000005017 polysaccharide Substances 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 239000001540 sodium lactate Substances 0.000 description 1
- 229940005581 sodium lactate Drugs 0.000 description 1
- 235000011088 sodium lactate Nutrition 0.000 description 1
- NGSFWBMYFKHRBD-UHFFFAOYSA-N sodium;2-hydroxypropanoic acid Chemical compound [Na+].CC(O)C(O)=O NGSFWBMYFKHRBD-UHFFFAOYSA-N 0.000 description 1
- 229910052712 strontium Inorganic materials 0.000 description 1
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 description 1
- 239000001384 succinic acid Substances 0.000 description 1
- 150000004043 trisaccharides Chemical class 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
Landscapes
- Curing Cements, Concrete, And Artificial Stone (AREA)
Description
本発明は、コンクリートのワーカビリテイ改良
法、特に高性能減水剤を添加したコンクリートの
スランプロス防止方法に関する。
なお、本発明において、コンクリートとはモル
タル及びコンクリートなどの総称である。
従来から、セメント分散剤はいろいろ知られて
いるが、セメント分散剤の中でも、特にセメント
に多量添加しても、凝結遅延や空気連行などのコ
ンクリートの悪化に悪影響を与えることなく、高
分散剤を与えることができる分散剤、いわゆる高
性能減水剤といわれているものは、高強度を要求
されるコンクリート製品、特にパイル、ポール、
ブロツク等のコンクリート工場製品の製造に添加
され償用されている。
しかし、このようなコンクリートは、無添加の
ものに比べて著しくフローやスランプが低下し、
とりわけ低温時においては作業時間が十分とれな
い欠点がある。
本発明は、これらの欠点を解決したもので高性
能減水剤を配合したコンクリートに微少量の酒石
酸又はその塩類、若しくはこれらと糖類とを用い
ることにより、コンクリートのフローやスランプ
の低下防止方法、特に低温時における作業性を改
善方法を提供しようとするものである。
すなわち、本発明は、高性能減水剤を添加した
コンクリートのセメント分に対し、酒石酸又はそ
の塩類0.005〜0.3重量%、若しくはこれらと糖類
0.005〜0.1重量%とを添加することを特徴とす
る。
以下、さらに詳しく本発明を説明する。まず、
本発明において、高性能減水剤とは前記した性質
を有するものであつて、具体例としては、ナフタ
レンスルホン酸ホルムアルデヒド共縮合物、ナフ
タレンスルホン酸とリグニンスルホン酸ホルムア
ルデヒド共縮合物、メラミンホルムアルデヒド縮
合物のスルホン化物などがあげられ、また、これ
らの市販品としては、花王石鹸(株)商品名「マイテ
イ100」、「マイテイ150」、「マイテイHS」、竹本油
指(株)商品名「ポールフアイン510N」、山陽国策パ
ルプ(株)商品名「サンフローPS」、ポゾリス物産(株)
商品名「NL−1450」「NL−4000」、昭和電工(株)
商品名「メルメント」などがある。
通常、これらの高性能減水剤は、コンクリート
のセメント分に対して、0.2〜3重量%程度添加
するが、高性能減水剤を添加したコンクリートは
フローやスランプの低下が著しいことから、本発
明においては、このような高性能減水剤を添加し
たコンクリートのセメント分に対して、酒石酸又
はその塩類を0.005〜0.3重量%を添加するか、若
しくはこれらにさらに糖類を0.005〜0.1重量%併
用することにより、高性能減水剤を添加したコン
クリートの問題点を解決したものである。
本発明において用いる酒石酸の塩類としては、
ナトリウム、カリウム、リチウム、カルシウム、
亜鉛、ストロンチウム、銅、鉄などがあげられ
る。これらの酒石酸又はその塩類は、高性能減水
剤と併用しないと却つてフローやスランプの低下
を促進するものである。また、本発明において、
用いる糖類としては、単糖類や二糖類、三糖類な
どの多糖類があげられ、これらは1種以上用いる
ことができるが、その性能及び経済性の点から庶
糖が最も好ましい。
また、高性能減水剤を添加したコンクリートに
おいて、糖類のみを添加し、しかも低温特に15℃
以下の温度で用いた場合は、フローやスランプの
低下防止効果はないが、これらと、酒石酸又はそ
の塩類とを併用すればフローやスランプの低下防
止助長効果が現れる。
本発明において、酒石酸又はその塩類の添加量
を前記のように限定した理由は、コンクリート中
のセメント分に対し、0.005重量%未満では、フ
ローやスランプの低下防止効果が小さく、また
0.3重量%をこえると強度発現が著しく遅延され
るからであり、また酒石酸又はその塩類と併用し
て用いる糖類の添加量を限定した理由は、コンク
リート中のセメント分に対し、0.005%未満では、
フローやスランプの低下防止効果がなく、また
0.1重量%をこえると硬化が著しく遅延するので
好ましくないからである。
以上説明したように、本発明は、高性能減水剤
を用いたコンクリートのセメント分に対し、微少
量の酒石酸又はその塩類若しくはこれらと糖類と
を併用するものであり、これにより、高性能減水
剤を添加したコンクリートの特性を損うことな
く、しかもフローやスランプなどの低下を防止し
たすぐれた方法である。
以下実施例をあげて、さらに本発明を説明す
る。
実施例 1
高性能減水剤として、花王石鹸(株)商品名「マイ
テイ150」を用い、その添加量をセメントに対し
1.5重量%と固定し、酒石酸又はその塩類の種類
とそのセメントに対する添加量を変えて、モルタ
ルのフロー低下を測定した。なお、モルタルは、
普通ポルトランドセメント、F.M2.95の天然川砂
を使用し、セメント:砂比1:1.5、W/C30%の
条件で混練し、練上直後と2時間後のフロー値を
10℃の温度で測定した。その結果を、練り上がり
直後のフロー値を100とした場合の相対値として
第1表に示す。また、同じモルタルで7日の圧縮
強度を測定した結果についても第1表に示す。実
験No.1は比較例である。
The present invention relates to a method for improving the workability of concrete, and particularly to a method for preventing slump loss in concrete to which a high performance water reducing agent is added. Note that in the present invention, concrete is a general term for mortar, concrete, and the like. Various cement dispersants have been known for a long time, but among cement dispersants, we have developed a highly effective dispersant that does not adversely affect the deterioration of concrete, such as delayed setting or air entrainment, even when added in large amounts to cement. Dispersants that can be added, so-called high-performance water reducers, are used in concrete products that require high strength, especially piles, poles,
It is added to and used in the manufacture of concrete factory products such as blocks. However, such concrete has significantly lower flow and slump than that without additives,
There is a drawback that there is not enough working time, especially at low temperatures. The present invention solves these drawbacks and provides a method for preventing a decrease in the flow and slump of concrete, especially by using a small amount of tartaric acid or its salts, or these and sugars in concrete mixed with a high-performance water reducing agent. The purpose is to provide a method for improving workability at low temperatures. That is, the present invention provides 0.005 to 0.3% by weight of tartaric acid or its salts, or these and sugars, based on the cement content of concrete to which a high performance water reducing agent has been added.
It is characterized by adding 0.005 to 0.1% by weight. The present invention will be explained in more detail below. first,
In the present invention, the high performance water reducing agent has the properties described above, and specific examples thereof include naphthalene sulfonic acid formaldehyde co-condensate, naphthalene sulfonic acid and lignin sulfonic acid formaldehyde co-condensate, and melamine formaldehyde condensate. Examples include sulfonated products, and commercially available products include Kao Soap Co., Ltd.'s product names "Mighty 100,""Mighty150," and "Mighty HS," and Takemoto Yusashi Co., Ltd.'s product name "Pole Huain 510N." , Sanyo Kokusaku Pulp Co., Ltd. Product name: "Sunflow PS", Pozolis Bussan Co., Ltd.
Product name "NL-1450""NL-4000", Showa Denko K.K.
There are product names such as ``Melment''. Normally, these high-performance water reducers are added in an amount of about 0.2 to 3% by weight based on the cement content of concrete, but since concrete with high-performance water reducers added has a significant drop in flow and slump, in the present invention By adding 0.005 to 0.3% by weight of tartaric acid or its salts to the cement content of concrete to which such a high-performance water reducer has been added, or by adding 0.005 to 0.1% by weight of sugars in addition to these, , which solves the problems of concrete with added high-performance water reducing agents. Salts of tartaric acid used in the present invention include:
sodium, potassium, lithium, calcium,
Examples include zinc, strontium, copper, and iron. These tartaric acids or their salts, if not used together with a high performance water reducing agent, will actually promote a reduction in flow and slump. Furthermore, in the present invention,
Examples of the saccharide used include polysaccharides such as monosaccharides, disaccharides, and trisaccharides, and one or more of these can be used, but sucrose is most preferred from the viewpoint of performance and economical efficiency. In addition, in concrete with high-performance water reducer added, only sugars are added, and the temperature is low, especially 15℃.
When used at the following temperatures, there is no effect of preventing a decrease in flow or slump; however, if these are used in combination with tartaric acid or its salts, an effect of helping to prevent a decrease in flow or slump appears. In the present invention, the reason why the amount of tartaric acid or its salts added is limited as described above is that if it is less than 0.005% by weight based on the cement content in concrete, the effect of preventing a decrease in flow and slump is small.
This is because if it exceeds 0.3% by weight, the strength development is significantly delayed, and the reason why we limited the amount of sugars used in combination with tartaric acid or its salts is that if it is less than 0.005% based on the cement content in concrete,
It has no effect on reducing flow or slump, and
This is because if it exceeds 0.1% by weight, curing will be significantly delayed, which is not preferable. As explained above, the present invention uses a small amount of tartaric acid or its salts, or a combination of these and sugars for the cement content of concrete using a high performance water reducer. This is an excellent method that prevents deterioration of flow and slump without impairing the properties of the concrete to which it has been added. The present invention will be further explained below with reference to Examples. Example 1 Kao Soap Co., Ltd.'s product name ``Mighty 150'' was used as a high-performance water reducing agent, and the amount added to the cement was
The decrease in mortar flow was measured by fixing the amount at 1.5% by weight and varying the type of tartaric acid or its salts and the amount added to the cement. In addition, mortar is
Ordinary Portland cement and natural river sand with an F.M of 2.95 were mixed at a cement:sand ratio of 1:1.5 and W/C of 30%, and the flow values were measured immediately after mixing and after 2 hours.
Measured at a temperature of 10°C. The results are shown in Table 1 as relative values when the flow value immediately after kneading is set as 100. Table 1 also shows the results of measuring the compressive strength after 7 days using the same mortar. Experiment No. 1 is a comparative example.
【表】【table】
【表】
第1表では、酒石酸又はその塩類の添加量の増
加に伴ない、フロー低下防止効果が大となり、7
日の強度発現は遅れることを示しているが、材令
28日では740〜750Kg/cm2の強度を発現し、この値
は、酒石酸又はその塩類を添加しないものとほぼ
同等な値となるこを確めた。
実施例 2
酒石酸はセメントに対し0.03重量%(但し、実
験No.23、24、31及び36は無添加である。)、高性能
減水剤として、商品名「サンフローPS」をセメ
ントに対し、1.5重量%と固定し、糖類の種類と
そのセメントに対する添加量を変化させた以外
は、実施例1と同様に試験を行なつた。その結果
を第2表に示す。実験No.23〜25、31及び36は比較
例である。[Table] Table 1 shows that as the amount of tartaric acid or its salts added increases, the flow reduction prevention effect increases, and 7
This shows that the development of strength is delayed during the day, but
At 28 days, the strength was 740 to 750 Kg/cm 2 , and it was confirmed that this value was almost the same as that without adding tartaric acid or its salts. Example 2 Tartaric acid was 0.03% by weight based on the cement (however, no additive was used in Experiment Nos. 23, 24, 31, and 36), and the product name "Sunflow PS" was added to the cement as a high performance water reducer. The test was conducted in the same manner as in Example 1, except that the sugar content was fixed at 1.5% by weight and the type of saccharide and the amount added to the cement were varied. The results are shown in Table 2. Experiment Nos. 23 to 25, 31 and 36 are comparative examples.
【表】【table】
【表】
第2表では、糖類の添加量の増加に伴ない、フ
ロー低下防止効果が大となり、7日の圧縮強度は
遅れることを示しているが、材令28日では740〜
750Kg/cm2の強度を発現し、この値は糖類を添加
しないものとほぼ同等な値となることを確めた。
実施例 3
高性能減水剤として、昭和電工(株)商品名「メル
メントF10」をセメントに対し1.0重量%とした以
外は、実施例2と同様に行つた。その結果を第3
表に示す。なお実験No.41、42及び47は比較例であ
り、酒石酸を添加していない例である。[Table] Table 2 shows that as the amount of sugar added increases, the flow reduction prevention effect increases, and the compressive strength at 7 days is delayed, but at 28 days old, the
It was confirmed that it developed a strength of 750Kg/cm 2 and that this value was almost the same as that of a product without added sugars. Example 3 The same procedure as in Example 2 was carried out, except that 1.0% by weight of "Melment F10" (trade name, manufactured by Showa Denko KK) was used as a high-performance water reducing agent based on the cement. The result is the third
Shown in the table. Note that Experiment Nos. 41, 42, and 47 are comparative examples in which tartaric acid was not added.
【表】
第3表では、糖類の添加量の増加に伴ないフロ
ー低下防止効果が大となり、7日の強度発現は遅
れることを示しているが、材令28日では740〜750
Kg/cm2を発現し、この値は、糖類を添加しないも
のとほぼ同等な値となることを確めた。
実施例 4
高性能減水剤として、竹本油指(株)商品名「ポー
ルフアイン510N」を使用し、第4表のコンクリ
ート配合を用い、酒石酸と庶糖を種々変化させ、
温度8℃で50のコンクリートを混練した後その
スランプの径時変化を測定した。その結果を第5
表に示す。なお、実験No.52及び53は比較例であ
る。[Table] Table 3 shows that as the amount of sugar added increases, the flow reduction prevention effect increases, and the development of strength at 7 days is delayed;
Kg/cm 2 , and it was confirmed that this value was almost the same as that without adding sugars. Example 4 As a high-performance water reducing agent, Takemoto Yusashi Co., Ltd.'s product name "Pole Fine 510N" was used, the concrete formulation shown in Table 4 was used, and tartaric acid and sucrose were varied in various ways.
After mixing 50 pieces of concrete at a temperature of 8°C, the change in slump over time was measured. The result is the fifth
Shown in the table. Note that Experiment Nos. 52 and 53 are comparative examples.
【表】【table】
【表】
次に、実施例4のコンクリートにおいて、酒石
酸のかわりにグルコン酸ソーダ、乳酸ソーダ及び
コハク酸を用いた場合のスランプの経時変化値を
各々の添加量と共に第5表に併記した。
この表からわかるように、グルコン酸ソーダ、
乳酸ソーダ及びコハク酸を用いた場合には、スラ
ンプ値は急激に低下し、特にグルコン酸ソーダを
0.15及び0.20重量%用いたものは、5〜20分後に
急結し、本発明に比し著しく劣つている。
さらに、実験No.56のコンクリート配合から高性
能減水剤のみを除去して、目標スランプ10±2cm
のコンクリート(w/c38%)を調合したところ
実験No.68の通りとなつて、スランプロスを促進さ
せた。[Table] Next, in Table 5, the changes in slump over time when sodium gluconate, sodium lactic acid, and succinic acid were used in place of tartaric acid in the concrete of Example 4, along with the amounts of each added. As you can see from this table, sodium gluconate,
When using sodium lactate and succinic acid, the slump value decreases rapidly, especially when using sodium gluconate.
Those containing 0.15 and 0.20% by weight set rapidly after 5 to 20 minutes and are significantly inferior to the present invention. Furthermore, by removing only the high-performance water reducing agent from the concrete mix of Experiment No. 56, the target slump was 10 ± 2 cm.
When concrete (w/c 38%) was mixed, the result was as in Experiment No. 68, and slump loss was promoted.
Claims (1)
ント分に対し、酒石酸又はその塩類0.005〜0.3重
量%又はこれらと糖類0.005〜0.1重量%を添加す
ることを特徴とするコンクリートのスランプロス
防止方法。1. A method for preventing slump loss in concrete, which comprises adding 0.005 to 0.3% by weight of tartaric acid or its salts, or 0.005 to 0.1% by weight of these and sugars, to the cement content of concrete to which a high performance water reducer has been added.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6027781A JPS57175766A (en) | 1981-04-21 | 1981-04-21 | Concrete workability improvement |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6027781A JPS57175766A (en) | 1981-04-21 | 1981-04-21 | Concrete workability improvement |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS57175766A JPS57175766A (en) | 1982-10-28 |
JPH0134943B2 true JPH0134943B2 (en) | 1989-07-21 |
Family
ID=13137479
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6027781A Granted JPS57175766A (en) | 1981-04-21 | 1981-04-21 | Concrete workability improvement |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS57175766A (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6106608A (en) * | 1995-03-31 | 2000-08-22 | Andree; Gerd | Floor patching and leveling compound and associated method |
WO2013133820A1 (en) * | 2012-03-07 | 2013-09-12 | Empire Technology Development Llc | Lignin-based surfactants |
-
1981
- 1981-04-21 JP JP6027781A patent/JPS57175766A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS57175766A (en) | 1982-10-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3528832A (en) | Additives for mortar and concrete | |
JPS6235804A (en) | Manufacture of concrete | |
US4247334A (en) | Hydraulic cement compositions | |
CA1260963A (en) | Cement mixes and admixtures thereof | |
JPH0152342B2 (en) | ||
JPS6041631B2 (en) | Concrete workability improvement method | |
CA1278797C (en) | Concrete admixture compositions | |
JPH0134943B2 (en) | ||
JPS5826061A (en) | Operationability decrease prevention for cement admixture | |
JPH0153224B2 (en) | ||
JPH0530787B2 (en) | ||
JPS6013990B2 (en) | Manufacturing method of molded body | |
JPH11147746A (en) | Cement composition having reduced slump loss | |
JP4737794B2 (en) | Anchor fixing method | |
JPH0134944B2 (en) | ||
JP3226482B2 (en) | Method for preventing long-term strength decrease of hardened low heat cement composition containing hardening accelerator | |
JPS593427B2 (en) | Water reducing agent composition for hydraulic cement | |
JPS62292662A (en) | Cement admixing material | |
JPS6125670B2 (en) | ||
JPH0137343B2 (en) | ||
JP3344170B2 (en) | PC grout material | |
JPS5969458A (en) | Grout mortar workability improvement | |
RU2187480C1 (en) | Integrated additive for concretes and cement mortars | |
JPS6366787B2 (en) | ||
JPS5973459A (en) | High strength cement composition |